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Abstract: Federated learning is a framework for multiple devices or institutions, called local clients,
to collaboratively train a global model without sharing their data. For federated learning with a
central server, an aggregation algorithm integrates model information sent from local clients to
update the parameters for a global model. Sample mean is the simplest and most commonly used
aggregation method. However, it is not robust for data with outliers or under the Byzantine problem,
where Byzantine clients send malicious messages to interfere with the learning process. Some robust
aggregation methods were introduced in literature including marginal median, geometric median
and trimmed-mean. In this article, we propose an alternative robust aggregation method, named
γ-mean, which is the minimum divergence estimation based on a robust density power divergence.
This γ-mean aggregation mitigates the influence of Byzantine clients by assigning fewer weights.
This weighting scheme is data-driven and controlled by the γ value. Robustness from the viewpoint
of the influence function is discussed and some numerical results are presented.

Keywords: byzantine problem; density power divergence; federated learning; γ-divergence; influ-
ence function; robustness

1. Introduction

Federated learning (FL), a distributed learning paradigm, was proposed by Google
in 2016 [1] for distributing the optimization of model parameters over multiple machines.
The distributed framework allows the data to be stored in local devices without sharing
with each other. These machines, called clients, collaboratively train a global model. In this
article, we consider the case that there is a central server, which works as a coordinator and
aggregates the gradient information sent by the local clients to update the global model
through an iterative process [2]. In real-world applications, clients, such as hospitals and
clinical institutions, hold highly sensitive and private data such as electronic healthcare
records, medical images, etc. [3]. However, FL still encounters several challenges in a real
world setting. In its training process, some unreliable clients may produce outlying data
information or even send malicious values [4], which leads to a biased result or even a
failure of the training process. These arbitrary clients are called Byzantine clients. With a
properly designed aggregation scheme, the effect by Byzantine clients can be reduced or
excluded. Several papers have made significant contributions to developing Byzantine-
resilience methods with specific use of robust aggregators, including marginal median [5],
geometric median [6], and trimmed-mean [7]. Another aggregation framework is the
Byzantine-robust stochastic aggregation method [8], which adds a regularization term in
the objective function to handle the Byzantine and heterogeneous data problem.
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In this article, we consider the case of FL, which consists of a central server and m
clients. Assume that there is an α-fraction of Byzantine clients. Our goal is to minimize the
following objective function:

L(θ) =
m

∑
i=1

πiEηi∼D [lηi (θ)], (1)

where θ ∈ Rp is the global model parameter, lηi (θ) is the loss function of client i with local
data ηi having an unknown distribution D, and {πi}m

i=1 are the prior weights assigned to
local clients. At the tth round of FL iterative updates, the server broadcasts the current
parameter value θt ∈ Rp to local clients. Normal clients faithfully compute an estimate
of the local gradients Eηi∼D∇lηi (θ

t) and send the gradient information back to the server.
On the contrary, Byzantine clients send arbitrary erroneous messages to obstruct the
optimization process. The central server aggregates the gradient information from clients
and updates the model parameter from θt to θt+1. At the end, the server should output
an estimate of the optimal θ, which aims to minimize the objective loss (1). In this work
we consider uniform client weights, i.e., π1 = · · · = πm = 1. The main reason is that,
under the Byzantine problem, the local sample sizes claimed by Byzantine clients might
not be reliable.

Our main contributions of this work are listed below.

• We propose the γ-mean as a robust aggregator in federated learning. This robust
aggregator mitigates the influence of Byzantine clients by assigning fewer weights.
The weighting scheme is data-driven and controlled by the tuning parameter γ.

• We have a discussion on robustness from the influence function point of view. Benefits
of adopting γ-mean can be seen from its influence function in comparison to other
robust alternatives such as marginal median, geometric median and trimmed mean.

• The robustness of γ-mean is then verified through simulation study and real data
experiments. The γ-mean based aggregation outperforms other robust aggregators
such as marginal median, geometric median and trimmed mean.

