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1  | INTRODUC TION

Social interactions are central to the adaptive evolution of many 
complex phenotypes (Bourke, 2011). Sexual cooperation and 
competition, for example, can select for highly elaborated weap-
ons, ornaments, and signals (Hare & Simmons, 2019; McCullough 
et al., 2016; Smith & Harper, 2003), as well as for novel mating 

systems and costly reproductive strategies (Díaz- Muñoz et al., 2014; 
Hughes et al., 2008). The evolutionary ecology of social interactions 
has, therefore, been extensively investigated over the last half- 
century, employing both formal models and comparative empirical 
research across a diverse range of taxa (Bourke, 2011; Frank, 1998; 
Marshall, 2015; Rubenstein & Abbot, 2017). This work demonstrated 
the importance of social interactions as determinants of fitness 
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Abstract
Both assortment and plasticity can facilitate social evolution, as each may gener-
ate heritable associations between the phenotypes and fitness of individuals and 
their social partners. However, it currently remains difficult to empirically disentangle 
these distinct mechanisms in the wild, particularly for complex and environmentally 
responsive phenotypes subject to measurement error. To address this challenge, we 
extend the widely used animal model to facilitate unbiased estimation of plasticity, 
assortment and selection on social traits, for both phenotypic and quantitative ge-
netic (QG) analysis. Our social animal models (SAMs) estimate key evolutionary pa-
rameters for the latent reaction norms underlying repeatable patterns of phenotypic 
interaction across social environments. As a consequence of this approach, SAMs 
avoid inferential biases caused by various forms of measurement error in the raw 
phenotypic associations between social partners. We conducted a simulation study 
to demonstrate the application of SAMs and investigate their performance for both 
phenotypic and QG analyses. With sufficient repeated measurements, we found de-
sirably high power, low bias and low uncertainty across model parameters using mod-
est sample and effect sizes, leading to robust predictions of selection and adaptation. 
Our results suggest that SAMs will readily enhance social evolutionary research on a 
variety of phenotypes in the wild. We provide detailed coding tutorials and worked 
examples for implementing SAMs in the Stan statistical programming language.
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(Cally et al., 2019; Frank, 2007; West et al., 2015), the fundamental 
roles of social plasticity, assortment and social selection (see Table 1) 
in the evolutionary response to social interactions (Araya- Ajoy 
et al., 2020; Hamilton, 1964; Marshall, 2015; McGlothlin et al., 2014; 
Queller, 2011), as well as the ubiquity of phenotypic associations 
among social partners in wild populations (Brask et al., 2019; Carter 
et al., 2015; Janicke et al., 2019; Jiang et al., 2013).

Assortative mating is a particularly well studied form of assort-
ment that may occur for a variety of plastic and multivariate phe-
notypes. For instance, Steller's Jay (Cyanocitta stelleri) breeding 
partners exhibit similar trait values across a behavioral syndrome 
of multiple exploratory and risk- taking behaviors, and pairs with 
more similar trait values have a higher probability of fledgling suc-
cess (Gabriel & Black, 2012). Previous meta- analyses suggest that 
assortative mating may be widespread in animal populations, as 
evidenced by the ubiquity of positive associations between mating 
partners’ phenotypes (Jiang et al., 2013). However, various alterna-
tive mechanisms may also cause these phenotypic associations to 
occur even in the absence of assortment, such as plasticity toward 
social partners, spatiotemporal heterogeneity in the environment 
and/or measurement error (Class et al., 2017; Wang et al., 2019).

Effectively distinguishing phenotypic associations caused by 
social plasticity from those caused by assortment per se is particu-
larly crucial because each of these mechanisms may independently 
facilitate social evolution in the absence of the other (Araya- Ajoy 
et al., 2020; Marshall, 2015; McGlothlin et al., 2010). As Hamilton 
(1964) demonstrated, assortment potentiates a social evolution-
ary response by generating associations between individuals’ ge-
netic trait values and the fitness of their social partners (Bijma & 
Wade, 2008; McGlothlin et al., 2014; Queller, 2011). However, even 
when individuals interact randomly, social plasticity can still facili-
tate evolutionary change, as plastic trait values are determined not 
only by direct genetic effects on individual phenotypes, but also by 
indirect genetic effects (IGEs) due to heritable variation in the phe-
notypes of social partners. As a consequence, the social environ-
ment can also evolve whenever direct genetic effects on individual 
trait values are also associated with IGEs on the trait values or fit-
ness of social partners (Bijma, 2011; Bijma & Wade, 2008).

Recent empirical studies have highlighted the importance of 
social plasticity and attendant IGEs across a diverse range of spe-
cies, as well as the role of IGEs in potentiating evolutionary change 
(e.g. Bailey et al., 2017; Chenoweth et al., 2010; Evans et al., 2018; 
Santostefano et al., 2017; Silva et al., 2013; Wade et al., 2010). 
Both assortment and plasticity are, therefore, central for determin-
ing the evolutionary response to social interactions (McGlothlin 
et al., 2010). However, it remains difficult to disentangle the distinct 
effects of social plasticity, assortment and measurement error in em-
pirical datasets, as well as to integrate these mechanisms with infor-
mation on the genetic causes and fitness consequences of measured 
phenotypes. Ultimately, this inhibits our ability to explain the causes 
of adaptive social evolution in the wild.

Evolutionary quantitative genetics (QGs) has addressed this 
challenge with a powerful suite of theory for investigating the 

social evolution of interacting phenotypes (Araya- Ajoy et al., 2020; 
Bijma & Wade, 2008; Dingemanse & Araya- Ajoy, 2015; McGlothlin 
et al., 2010; Moore et al., 1997; Wolf et al., 1999). Unfortunately, 
however, it remains difficult to avoid various sources of statistical 
and inferential bias when attempting to estimate these models in 
wild populations. In this study, we therefore developed a series of 
novel QG models called social animal models (SAMs), which can be 
used with repeated measurements data to distinguish the genetic 
and environmental effects of assortment, social plasticity, and both 
social and nonsocial selection on interacting phenotypes. These 
models are extensions of well- established animal models, which pro-
vide a generalized mixed- effects modelling framework for estimating 
the evolutionary QG parameters of plastic traits (Nussey et al., 2007; 
de Villemereuil et al., 2016; Wilson et al., 2010). Animal models are 
particularly important in evolutionary ecology because they facili-
tate inference of the individual reaction norms (RNs) underlying raw 
phenotypic measurements (Nussey et al., 2007). RNs are functions 
composed of individual- specific parameters, such as intercepts and 
slopes, that predict an individual's repeatable trait expression in re-
sponse to an environmental factor, independently of other causes of 
phenotypic (co)variation. These RN parameters can be conceptual-
ized as intrinsic trait values capturing individuals’ differential patterns 
of phenotypic consistency (RN intercepts) and plasticity (RN slopes) 
across environments. Distinguishing the fitness effects of individuals' 
RN parameters is thus crucial for disentangling the evolutionary con-
sequences of the environmentally responsive or unresponsive com-
ponents of measured phenotypes (Dingemanse et al., 2010; Nussey 
et al., 2007; Snell- Rood & Ehlman, 2021). The SAMs presented here 
extend this basic animal model framework to appropriately estimate 
social reaction norms (SRNs) for interacting phenotypes, and thus to 
achieve estimation of plasticity, assortment and selection for indi-
vidual differences in SRNs, independently of any nonrepeatable or 
unmeasured causes of phenotypic (co)variation.

We begin below by formally introducing the animal model and 
RNs for plastic traits, as well the general motivation for estimating 
animal models within a Bayesian framework using repeated measures 
data. We then present novel SAMs to address three key statistical 
challenges in the application of animal models to interacting pheno-
types (Figure 1): (a) estimation of SRNs capturing feedback between 
the intrinsic trait values of individuals and their social partners, (b) 
distinguishing the effects of assortment and plasticity on SRNs and 
(c) estimating selection and the response to selection caused by the 
SRN parameters of individuals and their social partners. A glossary 
of major conceptual terms is provided in Table 1, and a notation key 
is provided in Table 2. To further investigate the statistical proper-
ties of the proposed models, we conducted a simulation study to 
assess bias, uncertainty and power for key evolutionary parameters 
with moderate sample and effect sizes. Our findings clearly demon-
strate the utility of SAMs for both phenotypic and QG analysis in 
empirical contexts comparable to many long- term field studies. 
Supplementary coding tutorials and worked examples of SAMs in 
the Stan statistical programming language (Carpenter et al., 2017) 
are also provided (see Appendix S1).
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2  | ANIMAL MODEL S

Herein, we focus attention on basic animal models with Gaussian re-
sponses to simplify notation. A linear animal model can be specified 
for some observation i of phenotype z, as expressed by individual j in 
response to an environmental factor xij, such that

Bold symbols are used to distinguish vectors and matrices from 
scalars, and the ⊺ symbol indicates the transpose operation. This 

animal model decomposes population- , individual-  and observation- 
level effects on the measured phenotype. On average across the 
population, phenotypic expression is best predicted by the fixed 
global intercept µ0 and regression coefficient β1 representing plas-
ticity toward the observed environmental factor xij. However, in-
dividuals also consistently differ in their patterns of phenotypic 
expression, such that responses are further affected by individual- 
specific RN intercepts µj and slopes βj, represented here as random 
deviations from population- level values µ0 and β1. Note that re-
peated individual measurements are necessary to empirically parti-
tion these parameters.