The rest of the article is organized as follows. In Section 2, we review some related
work in robust federated learning. In Section 3, we propose our main method for robust
FL aggregation and provide some theoretical viewpoints by the influence function. In
Section 4, we conduct an extensive simulation study. In Section 5, we provide some further
numerical examples using MNIST, fashion MNIST and chest X-ray images (pneumonia). In
Section 6, we make some concluding remarks.

2. Related Work

McMahan et al. introduced the FedAvg algorithm [9], which used the mean as its
aggregator. The sample mean aggregation is a very popular FL framework [9,10]. However,
the sample mean is known to be vulnerable to outliers and heavy-tailed distribution. For
instance, Byzantine clients [7,8,11] may send extreme values to strongly influence the
aggregation of sample mean. There are some robust alternatives to the mean aggregator,
such as marginal median, geometric median and trimmed mean. In contrast to mean,
marginal median is a relatively robust aggregator by computing coordinate-wise medians.
Another Byzantine-resilient aggregator is geometric median, which computes the geometric
median of {xi}m

i=1 given by (see Weiszfeld’s algorithm [12] for solution computation).

GeoMed({xi}m
i=1) = arg min

x∈Rp

m

∑
i=1
‖x− xi‖2. (2)

The trimmed mean aggregator computes coordinate-wise trimmed means by removing
the β-fraction of data points from each of the two tails [11]. Both the marginal median
and geometric median, though are robust to outliers, but are not efficient, as they only
use the most centrally-lying data for inference. As for trimmed mean, first it needs a
proper selection of β. Second, it often does not work well for outliers lying on one side
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of a coordinate instead of on two sides. To have a better balance between robustness and
efficiency, we will propose another robust aggregator based on a robust density power
divergence, namely, the γ-divergence.

3. Proposed Aggregator and Its Robustness

In this section, we introduce an aggregator, called “γ-mean”, which is based on the
minimum γ-divergence estimation. Two versions of implementation algorithms are given
and some robustness viewpoints based on the influence function are provided.

3.1. Minimum γ-Divergence Estimation

The γ-divergence [13,14], which is also known as the density power divergence of
type zero [15], is a robust divergence against outliers with a tuning parameter γ > 0. The
γ-divergence between the data distribution with probability density function g and the
model distribution fτ (indexed by τ) is defined by

Dγ(g, fτ) =
‖g‖γ+1

γ(γ + 1)

{
1−

∫ ( fτ(x)
‖ fτ‖γ+1

)γ g(x)
‖g‖γ+1

dx
}

,

where ‖ fτ‖γ+1 = (
∫

f γ+1
τ (x)dx)1/(γ+1). In the limiting case, it reduces to the Kullback-

Leibler divergence, i.e., lim
γ→0

Dγ(g, fτ) =
∫

ln( g(x)
fτ(x) )g(x)dx. In the population level, the

minimum γ-divergence estimation of τ is given by

τ∗γ = arg min
τ

Dγ(g, fτ) = arg max
τ

∫ ( fτ(x)
‖ fτ‖γ+1

)γ

g(x)dx. (3)

In the sample level with empirical data {xi}m
i=1, the data distribution will be replaced

by the empirical distribution to get the estimate τ̂γ:

τ̂γ = arg min
τ

Dγ(g, fτ) = arg max
τ

1
m

m

∑
i=1

(
fτ(xi)

‖ fτ‖γ+1

)γ

.

In this article, we use a Gaussian working model, i.e., fτ ∼ N(µ, Σ). Suppose g
takes a contaminated form: g(x) = (1− ε) fτ(x) + εh(x), where h(x) is the probability
density function of contamination distribution. It is assumed that

∫
f γ
τ (x)h(x) is small for

certain γ > 0, so that the contamination has little effect in the learning process. By taking
derivatives with respect to τ = (µ, Σ) and setting them to zero, the estimates (µ̂, Σ̂) have to
satisfy the following estimating equations:

1
m

m

∑
i=1

d(γ)i (µ̂, Σ̂)(xi − µ̂) = 0,

1
m

m

∑
i=1

d(γ)i (µ̂, Σ̂)

{
1

γ + 1
Σ̂− (xi − µ̂)(xi − µ̂)>

}
= 0,

where d(γ)i (µ̂, Σ̂) = exp
(
−γ
2 (xi − µ̂)>Σ̂−1(xi − µ̂)

)
. The solution pair, (µ̂, Σ̂), has to satisfy

the following stationary equations:

µ̂ =
∑m

i=1 d(γ)i (µ̂, Σ̂)xi

∑m
i=1 d(γ)i (µ̂, Σ̂)

, (4)

Σ̂ = (γ + 1)
∑m

i=1 d(γ)i (µ̂, Σ̂)(xi − µ̂)(xi − µ̂)>

∑m
i=1 d(γ)i (µ̂, Σ̂)

. (5)
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3.2. Robust Aggregation by γ-Mean

In view of the stationary Equations (4) and (5), we use a fixed-point iteration. Two
algorithms are provided below. Algorithm 1 is the usual γ-mean, which uses N(µ, Σ) as
the working model, and Algorithm 2 is the simple γ-mean, which adopts N(µ, σ2 I) as
the working model. Note that, in the former case when the sample size is not sufficiently
large enough to have a stable estimate of the covariance inverse, we will use {diag(Σ̂)}−1

instead, where Σ̂ is the minimum γ-divergence estimator for the covariance and diag(Σ̂)
denotes the diagonal matrix consisting of diagonal elements of Σ̂. Also note that, in the
latter case of simple γ-mean, σ2 can be merged into the hyperparameter γ. Thus, we will
simply use the standard Gaussian as the working model.

Algorithm 1 γ-mean with a Gaussian working model.
Input: Gradient information X = [x1, x2,. . . xm] and the maximum number of iterations S
Output: µγ = µ̂

Start with initials µ̂ = µ̂ini and Σ̂ = Σ̂ini.
for s = 1, 2, . . . , S (while s ≤ S and iterations not yet converge) do

for i = 1, 2, . . . , m do
Calculate d(γ)i (µ̂, Σ̂)← exp

(
− γ

2 (xi − µ̂)>Σ̂−1(xi − µ̂)
)

at the ith local client.
end for

Denote w(γ)
i =

d(γ)i (µ̂,Σ̂)

∑m
i=1 d(γ)i (µ̂,Σ̂)

.

µ̂← ∑m
i=1 w(γ)

i · xi,

Σ̂← (1 + γ) ·∑m
i=1 w(γ)

i · (xi − µ̂)(xi − µ̂)>.
end for

Algorithm 2 simple γ-mean with the standard Gaussian as the working model.
Input: Gradient information X = [x1, x2,. . . xm] and the maximum number of iterations S
Output: µγ = µ̂

Start with initial µ̂ = µ̂ini.
for s = 1, 2, . . . , S (while s ≤ S and iterations not yet converge) do

for i = 1, 2, . . . , m do
Calculate d(γ)i (µ̂)← exp

(
− γ

2 (xi − µ̂)>(xi − µ̂)
)

at the ith local client.
end for

Denote w(γ)
i =

d(γ)i (µ̂)

∑m
i=1 d(γ)i (µ̂)

.

µ̂← ∑m
i=1 w(γ)

i · xi.
end for

For the extremely large dimension p, such as in a deep neural network model, the
simple γ-mean algorithm will be more feasible than the usual γ-mean for better numeri-
cal stability.

3.3. Robustness
3.3.1. Influence Function

The influence function is a tool to evaluate the change of an estimator by a small
perturbation to the data distribution. An estimator with a lower influence provides better
resistance against outliers. Therefore, we analyze the robustness of different estimators
by showing their influence functions. Let {xi}m

i=1 ⊂ Rp be sampled from G and T be
the statistical functional for estimation. The robustness of T(G) can be evaluated by the
influence function of T:

IFT(x0; G) =
∂

∂ε
T{(1− ε)G + εδx0}

∣∣∣∣
ε=0

,
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where δx0 is the point mass at x0. In other words, the influence function of T is the Gâteaux
derivative of T(G) with respect to G along the direction δx0 − G. In this paper, we consider
evaluating the influence function at the Gaussian working model Fτ with τ = (µ, Σ) and
seeing the deviant effect when a point perturbation x0 is added. The influence function
of M-estimators have been well-studied in [16], which is related to the inverse of Hessian
matrix and the first order derivative. The estimator based on γ-divergence is also an
M-estimate. Its influence function derivation can be found in [14] and is given by