When QG information is available, these phenotypic RN pa-
rameters can be further partitioned into the sum of their under-
lying additive genetic (µAj, βAj) and permanent environmental (µEj, 
βEj) values. The phenotypic association between individuals’ RN 
intercepts and slopes can then be expressed as the sum of distinct 
genetic and permanent environmental (co)variance matrices G and 
E, respectively. Assuming the genetic and environmental effects 
are independently distributed in the population, the total phe-
notypic covariance of RN parameters can be given by P = G + E. 
Genetic covariance is scaled by the Kronecker product ⊗ of G with 
a relatedness matrix A derived from pedigree or molecular data, 
such that individuals with higher genetic similarity are expected to 

(1)zij = �0 + �j +
(
�1 + � j

)
xij + �ij
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Term Description

Assortment The association between an individual's intrinsic trait value and the 
intrinsic trait value of their social partner(s), independent of any other 
causes of association between social partners’ raw trait values (Equation 
4)

Social plasticity Phenotypic change in a focal individual caused by the traits of social 
partners, also referred to as social responsiveness (Equations 2 and 3). 
When partner phenotypes are heritable, social plasticity causes indirect 
genetic effects (IGEs) on the phenotype of the focal individual. Selection 
on social plasticity can, therefore, affect the magnitude of IGEs within a 
population (Equations 9 and 10)

Social selection A systematic association between the intrinsic trait values of social 
partners and individual fitness in a population, due both to direct effects 
of partner phenotypes on individual fitness, as well as interactive effects 
caused by the joint trait values of individual and partner phenotypes 
(Equation 5)

Reaction norm A reaction norm (RN) is a function predicting how an individual's 
phenotype will change in response to an environmental factor, 
independently of any nonrepeatable causes of phenotypic change 
(Equation 1)

Social reaction 
norm

A social reaction norm (SRN) is a function predicting how an individual's 
phenotype will change in response to the phenotype of social partners 
(Equation 3)

Intrinsic trait 
value

A trait value that is solely attributable to direct and repeatable causes of 
between- individual variation, such as additive genetic and permanent 
environmental effects, but not indirect or nonrepeatable within- 
individual effects, such as interactions with social partners. Throughout 
the article, (S)RN parameters are defined as intrinsic trait values 
(Equations 1 and 3) subject to selection and adaptation (Equations 5– 8)

SRN trait value A trait value that is solely attributable to the SRN parameters of focal 
individuals and their interaction with the SRN parameters of social 
partners (Equations 2 and 3)

TA B L E  1   Glossary
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have more similar µA and βA values. Permanent environmental co-
variance is scaled by an identity matrix I, indicating that values are 
independent and identically distributed among individuals within 
the respective vectors µE and βE. If factors such as spatiotempo-
ral heterogeneity or maternal effects cause covariance among 
individuals’ permanent environmental effects (e.g. Heckerman 
et al., 2016; Kruuk & Hadfield, 2007), a matrix capturing com-
mon environmental effects can instead be utilized (see Thomson 
et al., 2018 for suggestions). In the absence of genetic information, 
G and E cannot be distinguished and the animal model reduces 

to the standard linear mixed- effects model commonly used for 
phenotypic analysis of P in evolutionary ecology (Dingemanse & 
Dochtermann, 2013; Nussey et al., 2007). Finally, in addition to 
the deterministic effects of the individual and population param-
eters, each measurement is further subject to stochastic effects ϵ 
caused by unmeasured factors uncorrelated with the other linear 
predictors. These residual values are randomly distributed with a 
variance described by the Σ matrix. Without repeated measure-
ments, the permanent environmental effects E and nonperma-
nent, residual effects Σ are confounded.

F I G U R E  1   Statistical challenges in the study of interacting phenotypes. Each panel describes an inferential issue 
addressed by SAMs, with a heuristic representation above and accompanying data visualization below. Multiple 
clades commonly used in social evolutionary research (birds, primates and beetles) are represented to demonstrate 
the diversity of systems to which SAMs can be applied. See Appendix S1 for further details on the data simulation. 
(a) Raw measurements confound social effects attributable to individuals’ SRN trait values cov

(
�j , �

′

k

)
 with residual effects attributable to 

SRN measurement error cov
(
� j , �

′

k

)
, such as spatiotemporal heterogeneity and/or interactions caused by unmeasured traits. This makes 

it difficult to reliably infer the direction and magnitude of social effects from the covariance of partners’ observed phenotypes alone 
cov

(
zj , z

′

k

)
. To demonstrate this, the bottom panel shows four simulated individuals (each grid) interacting with 20 distinct social partners 

across two measurement periods (connected by each line). Although the population is characterized by positive assortment and social 
plasticity, positive slopes are not reliably observed between partners’ trait values across dyads. This bias results from negatively associated 
residual effects across measurement periods, including residual feedback caused by unmeasured traits, as well as differences in intrinsic 
trait values between individuals and their social partners. (b) Partners’ phenotypes may covary because of assortment between individuals, 
as described by the assortment matrix Bα, or because of plasticity within individuals over time, as described by the SRN slope ψ j for an 
individual at time t in response to their partner's SRN trait value ��

kt − 1
 during the previous time interval t − 1. Partitioning these distinct 

mechanisms is necessary to unbiasedly estimate individual differences in SRN intercepts µ j and SRN slopes ψ j. As is shown in the bottom 
panel, these SRN parameters can be further partitioned in underlying additive genetic (A) and permanent environmental trait values (E), 
which may differ both in magnitude and direction. (c) Individual differences in SRN intercepts and slopes may have distinct effects on 
fitness, but these outcomes are confounded in a selection analysis of raw phenotypic measures. Selection can instead be modelled directly 
on individual- specific SRN parameters to investigate the multivariate evolution of the SRN function. An individuals’ SRN parameters may 
have a direct influence on their own fitness (βN), as may the SRN parameters of their social partners (βS). Synergism or antagonism may 
also occur between the SRN parameters of individuals and their social partners, leading to nonadditive fitness effects (βI). For illustrative 
purposes, the bottom panel shows the relative fitness of an individual wj as a function of their own SRN slope and its interaction with the 
SRN slope of their partner. Although lower slopes are adaptive when the expected social partner exhibits an average (0) or high (+1) slope, 
this fitness advantage disappears when the social partner has a relatively low (−1) slope. In this case, βN = βS = βI = −0.3
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2.1 | Benefits of the animal model

As previously noted, the central benefit of the animal model is its 
ability to distinguish individuals’ RNs and intrinsic trait values from 
the various residual effects that also influence raw trait values. For 
labile phenotypes that are repeatedly expressed, individual meas-
urements tend to exhibit modest repeatability across time (e.g. Bell 
et al., 2009; Cauchoix et al., 2018; Fanson & Biro, 2019). As a con-
sequence, raw measurements often provide more information about 
unobserved environmental heterogeneity than about individuals’ in-
trinsic trait values, thus confounding distinct causes of between-  and 
within- individual (co)variation (Dingemanse & Dochtermann, 2013; 
Nakagawa & Schielzeth, 2010; Searle, 1961).

In addition to its methodological benefits, the animal model also 
provides deeper theoretical insight into the relationship between 
raw phenotypic measures and the intrinsic trait values that are ulti-
mately subject to natural selection. Given that individuals can vary 
both in their RN intercepts and slopes, raw phenotypic observation 
zij is not merely an error- prone observation of a single individual trait 

value zj. Rather, each raw measurement is an error- prone composite 
of distinct intrinsic trait values for the RN parameters governing indi-
vidual differences in phenotypic consistency (intercept µj) and phe-
notypic plasticity (slope βj) across the modelled environmental factor. 
These intrinsic trait values may be caused by separable sources of 
genetic and environmental (co)variation, as indicated by their corre-
sponding parameters in the G and E matrices, and may thus experi-
ence distinct selection pressures (e.g. Ramakers et al., 2019; Weis & 
Gorman, 1990). Therefore, animal models are important not only for 
partitioning RNs from raw phenotypic data, but also for understand-
ing how the differential fitness effects of responsive (RN slopes) and 
nonresponsive (RN intercepts) phenotypic components may lead to 
distinct patterns of evolutionary change.