IFµγ(x0; G)
∣∣
G=Fτ

= (γ + 1)
p+2

2 exp
(
−γ

2
(x0 − µγ)

>Σ−1
γ (x0 − µγ)

)
(x0 − µγ), (6)

where µγ and Σ−1
γ are the minimum γ-divergence estimators for the location and covariance

matrix of the working model Fτ , respectively. The influence function of the γ-mean,
IFµγ(x0; Fτ), is similar to the influence function of the sample mean, which is given by

(x0 − µ), except for an additional multiplicative weight d(γ)x0 (µγ, Σγ). This weight focuses
on the Mahalanobis distance between the perturbing point x0 and µγ. As a result, when x0
is an outlier away from the target mean of data distribution, this weighting factor produces
a down-weighting effect and prevents the estimator from biased estimation caused by
the outlier.

3.3.2. Comparison with Other Aggregators

In this subsection, we present influence functions for several robust aggregation
methods including marginal median, geometric median and trimmed-mean.

Geometric median µgeo: The influence function of µgeo is given by [17]

IFµgeo(x0; G) =
(
EX

[∥∥X− µgeo
∥∥−1

2

{
Ip −

∥∥X− µgeo
∥∥−2

2 (X− µgeo)(X− µgeo)
>
}])−1

x0 − µgeo

‖x0 − µgeo‖2
,

where the expectation EX is taken with respect to the data distribution G.
Trimmed-mean µtrm: The trimmed-mean is an L-esimator, and its influence function

is derived in [18]. For the influence function of the marginal trimmed-mean, we derive it
coordinate-wise since the coordinates are independent to each other. Therefore, let G−1

i be
the quantile function of marginal data distribution on i-th component, and the influence
function of µtrm is given by

IFµtrm(x0; G) =
1

1− 2β

 w1
...

wp

,

where

wi =


G−1

i (β)−Wi, x0i < G−1
i (β),

x0 −Wi, G−1
i (β) < x0i < G−1

i (1− β),

G−1
i (1− β)−Wi, x0i > G−1

i (1− β),

x0 = (x01, . . . , x0p)
>, and

Wi = (1− 2β)
∫ G−1

i (1−β)

G−1
i (β)

t dGi(t) + β(G−1
i (1− β) + G−1

i (β)).

It is obvious that an influential effect, x0 −Wi, still remains if x0 is outside the
trimmed range.
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Marginal median µ(0.5): The influence function of the median is also derived in [18],
and we use the same techniques as used in the trimmed-mean to derive the influence
function of the marginal median. The influence function is given by

IFµ(0.5)(x0; G) =


x01−µ

(0.5)
1

2g1(µ
(0.5)
1 )|x01−µ

(0.5)
1 |

...
x0p−µ

(0.5)
p

2gp(µ
(0.5)
p )|x0p−µ

(0.5)
p |

, (7)

where µ(0.5) = (µ
(0.5)
1 , . . . , µ

(0.5)
p )> is the marginal median and gi is the density function of

the marginal distribution Gi.
The influence functions given above reveal that different robust aggregators have

different resistance ability against outliers. The trimmed mean can still be influenced
by outliers outside the trimmed range. While the marginal median and the geometric
median are fairly robust, they may lose too much efficiency due to the use of only the
most centrally-lying data point. The γ-mean provides an adjustable control between the
robustness and efficiency by the hyper-parameter γ.

4. Simulation Study

In this section, we evaluate our robust γ-mean aggregator and compare it with existing
aggregators, including mean, marginal median, geometric median and trimmed mean,
through simulation. For computing the geometric median, Weiszfeld’s algorithm [12] is
used. In this simulation study, we investigate the behavior and inspect the robustness of
the γ-mean and other aggregators as an estimator of the location parameter under multi-
variate Gaussian distribution and multivariate t-distribution with and without Byzantine
interference. We build several simulation scenarios, including testing aggregators across
the growth of dimension p, different fractions (i.e., α values) of Byzantine attacks and for
various settings of γ (which controls the degree of robustness). All our simulation experi-
ments were run on an Nvidia DGX A100 server. We used one A100 GPU card, 16G RAM,
and 16 cores of AMD-EPYC-7742 CPUs. However, a personal computer with a moderate
performance-efficient GPU card and CPU can also carry out the simulation experiments,
but with longer run time. For the real data examples in Section 5, a personal computer will
not be sufficient for carrying out the computing job.

4.1. Simulation Settings

• Scenario 1.We focus on the behavior of aggregators for increasing p from 20 to 1000.
Other experimental setting is as follows: the number of clients m = 200, the fraction
of Byzantine attacks α = 0 and α = 0.1, and the hyper-parameter for controlling the
robustness γ = 2/p.

• Scenario 2. We focus on the behavior of aggregators for increasing contamination
fraction α from 0 to 0.5. Other experimental setting is as follows: m = 200, p = 1000
and γ = 2/p.

• Scenario 3. We focus on the effect of γ values and set γ = c/p for various constants c
ranging from 0.5 to 4. Other experimental setting is as follows: m = 200, α = 0.1 and
p ranges from 1 to 1000.

• Scenario 4. After comparison between the γ-mean and other aggregators, we focus on
the comparison between two versions of our proposal, the γ-mean versus the simple
γ-mean. Other experimental setting is as follows: m = 200, α = 0.1, γ = 2/p and p
ranges from 1 to 1000.

For regular clients, gradient vectors are generated from the standard Gaussian dis-
tribution and t-distribution with 5 degrees of freedom. For Byzantine clients, gradient
vectors are generated from the same Gaussian and t distributions, except with a location
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shift µ = 100× 1p, where 1p is a vector with one in all entries. Each experimental scenario
is implemented with 100 replicate runs.

4.2. Results

To compare the performance of different aggregators, the mean squared error (MSE)
to the true target value is used as a performance metric. MSE can be further decomposed
into the squared bias and variance.

4.2.1. Scenario 1

The results are shown in Figure 1. Without contamination (Figure 1a), all aggregators
have MSE close to zero. For the Gaussian case, the MSE curves of the mean, geometric
median and γ-mean are almost collapsed together. These 3 curves have the lowest MSE
values followed by the trimmed-mean and marginal median. For the t-distribution, the
γ-mean has the lowest MSE, followed by the geometric median, trimmed-mean, mean
and then marginal median. With 10% of contamination, the mean-aggregator fails to
perform well and has large values of MSE, verifying that it is not a robust aggregator.
Due its large MSE value, the result of the mean-aggregator is removed from Figure 1b.
From Figure 1b we can see that γ-mean performs the best among the five aggregators in
terms of MSE. In addition, γ-mean remains low and stable in variance under both Gaussian
and t distributions.

(a) α = 0

(b) α = 0.1

Figure 1. Comparison of different aggregators across different dimensions p. (a) Case α = 0 (no
Byzantine client). (b) Case α = 0.1 (10% Byzantine clients).
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4.2.2. Scenario 2

As Figure 2 shows, values of squared bias are close to zero when α = 0 and increase
as α grows for all aggregators. However, the increasing velocity of aggregators are quite
different. Mean-aggregator surges with the highest velocity, while γ-mean progresses with
the lowest velocity. Trimmed-mean slowly grows when α ≤ 0.1; yet, its increasing pace
is about the same as the mean after α > 0.1 due to the fixed 10% trimming percentage
from both tails. The trends in MSE for different aggregators have similar patterns, and the
only difference is in the scale with the γ-mean having the lowest MSE values. Also note
that the variance of the marginal median increases much faster than other aggregators as α
increases, followed by the geometric median, γ-mean, trimmed mean and then the mean.
However, the trimmed mean and the mean have dominant bias leading to high MSE, even
though they have small variance. As the values of squared bias are large for the mean and
trimmed-mean, the bias curves for the γ-mean, geometric median and marginal median in
the 2nd row of Figure 2 look collapsed together. To have a better view of these three bias
curves, zoomed-in views are provided in the 3rd row of Figure 2, and we can clearly see
that the γ-mean has the lowest bias values.