2.2 | Bayesian animal models

Standard animal models are often estimated and interpreted within 
a classical statistical framework, such as with the ASReml program 

Symbol Meaning

i, j, k, t, A, E Index of observation (i), focal individual ( j), social partner (k), time point (t), 
additive genetic values (A), and permanent environmental values (E)

z, z’ Raw phenotypic measurements of focal individuals (z) and their social 
partner(s) (z')

µ, µ' Intrinsic trait values of an (S)RN intercept parameter for individuals (µ) and 
their social partners (µ')

β, β' Intrinsic trait values of an RN slope parameter for individuals (β) and their 
social partners (β')

ψ, ψ′ Intrinsic trait values of an SRN slope parameter for individuals (ψ) and their 
social partners (ψ′), often referred to as interaction coefficients

η, η′ SRN trait values of modelled phenotypes for individuals (η) and their social 
partners (η′), which capture the direct and indirect (i.e. social) effects of 
SRN parameters

ϵ, ϵ′ Residual trait values of focal individuals (ϵ) and their social partners 
(ϵ′), capturing the phenotypic values explained by unmodelled and/or 
nonrepeatable effects

ξ, ξ′, ϕ SRN measurement error for individuals (ξ) and their social partners (ξ′), 
defined by residual trait values as well as any unmodelled causes of 
residual feedback (ϕ) across time

P, G, E Phenotypic (P), additive genetic (G) and permanent environmental (E) 
covariance matrices for (S)RN parameters

Σ Covariance matrix for residual trait values

βα, Bα The assortment coefficient (βα) for the intrinsic trait value of individuals 
and their social partners, and the assortment matrix Bα generalizing the 
assortment coefficient to multiple intrinsic trait values, such as SRN 
intercepts and slopes

βN Nonsocial selection gradients for SRN intercepts and slopes

βS Social selection gradients for SRN intercepts and slopes

βI Interaction coefficients for selection on SRN intercepts and slopes

s� , s� , s� Selection differentials for the population SRN intercept (s�), SRN slope (s�), 
and SRN trait value (s�)

Δ�,Δ� ,Δ� Responses to selection for the population SRN intercept (Δ�), SRN slope 
(Δ�), and SRN trait value (Δ�)

TA B L E  2   Notation key
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(Gilmour et al., 2002). However, Bayesian estimation of animal mod-
els using Markov Chain Monte Carlo (MCMC) can also be readily 
implemented in the R package MCMCglmm (Hadfield, 2010) or the 
Stan statistical programming language (Carpenter et al., 2017). The 
linear animal model in Equation 1, for example, can be estimated 
within a Bayesian framework by specifying prior distributions for the 
unknown model parameters

This notation indicates that the model parameters have prior dis-
tributions characterized by probability density functions fprior with 
parameters Θprior, such as the general purpose Normal(0,1) or Half– 
Cauchy(0,1) priors recommended by Lemoine (2019).

Although there are many benefits to Bayesian inference in gen-
eral (see McElreath, 2020 for a detailed treatment), Bayesian animal 
models are particularly useful because of their ability to quantify 
uncertainty in individuals’ RN parameters, as well as to carry this 
uncertainty forward across multiple stages of analysis (Hadfield 
et al., 2010; Martin, 2021; Stinchcombe et al., 2014). Individual- 
specific intercept and slope values are often estimated with high 
degrees of uncertainty, particularly for small sample sizes and traits 
with moderate to low repeatability. Conducting subsequent anal-
yses with point estimates of these values, also known as best lin-
ear unbiased predictors, leads to undesirable risk of inferential bias 
and anti- conservative inference (Hadfield et al., 2010; Houslay & 
Wilson, 2017). However, in the Bayesian animal model, individual 
RNs are no longer estimated with single expected values �̂j and �̂ j
; instead, parameters are characterized by posterior distributions 
Pr

(
�j |z,Θ

)
 and Pr

(
� j |z,Θ

)
 that fully capture the probabilistic un-

certainty in these estimates, conditional on the observed responses 
z and other model parameters and priors Θ. When estimated with 
MCMC, parameters are approximated by vectors of posterior sam-
ples that can be used to calculate new quantities of interest, fa-
cilitating straightforward statistical inference for values that are 
not directly specified as parameters in the model. As is explored 
further below, flexible Bayesian modelling software such as Stan 
(Carpenter et al., 2017) can also specify multi- stage analyses within 
a single model, simultaneously accounting for uncertainty in the es-
timation of RNs and their effects on fitness or other phenotypes 
(Martin, 2021).

3  | SOCIAL ANIMAL MODEL S

We now extend the basic animal model (Equation 1) to account 
for the effects of social interactions on phenotypic expression and 
fitness, which presents a series of unique statistical challenges 
(Figure 1). As noted above, SAMs address these challenges by (a) 
partitioning SRNs for intrinsic trait values from other nonrepeatable 
or unmeasured causes of variation, (b) distinguishing the effects of 
assortment and plasticity on associations among social partners, 
and (c) estimating selection and the response to selection caused by 

individual variation in SRN intercepts and slopes. These models are 
based on an extensive body of prior theory for studying the evolu-
tionary QGs of interacting phenotypes. We therefore address each 
challenge (a– c) in a stepwise fashion, building up SAMs sequentially 
to better identify their relation to previous theoretical models of 
IGEs, as well as to highlight important empirical considerations.

IGE models account for the indirect effects of the social environ-
ment on individual phenotypes (Bijma, 2011; Bijma & Wade, 2008; 
McAdam et al., 2014; McGlothlin et al., 2010; Moore et al., 1997; 
Wolf et al., 1999). So- called variance- partitioning and trait- based 
IGE models provide two distinct but potentially equivalent pa-
rameterizations for empirical research (Bijma, 2014; McGlothlin & 
Brodie, 2009), each with their own benefits and drawbacks. The 
variance- partitioning approach describes the total (co)variance at-
tributable to the effects of individuals and their social partners on 
trait expression and fitness (Bijma, 2011; Bijma & Wade, 2008). 
As a consequence, this approach facilitates accurate predictions 
of evolutionary change (Morrissey et al., 2010, 2012; Price, 1972; 
Robertson, 1966), but it can also obscure the direct and indirect 
causal pathways underlying selection on these variance components 
(Hadfield & Thomson, 2017). In contrast, the trait- based approach 
considers the specific phenotypes causing social effects on trait 
expression and fitness (McGlothlin et al., 2010; Moore et al., 1997; 
Wolf et al., 1999), thus distinguishing between the direct and indirect 
effects of distinct traits. This parameterization is crucial for effec-
tively testing adaptive hypotheses of integrated phenotypes (Lande 
& Arnold, 1983; McGlothlin et al., 2010). However, trait- based mod-
els will also be biased by the exclusion of relevant phenotypes or 
forms of phenotypic interaction, making them sensitive to misspeci-
fication and biased predictions of evolutionary change (Bijma, 2014; 
Morrisey et al., 2012). The SAMs presented here are based primarily 
on trait- based IGE models, as this approach is able to distinguish be-
tween social plasticity, assortment, and direct and indirect selection 
on specific phenotypes. However, these approaches can always be 
integrated by including additional variance components in the mod-
els presented below (Dingemanse & Araya- Ajoy, 2015; McAdam 
et al., 2014).

3.1 | Estimating SRNs

Classic trait- based IGE models do not account for individual vari-
ation in social plasticity, instead assuming that plasticity is a fixed 
trait in the population and thus does not undergo selection (Moore 
et al., 1997; Wolf et al., 1999). However, intraspecific variation in 
social plasticity has been found across a variety of systems, sug-
gesting that many phenotypes may be better described by SRNs. 
For example, individual differences in social information use have 
been observed across diverse taxa ranging from humans (Molleman 
et al., 2014) and chimpanzees (Pan troglodytes; Watson et al., 2018) 
to water dragons (Intellegama lesueurii; Strickland & Frère, 2019) and 
scops owls (Otus scops; Parejo & Avilés, 2020), such that some in-
dividuals are consistently more responsive to the behavior of their 

�0, �1,G,E,� ∼ fprior
(
Θprior

)
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social partners than others. The evolution of social plasticity in sex-
ual display traits has also been demonstrated experimentally in fruit 
flies (Drosophila serrata; Chenoweth et al., 2010). The presence of 
variable social plasticity within a population provides the opportu-
nity for selection on both the environmentally responsive and unre-
sponsive components of a phenotype, which can further affect the 
rate and direction of evolutionary change (Araya- Ajoy et al., 2020; 
Kazancıoğlu et al., 2012; McGlothlin et al., 2021; McNamara & 
Leimar, 2020; Van Cleve, 2017; Van Cleve & Akçay, 2014). The fit-
ness benefits of social plasticity may, for instance, be frequency- 
dependent, causing selection to maintain individual variation in 
responsiveness toward social partners (Wolf et al., 2008). In such 
cases, it is critical to accurately estimate SRNs in order to best ex-
plain differential patterns of selection across social environments, as 
well as to avoid any inferential biases caused by unmodelled causes 
of association between the phenotypes of social partners.

3.1.1 | Measurement error of SRNs in trait- 
based models

Kazancıoğlu et al. (2012) investigated the evolutionary consequences 
of SRNs using trait- based IGE models with heritable variation in SRN 
intercepts and slopes. Consider a simple linear interaction between 
the phenotype zj of individual j and the phenotype z′

k
 of social part-

ner k, with primes used herein to denote the values of social part-
ners. This social interaction can be modelled such that

The SRN slope ψ j is often referred to as an interaction coefficient 
and quantifies the social plasticity of the focal individual in response 
to their social partner's phenotype. Feedback will occur when part-
ners express social plasticity in the same phenotypes over time, with 
each individual sequentially increasing or decreasing their pheno-
typic expression in response to the trait value of the partner. We can 
see this by substituting in the phenotype z′

k
 of the social partner into 

the focal phenotype zj and simplifying (Moore et al., 1997). Focusing 
on the response of the focal individual

The trait value zj is thus a function of the individual's SRN in-
tercept µj, their SRN slope in response to the SRN intercept of the 
social partner � j�

′

k
, as well as feedback due to the interaction of 

SRN slopes between the individual and their social partner 1 − � j�
�

k
. 

When either partner is not socially responsive, i.e. � j�
�

k
= 0, then the 

feedback effect is removed.
Despite animal models being well suited for investigating non-

social RNs, it is difficult to empirically estimate SRNs and their 

feedback effects without inferential bias, as associations between 
partners’ phenotypes may be caused by a variety of distinct mech-
anisms (Figure 1a; Class et al., 2017; Wang et al., 2019). For the 
remainder of the article, we use the term “measurement error” in 
a broad but formal sense to refer to any variation that produces a 
difference between estimated or observed values and the true val-
ues of a trait, with specific attention toward the interaction of in-
dividuals’ SRN intercepts and slopes on measured traits. From this 
perspective, any effects that cause raw measurements to deviate 
from the repeatable trait values predicted by SRN interactions can 
be considered measurement error with respect to those values, con-
sistent with the use of this term in the statistical literature (Bollen 
& Noble, 2011; Loken & Gelman, 2017). Estimating assortment and 
social plasticity on the repeatable components of measured trait in-
teractions, independently of measurement error, is central for social 
evolutionary analysis, as it is only the associations between social 
partners’ intrinsic trait values that will contribute to evolutionary 
change (Araya- Ajoy et al., 2020; Bijma, 2011).

The influence of SRN measurement error on statistical infer-
ences can be seen by introducing an additional vector of phenotypic 
residuals ϵ into the formal model (Equation 2.2)

To enhance clarity, we can further distinguish between the SRN 
trait value (ηj), which is caused by the interaction of the focal and 
social partners’ intrinsic trait values for SRN parameters, and the 
measurement error with respect to the SRN trait values (�j), such that

The SRN measurement errors of focal individuals ξ and their so-
cial partners ξ′ are by definition independent of their respective SRN 
trait values η and η′, so that the covariance between an individual 
and their social partner's raw trait values is simply

The phenotypic (co)variance of raw measurements cov
(
zj , z

′

k

)
 is 

therefore attributable both to repeatable covariance caused by SRN 
trait values cov

(
�j , �

′

k

)
 as well as any sources of shared SRN measure-

ment cov
(
� j , �

′

k

)
 (Figure 1a).

3.1.2 | Inferential bias caused by SRN 
measurement error

This trait- based IGE model shows how the use of raw trait val-
ues can lead to inferential bias when applying standard animal 

(2.1)zj = �j + � jz
�

k

z�
k
= ��

k
+ � �

k
zj

(2.2)zj = �j + � jz
�

k
=

�j + � j�
�

k

1 − � j�
�

k

(2.3)zj = �j + � jz
�

k
+ �j =

�j + � j�
�

k

1 − � j�
�

k

+
�j + � j�

�

k

1 − � j�
�

k

(2.4)zj = �j + � j

�j =
�j + � j�

�

k

1 − � j�
�

k

, � j =
�j + � j�

�

k

1 − � j�
�

k

(2.5)cov
(
zj , z

�

k

)
= cov

(
�j , �

�

k

)
+ cov

(
�j , �

�

k

)



     |  527MARTIN ANd JAEGGI

models to interactions among labile phenotypes. Firstly, note 
that as a consequence of feedback in Equation 2, individu-
als’ raw trait values (zj , z′k) are expected to associate with the 
residual trait values of their respective social partners (�′

k
, �j

), such that cov
(
zj , �

′

k

)
≠ 0 and cov

(
z′
k
, �j

)
≠ 0. However, stand-

ard animal models assume that residuals are statistically in-
dependent of predictor variables, including the trait values of 
social partners. As a consequence, empirical estimates of SRN 
slopes obtained from a trait- based animal model will tend to be 
biased, particularly for small to moderately sized slopes (see 
Bijma, 2014 for further discussion). This so- called endogeneity 
bias can be avoided with variance- partitioning approaches (e.g. 
Bijma, 2014; Koster et al., 2015). However, there is currently 
no general solution for avoiding endogeneity bias with trait- 
based models.

A distinct but related source of bias is the assumption that social 
plasticity of constant magnitude is the only cause of association be-
tween partners’ phenotypes, including residual covariance between 
raw trait values. This assumption is reflected in Equation 2 by the 
use of the same trait- specific SRN slope ψ j to scale the covariance 
due to intrinsic and residual trait values, which is a consequence of 
defining these parameters on raw measurements z and z′. Although 
it may seem sensible to estimate the magnitude of social plasticity 
using observed phenotypes, various unmeasured effects of differ-
ing magnitude can also cause raw phenotypic associations between 
social partners over short and long timescales (Class et al., 2017; 
Wang et al., 2019; Westneat et al., 2015). In addition to factors 
such as spatiotemporal heterogeneity and researcher bias, these 
residual associations can also reflect social effects caused by other 
unmeasured traits, which may be subject to distinct magnitudes of 
social plasticity (i.e. distinct trait- specific SRN slopes). Such resid-
ual effects tend to be much larger than the repeatable component 
of measured phenotypes in both laboratory and field settings, par-
ticularly for labile traits such as behavior, cognitive performance 
or hormone levels (Bell et al., 2009; Cauchoix et al., 2018; Fanson 
& Biro, 2019). As a consequence, standard models using raw trait 
values to calculate cov

(
zj , z

′

k

)
 will tend to bias the magnitude of 

SRN effects for measured traits, i.e. cov
(
�j , �

′

k

)
, with the magnitude 

of residual effects, i.e. cov
(
� j , �

′

k

)
 (Brommer, 2013; Dingemanse & 

Dochtermann, 2013).
Two central challenges in extending the animal model to 

interacting phenotypes are, therefore, to effectively avoid en-
dogeneity bias caused by feedback, as well as to avoid inferen-
tial bias caused by various sources of SRN measurement error. 
Fortunately, we can draw on the flexibility of Bayesian animal 
models to specify SAMs that explicitly partition SRN and residual 
effects during model estimation, avoiding inferential bias caused 
by using raw trait values subject to measurement error. Herein 
we discuss two SAMs for repeated measurements within or be-
tween social partners. We then introduce SAMs for repeated 
measures both within and between partners, along with a gen-
eral solution for partitioning the effects of assortment and social 
plasticity in these models.

3.1.3 | SAMs for repeated measures within partners

Although it is convenient to formally model the long- run expecta-
tion of feedback between social partners, such as in the standard 
SRN trait model (Equation 2.4), empirical datasets often contain 
interactions of heterogeneous duration and may include repeated 
measurements within interactions. We therefore need to differ-
entiate the consequences of social interactions between specific 
measurement periods, in addition to the more basic challenge of 
differentiating the effects of intrinsic and residual trait values. In 
particular, we can use a time index t to indicate the measurement 
period within a particular social interaction, e.g. t = {1,2,3,4} for 
an individual measured four times while interacting with the same 
partner. With this longitudinal information, a so- called autoregres-
sive moving average (ARMA) function, commonly used for time- 
series analysis, can then be implemented to differentiate the effects 
of feedback and stochastic variation across measurement periods 
(Box et al., 2016). The basic idea of ARMAs is to regress the trait 
value at time t on the trait value(s) at a previous time such as t − 1 
to account for “autoregressive” feedback effects, i.e. zt~zt−1, as well 
as on the residual trait value(s) at time t − 1 to account for any un-
measured factors causing the average response to “move” between 
sampling periods, i.e. zt~ϵt−1.