Figure 2. Comparison of different aggregators across different α values with fixed p = 1000. The two
subplots in the 3rd row are the zoomed-in views of subplots in the 2nd row.

4.2.3. Scenario 3

We conduct further experiments on γ-mean to see the effect of different γ values
by setting γ = c/p with c = 0.5, 1, 2, 3, 4, where α = 0.1 and p ∈ [1, 1000]. Results are
presented in Figure 3. The squared bias is ignorable, indicating that the γ-mean is quite
robust with different γ-values. The main source of MSE comes from the variance. Larger
γ values lead to larger stochastic variances, indicating that larger γ values result in lower
estimation efficiency.



Entropy 2022, 24, 686 9 of 15

Figure 3. Effect of different γ values across different dimensions p ∈ [1, 1000] with α = 0.1.

4.2.4. Scenario 4

For p ∈ [100, 1000] and under the Gaussian case, the MSE, bias and variance curves
for the γ-mean and simple γ-mean are collapsed together (Figure 4, left panel). For
p ∈ [100, 1000] and under the t-distribution, these curves are nearly indistinguishable
(Figure 4, right panel). When p is small (p� 100), the MSE values of the simple γ-mean
are significantly larger than those of γ-mean. However, we did not display the results
for p < 100, since the relative large MSE values for small p will make the MSE curves of
γ-mean and simple γ-mean look lying on the x-axis for p ≥ 100.

Figure 4. Comparison of γ-mean versus simple γ-mean with α = 0.1 and p ∈ [100, 1000].

5. Real Data Examples
5.1. Datasets

• MNIST [19]. The MNIST database of handwritten digits has a training set of 60,000
examples, and a test set of 10,000 examples. The digits have been size-normalized and
centered in a fixed-size, 28× 28 grayscale, images.

• Fashion MNIST [20]. Fashion-MNIST is a dataset of Zalando’s article images consisting
of a training set of 60,000 examples and a test set of 10,000 examples. Each example is
a 28× 28 grayscale image, associated with a label from 10 types of clothing, such as
shoes, t-shirts, dresses, sandals, sneakers and more.

• Chest X-ray images (pneumonia) [21]. The dataset contains 5856 X-ray images and
2 classes (pneumonia and normal). The 5,856 images consist of 5232 training images
(which we further split into 90% for model training and 10% for model validation
to implement early stopping) and 624 testing images. Chest X-ray images (anterior-
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posterior) were selected from retrospective cohorts of pediatric patients of one to five
years old from Guangzhou Women and Children’s Medical Center, Guangzhou.

5.2. Experimental Setting

All the data examples were run on an Nvidia DGX A100 server. We used one A100
GPU card, 64 G RAM, and 16 cores of AMD-EPYC-7742 CPUs. The experimental setting is
described below.

• For MNIST and fashion MNIST, we set m = 20 and the number of Byzantine clients is
two. For chest X-ray images, we set m = 9 and the number of Byzantine clients is one.
Byzantine clients return random values from Gaussian (5, 1).

• γ is set to 0.5. This setting is different from the setting γ = c/p in simulation. The
main reason is that there is a certain complicated relationship between the γ value and
the neural network model adopted, such as the dimensionality, gradient size, learning
rate, etc. We have not yet fully understood this relationship, which might govern the
selection of γ. We will leave it as a future study.

• We set β = 0.1 for the trimmed mean.
• To allow for the imbalanced size of clients, we obtain the sample size of each client by

sampling from the following steps [11].

1. Sampling a vector a from Lognormal(1.5, 3.452).
2. Sampling η from Dirichlet(a). The sum of vector η will be 1 due to the property

of Dirichlet distribution.
3. Obtain the sample sizes of clients from multinomial (n−m× no, η), where n is

total sample size and no is the minimum sample size guaranteed for each client.
We set no = 512.

In each round of parameter update, the server broadcasts the current parameter values
to m clients. Each normal client computes the local gradient and local parameter update,
and then returns the change of parameters after iterating k epochs using local data (k = 1
for MNIST and fashion MNIST, and k = 20 for chest X-ray images). Byzantine clients return
random values from a Gaussian distribution N(5, 1). Some further implementation details
are given below.

• We run 1000 rounds of FL for MNIST and fashion MNIST, and 100 rounds for chest
X-ray images.

• We apply stochastic gradient descent (SGD) with a cosine decay learning rate (decay
over rounds), where the decay step is 1000 for MNIST and fashion MNIST, and
100 for chest X-ray images. In each epoch of local clients on MNIST and fashion
MNIST, the SGD will go through only 10% of local data to save computing time.
This implementation leads to some fluctuations in the early stage of training but the
training process will be much faster than going through all local data.

• The initial learning rates are 0.1, 0.5, and 10−4 for MNIST, fashion MNIST, and chest
X-ray images, respectively. In each epoch in local iterates, 10−5 is set as the decay
constant.

• We apply gradient clipping to avoid exploding gradients on MNIST and fashion
MNIST. If the 2-norm of aggregated gradient is larger than 1, the vector will be scaled
to a new vector with norm 1.

• To handle the imbalanced class size, we use weighted cross-entropy as loss function in
the chest X-ray example (pneumonia: 0.35, normal: 1.0), where the chest X-ray training
dataset contains 3883 pneumonia cases and 1349 normal cases. In addition to the
classification accuracy, we also use ‘accuracy’, ‘sensitivity’ (also known as ‘recall’ and
‘true positive rate’) and ‘precision’ as our evaluation metrics. In particular, correctly
predicting pneumonia is more important than predicting the normal case.
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5.3. Models

We use a simple CNN model (Figure A1 in Appendix A) for MNIST and fashion
MNIST. For chest X-ray images (pneumonia), we use a pretrained ResNet50 (Figure A2
in Appendix A) with input image size 150× 150× 3. We further connect the model to
3 dense-block layers.

5.4. Results

Results for the trimmed mean are not reported here, as they do not perform well due
to its reliance on the specification of β and its non-robustness to non-symmetric outliers
(note that the trimming procedure is symmetric in two tails of each coordinate).

5.4.1. MNIST

Figure 5 shows the results of FL using different aggregators. In the case of no attack,
the simple γ-mean performs as good as the mean-aggregator with 96% testing data clas-
sification accuracy. In the Byzantine case, simple γ-mean performs the best with testing
accuracy 96% followed by the two median-based methods, geometric median and marginal
median, while the mean-aggregator has failed. In addition, the marginal median has some
fluctuations in the early stage of training.

Figure 5. Testing process and comparison of testing accuracy for different aggregators on MNIST.

5.4.2. Fashion MNIST

Figure 6 shows the results of fashion MNIST. The conclusion is similar to MNIST, that
the simple γ-mean performs the best. Note that the fluctuations shown in the training
process of marginal median look worse than those shown in Figure 5. Although we have
applied gradient clipping, still there are some sudden surges in loss function values and
they lead to sudden drops in classification accuracy.
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Figure 6. Testing process and comparison of testing accuracy for different aggregators on fash-
ion MNIST.

5.4.3. Chest X-ray Images (Pneumonia)

We train the model on the training dataset without any partitions (i.e., single machine
with full training data) as a baseline. In this single machine case, the maximum number
of training epochs is 1000 and the training process will stop early if the evaluation metric
(loss + accuracy + precision + sensitivity on validation data) does not get better in 10 consec-
utive epochs. For the FL case, the number of FL rounds is 100 and the maximum training
epochs of each client are 20 at every FL round. At each round, the clients will stop early if
the evaluation metric (loss + accuracy + precision + sensitivity on validation data) does not
get better in 5 consecutive epochs. The simple γ-mean algorithm has adopted the marginal
median as initial. All other settings are the same as those listed in Section 5.2. The results
are shown in Figure 7.