To further differentiate residual and repeatable feedback due 
to SRN parameters, as well as to avoid endogeneity bias, we pro-
pose an extension of the basic ARMA function to further separate 
social feedback on the latent SRN parameters from all other re-
sidual effects on measured trait values causing SRN measurement 
error. This allows estimation of SRN slopes independently of the 
magnitude of residual covariation among partners, thus relaxing 
the assumptions of classical trait- based models (Equation 2). In 
particular, for both phenotypic and QG analysis, we propose the 
following SAM for repeated measurements of focal and social part-
ner phenotypes

(3.1)zjt = �0 + �jt + � jt

�jt =

⎧
⎪⎨⎪⎩

�j+
�
�1+� j

�
��

k
if t=1

�j+
�
�1+� j

�
��
kt−1

else

�jt =

⎧
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�jt if t=1
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�
A,�A,�

�
A

] ⊺
∼ MVNormal (0,G⊗ A)

[
�E,�

�
E,�E,�

�
E

] ⊺
∼ MVNormal (0,E⊗ I)

�
�, ��

� ⊺
∼ Normal (0,�) :� =

⎡
⎢⎢⎣

Var (�) Cov
�
�, ��

�

Cov
�
��, �

�
Var

�
��
�

⎤
⎥⎥⎦



528  |     MARTIN ANd JAEGGI

To address the sequential structure of social interactions, the 
ARMA function specifies distinct feedback processes between 
the latent SRN and residual trait values of individuals and their 
social partners. The SRN trait value ηjt plastically responds to 
the partner SRN trait value ��

kt − 1
 over time as a function of the 

individual- specific interaction coefficient ψ j; similarly, the SRN 
measurement error ξjt captures any unmeasured feedback effects 
caused by the residual trait values of social partners at a previous 
time ��

kt − 1
, which are independent of the repeatable SRN effects 

of z′
kt

 on zjt (and vice versa), with a distinct residual feedback coef-
ficient ϕ, as well as the remaining individual residual ϵjt. Note that 
the partner response model is defined equivalently with respect 
to the focal individual and is thus not shown explicitly for brevity. 
However, separate model parameters can also be accommodated 
when the responses of focal individuals and their social partners 
systematically differ, such as when sexes exhibit distinct patterns 
of social plasticity (e.g. Strickland & Frère, 2019). See Appendix 
S1 for further details on implementing a variety of extensions to 
this basic SAM.

By directly partitioning the distinct effects of SRN and resid-
ual feedback, rather than confounding them as in Equation 2, the 
estimation of SRN trait values, and in particular the SRN slopes, 
is expected to be unbiased by the magnitude of (co)variance at-
tributable to SRN measurement error. As a consequence, this SAM 
facilitates estimation of the magnitude of social plasticity and IGEs 
on the intrinsic trait values of any social phenotype, irrespective 
of other sources of residual (co)variation between measurements, 
including phenotypic interactions caused by unmeasured traits. 
Accounting for and distinguishing both sources of temporal feed-
back in the model also removes the risk of endogeneity bias in SRN 
parameters.

Note that the population intercept µ0 is intentionally sepa-
rated from the ARMA process, as accumulation of the mean during 
feedback may lead to unrealistic predictions, particularly when 
the interaction coefficients are very large or small. However, there 
may be traits for which individuals’ absolute rather than relative 
values are of primary interest (Westneat et al., 2020), in which 
case the model can be reparametrized appropriately. Higher- order 
and/or nonlinear ARMA effects can also be straightforwardly ac-
commodated if animals exhibit more complex response surfaces 
(Box et al., 2016). Similarly, the ARMA process currently assumes 
that individuals are being measured in the context of an ongoing 
social interaction. The best unbiased prediction of the individual's 
SRN trait value is thus given by their SRN intercept and their SRN 
slope (social plasticity) toward the SRN intercept of their partner, 
i.e. �jt=1 = �j + � j�

�

k
, with subsequent temporal change modelled 

through the autoregressive feedback process. However, if individ-
uals are instead measured prior to exposure to conspecifics, the 
function can simply be redefined such that �jt=1 = �j in the absence 
of social interaction.

3.1.4 | SAMs for repeated measures 
between partners

In some social systems, it may be easier to gather repeated measure-
ments across multiple social partners rather than within the same 
partner. Some sampling methods, such as observational sampling of 
behavior, may also require aggregation across many repeated meas-
urements to achieve effective estimates of repeatable trait values 
(Koski, 2011). In such cases, temporal information on within- partner 
interactions will be missing, so that observations within each partner 
are effectively t = 1, and the observation- level index i can be utilized 
to distinguish repeated individual measurements between partners. 
In the absence of additional temporal information, the residual feed-
back effect ϕ cannot be directly partitioned and the SRN measure-
ment errors ξ and ξ′ will reduce to the residual trait values ϵ and ϵ′. A 
between- partner SAM can thus be specified by simply reducing the 
within- partner SAM (Equation 3.1) to ignore t > 1 feedback effects

The model priors and parameter distributions are otherwise 
equivalent to Equation 3.1, and the partner response model is again 
defined equivalently with respect to the focal individual. Although 
temporal effects are confounded in the residuals, this SAM still ef-
fectively partitions SRN trait values from SRN measurement error, 
as the SRN slopes are appropriately scaled by the latent SRN inter-
cepts of social partners, rather than their raw trait values. As a con-
sequence, neither residual covariance nor endogeneity are expected 
to bias inferences of SRN parameters from this model.

3.2 | Distinguishing SRN assortment and plasticity

Confounding of within-  and between- individual (co)variation is a com-
mon source of bias in observational studies (van de Pol & Wright, 2009). 
Sprau and Dingemanse (2017), for instance, demonstrated that the 
association between risky behavior and urbanization across great 
tits (Parus major) reflects the tendency of bolder individuals to more 
frequently inhabit areas with high motor traffic, rather than a plas-
tic response across individuals to motor traffic. Social plasticity and 
assortment can also be easily confounded when individuals are non-
randomly distributed across social environments. In this case, associa-
tions among the intrinsic trait values of social partners may be caused 
by within- individual plasticity toward the trait value of the social part-
ner, or by between- individual assortment caused by processes such 
as habitat selection, limited dispersal, or partner choice (Figure 1b). 
Despite being well recognized as a source of bias across nonsocial en-
vironmental factors, less attention has been given to confounding of 
social plasticity and assortment among interacting phenotypes, par-
ticularly in nonhuman social systems (cf. Steglich et al., 2010).

�0,�1,�,G,E,� ∼ fprior
(
Θprior

)

(3.2)zijt=1 = �0 + �ijt=1 + �ijt=1

�ijt=1 = �j +
(
�1 + � j

)
��

k
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3.2.1 | SAMS for repeated measures within and 
between partners

Fortunately, however, a within- individual centering procedure (van 
de Pol & Wright, 2009) can be used to specify SAMs that effectively 
partition social plasticity and assortment whenever individuals are 
measured with multiple social partners. In particular, to isolate the 
appropriate SRN slopes ψ for the social plasticity of the focal indi-
vidual, the ARMA function in Equation 3.1 needs to be specified to-
ward the deviation of each social partner's SRN trait value from the 
average SRN trait value experienced by the focal individual across 
social partners. In other words, each measurement of the social en-
vironment, as defined by the time- dependent SRN trait value �′

ikt
 of 

the current social partner, needs to be centered on the average SRN 
intercepts �′

K
, slopes � ′

K
, and time- dependent trait value �′

iKt
 experi-

enced by an individual across the set K of their social partners. We 
use the notation ηWijt herein to indicate the within- individual cen-
tered SRN trait value for observation i of individual j at time t with 
respect to their current social partner. We also use ηBijt to indicate 
the SRN trait value for the interaction of the focal individual and 
their average social partner, and we introduce an additional regres-
sion coefficient βB to scale the average partner feedback process, 
which may reflect the effects of plasticity as well as assortment. 
Partitioning the within-  and between- individual SRN trait values 
in this way appropriately adjusts the estimated SRN parameters 
for unbalanced sampling across partner trait values (van de Pol & 
Wright, 2009).

A SAM for repeated measures within and between partners can 
thus be specified by centering Equation 3.1 within individuals such 
that

Centering of the partner SRN slope � ′

k
 on the average part-

ner SRN slope � ′

K
 is specified implicitly through the definition 

of the partner ��
ikt − 1

 and average partner ��
iKt − 1

 SRN trait values. 
With the addition of βB, all unspecified priors and generative dis-
tributions are otherwise equivalent to Equation 3.1, and the social 
partner response is defined equivalently with respect to the focal 
individual. Note that this within- individual centering procedure 
can also be used to distinguish plasticity and assortment in the 

between- partner model (Equation 3.2) following the specification 
of �Wijt=1 and �Bijt=1 above. This SAM is based on a model previously 
proposed by Dingemanse and Araya- Ajoy (2015), but it avoids in-
ferential bias caused by calculating within- individual deviations on 
raw trait values subject to SRN measurement error. Instead, social 
plasticity is modelled toward the individual- specific deviation of the 
SRN trait values, such that the between- individual effect of the av-
erage social environment does not confound the estimation of social 
plasticity.

3.2.2 | Quantifying assortment between partners

This within- individual centered SAM accounts for the effects of 
nonrandomly distributed social environments, but it does not di-
rectly parameterize assortment among social partners. Although 
the parameter βB is necessary to reduce inferential bias in the SRN 
parameters, it does not provide a direct estimate of assortment 
necessary for predicting the response to social selection. Westneat 
et al. (2020) demonstrate that such between- individual regression 
coefficients can also be undesirably sensitive to model specifica-
tion, in contrast to the more robust estimation of within- individual 
effects such as �Wijt. Therefore, βB provides an unreliable means by 
which to estimate assortment on SRN parameters, and should in-
stead be conceptualized as a pragmatic parameter for reducing bias 
in the estimation of SRN parameters. Class et al. (2017) propose an 
alternative variance- partitioning approach for quantifying assort-
ment using multi- response GLMMs with correlated SRN parameters 
across social partners. These models provide an important tool for 
reliably detecting assortment under realistic field conditions and will 
generate unbiased estimates of assortment whenever social plastic-
ity and IGEs are absent. However, only trait- based IGE models such 
as the proposed SAMs can partition the effects of both SRN assort-
ment and social plasticity, which is crucial for testing causal hypoth-
eses of adaptive social evolution (Araya- Ajoy et al., 2020; Hadfield 
& Thomson, 2017).

Rather than attempting to parameterize assortment directly in 
the SAM, we can instead treat assortment as a generative prop-
erty of the model estimated from the posterior distributions of 
individual- level parameters. As discussed above, Bayesian infer-
ence via MCMC facilitates carrying uncertainty forward across any 
quantity or analysis defined over the posterior distributions of a 
model (Hadfield et al., 2010; Stinchcombe et al., 2014). Therefore, 
assortment among any group of social partners can be estimated 
by the association between the posteriors of their intrinsic SRN pa-
rameter trait values. Following McDonald et al. (2017), we define 
the phenotypic assortment coefficient βα as the simple regression 
coefficient of the mean partner phenotype on the individual phe-
notype. These assortment coefficients can be readily estimated for 
SRN intercepts ��′� and slopes �� ′� using posterior distributions of 
a SAM

(3.3)zijt = �0 + �Wijt + �B�Bijt + �ijt
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These regression coefficients will be equivalent to a Pearson cor-
relation coefficient whenever variance is constant across individual 
and social partner phenotypes. Note that in dyadic contexts without 
multiple partners, the average partner phenotypes will simply be the 
trait values of the social partner. Average partner phenotypes across 
multiple interactions can also be scaled to estimate the expected 
assortment within a single interaction (Appendix S1).

More generally, a matrix Bα can be estimated to account for as-
sortment between SRN intercepts and slopes, i.e. ��′� and �� ′�

Assortment is here assumed to be a fixed property of the pop-
ulation. However, the magnitude of assortment may also be an ad-
ditional SRN parameter subject to variation and selection, in which 
case it would be appropriate to estimate individual-  rather than 
population- level assortment coefficients across multiple selection 
events (see Araya- Ajoy et al., 2020 for further discussion).

By excluding the assortment coefficients from the model specification, 
the priors of the SAM assume that partner phenotypes are statistically 
independent, conditional on the relatedness matrix A, so that the prior 
probability of assortment is centered on Bα = 0. All else being equal, this 
conservative assumption will tend to regularize the posterior assortment 
coefficients toward null values. Nonetheless, with sufficiently informative 
datasets, the joint likelihood of the SAM will exert a much stronger influ-
ence on the shape and location of the individual posterior distributions, 
leading to accurate empirical estimates of assortment irrespective of the 
model priors. This approach allows for highly flexible estimation of assort-
ment on any trait values of interest, among partners in groups of any size, 
without adding unnecessary complexity to the basic statistical model.

3.3 | Selection and the response to selection 
on SRNs

Rather than expressing selection on measured trait values, a fit-
ness model can instead be specified for selection directly on SRN 
parameters, effectively distinguishing between selection on the re-
sponsive and nonresponsive components of individual phenotypes 
(Dingemanse et al., 2010; Kazancıoǧlu et al., 2012), as well as avoid-
ing bias caused by residual effects on raw measurements. This selec-
tion analysis for SRN parameters can be readily accomplished with 
the SAM by adding an additional response model to Equation 3 for 
predicting individual fitness wj, such that

Parameters and corresponding priors are specified for the pop-
ulation intercept of fitness ν0, the nonsocial (βN) and social (βS) se-
lection gradients, interaction (βI) coefficients on SRN intercepts and 
slopes, and the variance of any residual effects on fitness var(δ). 
Note that mean partner trait values �′

K
 and � ′

K
 are used to account 

for the possibility of multiple partners during a selection event, such 
as when a single lifetime fitness measure is available for individuals 
with multiple lifetime partners. This parameterization can also be 
further extended to account for the effects of larger social groups by 
scaling mean partner values with the expected number of partners 
per selection event n (McGlothlin et al., 2010). Whenever selection is 
instead estimated with a single social partner, such as within a breed-
ing season for monogamous species, the partner trait values can be 
substituted for the mean partner values.

This fitness model builds on previous extensions of the Lande 
and Arnold (1983) framework to interacting phenotypes (Araya- 
Ajoy et al., 2020; Frank, 1998; Queller, 2011; Westneat, 2012; Wolf 
et al., 1999), which did not consider the effects of SRN measurement 
error on evolutionary inference. In addition to the additive fitness 
effects of individual (βN) and partner SRN parameters (βS), synergis-
tic or antagonistic effects may also occur between SRN parameters 
(βI), so that the payoffs of these trait values are contingent on the 
trait values of the social partner (Figure 1c). When biologically rel-
evant, further interactive effects can also be added to the fitness 
model for the joint trait values of SRN intercepts and slopes, i.e. 
� I3

(
�j�

�

K

)
+ � I4

(
� j�

�

K

)
, as well as for other nonlinear effects of inter-

est. These interactive effects of joint trait values can be interpreted 
as the degree to which individual payoffs deviate from additivity 
across different social environments (Marshall, 2015; Queller, 2011). 
For example, in some ecological contexts, biparental care will lead to 
higher fitness payoffs for both sexes than uniparental care, so that 
the highest fitness is expected among individuals who both engage 
in offspring care and mate with partners who also engage in off-
spring care (Alger et al., 2020; Kokko & Johnstone, 2002; Pilakouta 
et al., 2018). In Blackcaps (Sylvia atricapilla), who experience high 
rates of nest predation, similar degrees of care between parents have 
been found to result in faster rates of nestling growth (Leniowski & 
Węgrzyn, 2018). Similarly, burying beetles (Nicrophorus vespilloides) 
who cooperate in biparental care tend to rear larger offspring with 
a higher probability of survival to adulthood (Pilakouta et al., 2018). 
Please see Araya- Ajoy et al. (2020) for a deeper treatment of these 
interactive effects and their importance for social evolution.

To enhance interpretation, selection gradients are specified in 
the model for individuals’ SRN parameter deviations, rather than on 
absolute SRN parameter values (i.e. population average + individual 
values), which centres the fitness model on the expected population 
values µ0 and ψ1. This transformation can be easily adjusted, how-
ever, if variation in population means is of biological interest, such 
as when studying the effects of frequency- dependent selection 
across multiple episodes of selection (Araya- Ajoy et al., 2020). The 
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fitness model further assumes that selection gradients are equiva-
lent across individuals, so that the fitness function is symmetric be-
tween individual j and individual k. This assumption can be relaxed 
by introducing distinct fitness models for multiple classes of indi-
viduals (e.g. males and females), as described above for Equation 3. 
Selection coefficients estimated from non- Gaussian SAMs can also 
be transformed to appropriate selection gradients for evolutionary 
prediction following the approach of Morrissey and Sakrejda (2013). 
Finally, note that the SAMs of phenotypic expression and fitness 
should generally be estimated together in Stan as a single multi- 
response model (i.e. Equations 3 + 5), as uncertainty in the estima-
tion of SRN parameters will thereby be represented simultaneously 
in both trait models. This ability to specify key evolutionary param-
eters simultaneously across response models is a central benefit of 
the proposed modelling framework, as it avoids a variety of issues 
caused by alternative multi- stage, “stats- on- stats” approaches (see 
Dingemanse et al., 2021; Martin, 2021 for further discussion).