Figure 7. Testing process and comparison of testing accuracy for different aggregators on chest x ray.
The aggregators by mean and geometric median cannot tolerate the Byzantine attack and both methods
were crushed during model training. Thus, there are no results reported for these two methods.
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We further report the following testing data results in Table 1: true positive (TP, which
is predicted positive and actually positive), true negative (TN, which is predicted negative
and actually negative), false positive (FP, which is predicted positive but actually negative),
false negative (FN, which is predicted negative but actually positive), precision (Prec,
which is TP

TP+FP ), sensitivity (Sens, which is TP
TP+FN as well as one minus type-II error) and

classification accuracy (Acc). The aggregators by mean and geometric median cannot
tolerate the Byzantine (Byz) attack and both methods were crushed during model training.
Thus, there are no results reported for these two methods.

Table 1. Pneumonia prediction on test data.

Byz Aggregator TN FN FP TP Prec Sens (Type II Error) Acc

single machine 156 23 78 367 0.8247 0.9410 (0.0590) 0.8381

No mean 212 103 22 287 0.9288 0.7359 (0.2661) 0.7997
marginal median 190 63 44 327 0.8814 0.8385 (0.1615) 0.8285
simple γ-mean 126 8 108 382 0.7796 0.9795 (0.0205) 0.8141
GeoMed 177 30 57 360 0.8633 0.9231 (0.0769) 0.8606

Yes mean † – – – – – – –
marginal median 228 271 6 119 0.9520 0.3051 (0.6949) 0.5561
simple γ-mean 140 11 94 379 0.8013 0.9718 (0.0282) 0.8317
GeoMed † – – – – – – –

† The symbol “–” indicates model crushed during training.

6. Concluding Remarks

Our major contribution in this article is to propose the γ-mean aggregation in feder-
ated learning, which is robust against outliers and Byzantine attacks. We have provided
some theoretical discussions on influence functions and carried out numerical studies to
justify our proposal. In both simulation and real data experiments, γ-mean based aggre-
gation in general outperforms the existing robust aggregators such as marginal median,
geometric median and trimmed mean. In addition, the simple γ-mean does not require
complex computation. It can be easily computed by fixed point iteration and works well for
extremely high dimensional cases such as in a deep neural network model. The γ-mean (as
well as the simple γ-mean) takes a form of weighted average, where γ controls the trade-off
between robustness and estimation efficiency. The selection of γ value is important, and a
data-driven selection procedure is needed, which will be pursued in our future study.

In our numerical examples (simulation and real data), we have tested γ-mean’s ability
to guard against the Byzantine attacks. However, when it comes to federated learning in
real-world applications, adversarial attacks are also an important issue for model robustness.
These attacks create adversarial fake examples, which even humans might not be able
to distinguish from genuine ones. Moreover, adversarial examples aim to confuse the
model and result in wrong prediction. How to modify the baseline γ-mean algorithm for
adversarial attacks will be an interesting and yet challenging problem. We will defer it to a
future study.
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Abbreviations
The following abbreviations are used in this manuscript:

Acc accuracy
Byz Byzantine
FL Federated learning
FN false negative, predicted negative but actually positive
FP false positive, predicted positive but actually negative
GeoMed Geometric median
IF Influence function
Prec precision, TP

TP+FP
Sens sensitivity, TP

TP+FN or 1−type II error
TN true negative, predicted negative and actually negative
TP true positive, predicted positive and actually positive

Appendix A

Figure A1. Model used in MNIST and fashion MNIST.

For MNIST and fashion MNIST, we use a model similar to LeNet-5. All filters in the
convolution layers are 5× 5 maps without padding. The first layer in fully connection is a
dense layer with 500 neurons with ReLU activation. The last layer is an output layer with
10 neurons with softmax activation. The number of parameters is 931,080.

Figure A2. Model used in chest X-ray images.

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia


Entropy 2022, 24, 686 15 of 15

For chest X-ray images, we use a pretrained ResNet50 with input image size is
150× 150× 3 and freeze all ResNet50 parameters. The output dimensionality is 5× 5×
2048. A global average pooling is adopted and it leads to the dimensionality 2048. Next,
we connect it to 3 dense-block layers. Dense block: dense layer→ batch normalization→
drop out. Number of neurons are 256, 64, and 32, respectively. The drop out probabilities
are 0.7, 0.5, and 0.3, respectively. The number of trainable parameters is 543,809.
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