3.3.1 | Estimating the response to selection

The SAM approach to selection analysis provides a straightfor-
ward means to calculate selection differentials directly for SRN 
parameters, which will represent the within- generation change in 
SRN parameters following an episode of selection (Lande, 1979). 
Assuming that SRN parameters are centered on zero and fitness is 
appropriately mean- scaled, Equation 5 can be substituted into the 
Robertson- Price identity (Price, 1972; Robertson, 1966) to derive 
selection differentials (McGlothlin et al., 2010) for SRN intercepts 
s� and slopes s�

where P = G + E is a phenotypic (co)variance matrix of SRN 
parameters (Equation 3) and C is a matrix of (co)variances among 
individuals’ SRN parameters and the mean partner parameters ex-
perienced in the social environment. With all residual and indirect 
effects excluded from the SRN parameters, the C matrix of partner 
covariances is solely attributable to covariance caused by assort-
ment. In particular,

where diag(P) is a matrix with the variances of SRN parameters on the 
diagonal and Bα is the assortment matrix defined above (Equation 4.2). 
See Appendix S1 for a detailed discussion and derivation of Equations 
6 and 7. The genetic response to selection on SRN intercepts Δ� and 
slopes Δ� can then be estimated by substituting additive genetic 
effects G for the total phenotypic effects P in s (Equation 6), partial-
ling out the independent environmental effects E from the selection 

differential. This provides a multivariate breeder's equation (Lande & 
Arnold, 1983) of evolutionary change in SRN parameters

These responses in SRN parameters can also be used to esti-
mate the response in SRN trait values Δ�, which reflect both the 
direct effects and IGEs of SRN evolution. As noted by Kazancıoğlu 
et al. (2012), it is cumbersome to derive analytic solutions for the 
response in SRN trait values subject to feedback, and simulation 
using population parameters provides a clear alternative. However, 
solutions can be straightforwardly derived for the response in the 
absence of/prior to feedback, which can be tested empirically using 
both within-  and between- partner sampling designs (Equations 3.1– 
3.3). In particular, the initial (t = 1) SRN trait value within generation 
(1) of a population in response to an average partner is given by

where var (�) ���� = cov
(
�,��

)
 accounts for the effect of assortment. 

Assuming � = ��, � = � �, and the absence of selection on var (�) ����, 
the responses in SRN parameters (Equation 8) can be substituted in for 
the expected SRN trait value at t = 1 in the subsequent generation (2)

Subtracting Equations 9.1 from 9.2 provides the response in the 
SRN trait value

where �Δ� is the change in IGEs expected in the absence of 
selection on SRN slopes, whereas Δ� � and Δ�Δ� reflect further 
change in IGEs caused by selection on SRN slopes (Kazancıoğlu 
et al., 2012). Selection differentials for SRN trait values s� can be 
similarly calculated by substituting in the SRN parameter selection 
differentials (Equation 6) such that

The social evolution of SRNs can, therefore, be straightforwardly 
estimated using the proposed SAMs (Equations 3 + 5), with Bayesian 
inference providing additional information on the probabilistic un-
certainty of these estimates (Stinchcombe et al., 2014). It should be 
noted that although Equations 6– 10 remove the biasing effect of 
SRN measurement error on evolutionary parameters, their predic-
tions will nonetheless be sensitive to the exclusion of other fitness- 
relevant phenotypes, which is a general limitation of trait- based 
models of evolutionary change (Bijma, 2014; Morrissey et al., 2010). 
Further suggestions for interpreting and plotting the evolution of 

(6)s =

⎡
⎢⎢⎣
s�

s�

⎤
⎥⎥⎦
= P�N + C�S

(7)C = diag (P)B�

(8)
⎡
⎢⎢⎣
Δ�

Δ�

⎤
⎥⎥⎦
= GP

− 1
s = G�N + diag (G)B��S

(9.1)�
(1)

t = 1
= � + � �� + var (�) ����

(9.2)�
(2)

t = 1
= � + Δ� + (� + Δ�) (� + Δ�) + var (�) ����

(9.3)Δ�t=1 = Δ� + �Δ� + Δ� � + Δ�Δ�

(10)s�t=1 = s� + �s� + s�� + s� s�
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the broader SRN function within the population can be found in 
Martin (2021).

4  | SIMUL ATION STUDY

4.1 | General overview

We simulated empirical datasets to investigate the statistical prop-
erties of SAMs for phenotypic and QG analysis at modest sample 
sizes typical of field research (N = 100, 200, 300). Data were simu-
lated for aggressive interactions within a population of biannually 
breeding animals forming seasonal monogamous pairs (Figure 2), as 
is common in many avian taxa. There were always N/2 males and fe-
males, and each individual paired with four breeding partners across 
the study period. Aggression was measured twice in each subject 
during their social interactions with their breeding partner, result-
ing in eight repeated measures per individual across four breeding 
seasons. We therefore utilized the SAM defined in Equation 3.3 for 
repeated measures within and between partners.

Observations within a breeding season were made using an ex-
perimental assay applied during initial (t = 1) and follow- up (t = 2) 
sampling periods. SRN feedback effects occurred across measure-
ments due to aggressive interactions within a breeding season. SRN 
measurement error was also generated by residual feedback effects 
due to unmeasured factors, as well as other unspecified residual 
effects such as spatiotemporal heterogeneity that further caused 
partners’ raw aggression measures to covary. To provide a direct 
demonstration of SAMs ability to differentiate covariance due to 
social plasticity and assortment, we further assumed that breeding 
partners assortatively mated for SRN slopes (i.e. more/less socially 
plastic birds tended to pair with more/less socially plastic part-
ners). A single measure of reproductive success was taken for each 
pair at the end of the breeding season, resulting in four repeated 
measures of this fitness proxy per individual. Although this dense 
sampling procedure will be unrealistic for some social systems and 
fitness components, previous simulations have shown that repeated 
sampling within pairs appreciably enhances statistical power for de-
tecting social effects (Class et al., 2017). Therefore, our simulation 
investigated what can be achieved at modest sample size with study 
designs prioritizing repeated individual measurement over the lifes-
pan, as is common in many long- term field studies.

SAMs for both phenotypic and QG analysis were estimated with 
these simulated datasets using Stan (Carpenter et al., 2017) in the 
R statistical environment (R Core Team, 2013). We simulated 200 
datasets per sample size (N = 100, 200, 300) to assess expected 
model performance across a large series of independent and iden-
tically conducted empirical studies. All parameter values were fixed 
during simulation to assess model performance for social plasticity, 
assortment, and selection of modest effect size (Pearson r = ±0.3 
and Cohen's d = ±0.3; see Appendix S1 for further details). General- 
purpose weakly informative priors were used for all model param-
eters to enhance parameter identification and reduce the risk of 

inferential bias (Lemoine, 2019). Note that we investigated a suf-
ficiently plausible but simplistic scenario so as to assess the basic 
properties of SAMs. We therefore did not consider a variety of bio-
logically pertinent processes that are not of direct relevance to our 
simulation goals, including, among others, differential mortality risk, 
divorce rates, sex differences in phenotypic expression, and extra- 
pair matings, all of which have important effects on fitness in socially 
monogamous species (Culina et al., 2015; Jeschke & Kokko, 2008; 
Petrie & Kempenaers, 1998).

Evolutionary payoffs for aggression SRN intercepts and slopes 
were assumed to be symmetric between serially monogamous male 
and female partners, so that a single fitness function characterized 
selection gradients on each individual in the population (Figure 2). 
We assumed that selection gradients and assortment coefficients 
were constant across seasons, and the population intercept of fit-
ness ν0 was fixed to 1 for all simulations to provide an appropriate 
measure of relative fitness (Lande & Arnold, 1983). Following previ-
ous work by Thomson et al. (2018), a basic population structure was 
simulated to derive a random relatedness matrix A used for gener-
ating individual SRNs. A simple sorting procedure was then used to 
generate assortment between social partners’ SRN slopes.

4.2 | Performance metrics

SAM performance was assessed through estimates of bias, uncer-
tainty, and power across datasets, with particular attention to es-
timates of the population- level interaction coefficient (ψ1), the SRN 
slope assortment coefficient (�� ′�), the selection differentials (s� and 
s�), and the responses to selection (Δ� and Δ� ). The selection differ-
entials and responses to selection integrated posterior uncertainty 
across multiple parameters, capturing the overall ability of the model 
to predict and explain adaptive social evolution. Note that responses 
could not be estimated for the phenotypic SAM due to the absence 
of genetic information. For each model parameter, we calculated the 
median value as a measure of the central tendency of the posterior 
distribution. Parameter bias was calculated by subtracting poste-
rior median estimates from the known parameter values used for 
simulation of each dataset, and then further dividing this quantity 
by the known value to express bias relative to the total effect size. 
For example, a median estimate of 0.24 for a true effect of 0.3 would 
exhibit a bias of −0.06 and a relative bias of −0.2 or −20%. Median 
absolute bias < |0.2| was interpreted as desirably low for evolution-
ary inference with modest sample and effect sizes (i.e. parameter 
accuracy >80%). Parameter uncertainty was quantified using the 
median absolute deviation divided by the absolute median estimate, 
providing a robust measure of relative dispersion comparable to 
a coefficient of variation (Arachchige et al., 2020). Median uncer-
tainty ≤ 0.5 thus indicated a central tendency at least 2× larger than 
the uncertainty of the estimate, which we considered desirable for 
confident statistical inference. Finally, to estimate power, we calcu-
lated the posterior probability supporting an effect in the direction 
of the true effect, with posterior probabilities closer to 1 indicating 
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stronger support for a known positive or negative effect. A median 
posterior probability ≥0.95 would therefore indicate ≤0.05 probabil-
ity in support of the incorrect direction of the true effect, which we 
considered desirably low in keeping with standard conventions.

5  | RESULTS

Key simulation results are visualized in Figure 2, with results for 
other parameters summarized in Appendix S1. Overall, for both 
phenotypic (P) and QG analysis, we found that the SAM exhibited 
desirable low bias, low uncertainty, and high power for modestly 
sized evolutionary parameters, particularly when N = 200– 300. At 
N = 100, small median biases were observed in the SRN slope assort-
ment coefficient �� ′� (P: −27%; QG: −24%) and nonsocial SRN slope 
selection gradient βN2 (P: 21%; QG: 21%), with other model param-
eters exhibiting desirably low bias (P: −15% − 12%; GQ: −16% − 12%). 
As explained above, this bias results from the regularization of the 
model priors, which conservatively pool the assortment coefficients 
toward zero. However, as expected, median bias steadily decreased 
with sample size, leading to lower median bias for �� ′� at N = 200 (P: 
−19%; QG: −16%) and N = 300 (P: −12%; GQ: −10%), as well as for the 
other parameters at N = 200 (P: −8% − 17%; QG: −16% − 17%) and 
N = 300 (P: −9% − 10%; QG: −7% − 11%). This means that, for a mod-
estly sized assortment coefficient (equivalent to Pearson r = 0.3), the 
SAM will be expected to estimate a value of ≈ 0.22 at N = 100 and ≈ 
0.26 at N = 200– 300.

Parameter uncertainty also steadily decreased across sample 
sizes. At N = 100, median uncertainty was already desirably low 
for most phenotypic parameters (P: 0.04 –  0.72; QG: 0.04 –  0.61), 
whereas genetically influenced parameters exhibited greater me-
dian uncertainty (QG: 0.63– 0.92). Similar patterns were observed at 
N = 200, with desirably low uncertainty for phenotypic parameters 
at N = 200 (P: 0.03 –  0.48; QG: 0.03 –  0.48) and greater uncer-
tainty in the genetically influenced parameters (QG: 0.47– 0.69). At 
N = 300, all parameters began to exhibit desirably low uncertainty 
(P: 0.02– 0.37; QG: 0.02– 0.55).

Posterior probabilities similarly increased across sample sizes. 
At N = 100, median posterior probabilities were already quite high 
(P: 0.92 − 1; QG: 0.92 − 1), with even stronger support for true ef-
fects found at N = 200 (P: 0.98 − 1; QG: 0.97 − 1) and N = 300 (P: 
1; QG: 0.99 − 1). This suggests that both the selection differentials 
and the direction of genetic response in SRN parameters could be 

reliably detected at N = 100– 200, despite the greater statistical 
uncertainty observed for the exact magnitude of the genetic pa-
rameters. Furthermore, by N = 300, the distribution of posterior 
probabilities was much narrower across parameters, suggesting 
that random sampling was less likely to cause inferential error in 
the direction of evolutionary change, despite its more apparent ef-
fects on the distribution of bias and uncertainty across datasets. 
Similarly, the median posterior probability of �� ′� was already quite 
high (QG: 0.98) at N = 100, suggesting that the presence of modest 
assortment can be reliably detected in smaller samples even if the 
exact magnitude of assortment will tend to be slightly underesti-
mated. Overall, the results demonstrate that the direction of most 
effects can be reliably detected at N = 100 with dense individual- 
level sampling, whereas sample sizes of N ≥ 200 will provide optimal 
conditions for more accurately and precisely estimating the magni-
tude of effects.

6  | CONCLUSION

Social interactions play a key role in the evolution of complex phe-
notypes and the emergence of novel levels of biological organiza-
tion (Bourke, 2011; Rubenstein & Abbot, 2017; West et al., 2015). 
Evolutionary quantitative geneticists have developed a large body 
of theory for predicting the response to selection on interacting 
phenotypes, as well as for disentangling the individual and social 
determinants of phenotypic expression (Bijma & Wade, 2008; 
McGlothlin & Brodie, 2009; McGlothlin et al., 2010; Moore 
et al., 1997; Wolf et al., 1999). However, despite extensive formal 
elaboration and a growing body of empirical applications (e.g., 
Farine & Sheldon, 2015; Fisher et al., 2019; Formica et al., 2011; 
Santostefano et al., 2017), it remains difficult to specify appropriate 
trait- based models for disentangling the effects of plasticity, assort-
ment and selection in the wild, limiting our causal understanding 
of social evolution. To address this issue, we have proposed SAMs 
extending the classical animal model to account for the role of SRNs 
in mediating the repeatable effects of social interactions, as well as 
to address key statistical challenges in the empirical study of social 
phenotypes (Figure 1).

To demonstrate the empirical application of SAMs and investigate 
their statistical performance, we simulated data on aggressive inter-
actions and their fitness consequences for assortatively mated avian 
breeding pairs (Figure 2). With sample sizes applicable to long- term 

F I G U R E  2   Simulation results. (a) A basic overview of the SAM simulation. Each individual was measured twice for aggression t = {1,2} 
during a breeding season with 4× lifetime mating partners. Associations between individuals and their mates were caused by assortment 
(Bα) and unmeasured environmental effects (Σ; e.g. spatiotemporal heterogeneity), as well as social feedback due to aggression SRNs (η, η′) 
and residual feedback causing further SRN measurement error (ξ, ξ′; e.g. unmeasured trait interactions). At the end of each season, breeding 
success was determined by nonsocial (βN) and social selection (βS, βI) on the SRN parameters of individuals and their partners. (b) Results 
from the phenotypic SAM for N = 100– 300 (y- axis). Results are shown for the bias, uncertainty, and power (posterior probability) of key 
evolutionary parameters, excluding genetic responses (Δ) due to the absence of genetic information. Regions between the dashed and 
solid lines indicate desirable model performance, i.e. relative bias <|0.2|, uncertainty <0.5, and power ≥0.95. Results across datasets are 
summarized by median estimates (dot) and 90% CIs (bars) capturing the highest continuous density interval across 200 simulated datasets. 
(c) Results from the QG SAM for N = 100– 300



534  |     MARTIN ANd JAEGGI

field studies, we observed desirably low bias and uncertainty as well 
as desirably high power for key evolutionary parameters. These 
models not only detected and rather accurately recovered the mag-
nitude of social plasticity, assortment and selection on SRNs, but 

also the selection differentials and genetic response in SRNs caused 
by selection. These results indicate that SAMs provide an integra-
tive and robust approach for investigating adaptive social evolu-
tion in the wild. Furthermore, although SAMs are more complex in 
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specification than traditional trait- based models, we have provided 
extensive coding tutorials for helping researchers to extend these 
models to their own datasets (Appendix S1).

It is important to further emphasize that our simulated system 
is quite simple, lacking many of the features typical of empirical 
populations (e.g. spatiotemporal autocorrelation, parental effects, 
nonlinear SRNs and extra- pair matings). Thus, although our results 
provide a proof- of- principle demonstration that SAMs are robust 
Bayesian estimators, researchers should be cautious in general-
izing our results to more complex model structures, as accurate 
estimation and detection of many additional random or fixed ef-
fects will likely require larger sample sizes. Instead, we encourage 
others to modify our simulation code to assess the performance 
of an appropriate SAM relevant to their investigation. In general, 
fake- data simulation is crucial for ensuring that statistical models 
have been appropriately specified, as well for benchmarking ex-
pected performance prior to data analysis (Gelman et al., 2020). 
Larger sample sizes will also be required for reliably estimating the 
effects of multiple phenotypic interactions on trait expression and 
fitness, each of which may reflect its own multidimensional SRN. 
In general, higher dimensionality will rapidly increase the data re-
quirements of any QG model (Dochtermann & Roff, 2010), including 
SAMs. Therefore, it may often be advantageous to use dimension 
reduction techniques, such as structural equation or generalized 
network modelling, to further simplify the structure of these inte-
grated SRNs (Araya- Ajoy & Dingemanse, 2014; Martin et al., 2019). 
Despite these caveats, our results clearly show the desirable per-
formance of QG SAMs with relatively modest sample sizes. We 
have also shown that phenotypic SAMs can readily estimate social 
plasticity, assortment, and selection even when sufficient genetic 
information is unavailable. We thus expect that SAMs, employed 
within a fully Bayesian statistical framework, will readily enhance 
both phenotypic and QG studies of social interactions in the wild.
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