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Purpose: To propose a synthesis method of pseudo-CT (CTCycleGAN) images based on
an improved 3D cycle generative adversarial network (CycleGAN) to solve the limitations
of cone-beam CT (CBCT), which cannot be directly applied to the correction of
radiotherapy plans.

Methods: The improved U-Net with residual connection and attention gates was used as
the generator, and the discriminator was a full convolutional neural network (FCN). The
imaging quality of pseudo-CT images is improved by adding a 3D gradient loss function.
Fivefold cross-validation was performed to validate our model. Each pseudo CT
generated is compared against the real CT image (ground truth CT, CTgt) of the same
patient based on mean absolute error (MAE) and structural similarity index (SSIM). The
dice similarity coefficient (DSC) coefficient was used to evaluate the segmentation results
of pseudo CT and real CT. 3D CycleGAN performance was compared to 2D CycleGAN
based on normalized mutual information (NMI) and peak signal-to-noise ratio (PSNR)
metrics between the pseudo-CT and CTgt images. The dosimetric accuracy of pseudo-
CT images was evaluated by gamma analysis.

Results: The MAE metric values between the CTCycleGAN and the real CT in fivefold cross-
validation are 52.03 ± 4.26HU, 50.69 ± 5.25HU, 52.48 ± 4.42HU, 51.27 ± 4.56HU, and
51.65 ± 3.97HU, respectively, and the SSIM values are 0.87 ± 0.02, 0.86 ± 0.03, 0.85 ±
0.02, 0.85 ± 0.03, and 0.87 ± 0.03 respectively. The DSC values of the segmentation of
bladder, cervix, rectum, and bone between CTCycleGAN and real CT images are 91.58 ±
0.45, 88.14 ± 1.26, 87.23 ± 2.01, and 92.59 ± 0.33, respectively. Compared with 2D
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CycleGAN, the 3D CycleGAN based pseudo-CT image is closer to the real image, with NMI
values of 0.90 ± 0.01 and PSNR values of 30.70 ± 0.78. The gamma pass rate of the dose
distribution between CTCycleGAN and CTgt is 97.0% (2%/2 mm).

Conclusion: The pseudo-CT images obtained based on the improved 3D CycleGAN have
more accurate electronic density and anatomical structure.
Keywords: pseudo computed tomography (CT), CycleGAN, cone-beam computed tomography (CT), radiotherapy,
cervical cancer
INTRODUCTION

Cervical cancer is one of the most common gynecological
malignant tumors. According to statistics released in the 2017
annual meeting of the European Society for Medical Oncology
(ESMO), the frequency of new cervical cancer cases was fourth
highest in female cancers, and its fatality rate was third-highest
(1). The main treatment means for cervical cancer are operation
and comprehensive chemoradiotherapy (2). With the
development of radiotherapy technology, image-guided
radiation therapy (IGRT) has been gradually applied to clinical
treatment of cervical cancer (3). In comparison with diagnostic
CT, cone-beam CT (CBCT), a commonly used image-guided
device, has higher spatial resolution, so it can be used for beam
position verification of a patient between fractionated treatments
(4). Rigid registration based on gray level or bone landmark is
carried out through CBCT images scanned before each treatment
and CT images acquired at the simulation stage (CTsim) to
formulate a radiotherapy plan. Then, the setup error in 3D
space can be determined to calibrate patient position (5).
Given that the tumor target area of cervical cancer is closely
related to the surrounding organs at risk (OARs) (such as the
bladder and rectum), bladder filling and gastrointestinal
peristalsis will directly affect the location of the tumor target
area. The size and prescription dose of planning target volume
(PTV) should be adjusted before each treatment to minimize the
radiation dose of surrounding normal tissues. CBCT and
standard multi-slice CT images are grayscale images that are
processed and reconstructed by a computer after X-ray passes
through different density tissues and organs, and the radiation
energy after X-ray attenuation is measured by a flat panel
detector. However, their imaging principles are different.
CBCT uses 3D cone beam scanning instead of sector scan of
multi-slice CT to obtain 2D projection data. Then, CBCT
reconstructs the projection data obtained from different angles.
Although the use of X-rays is improved, scattered signals are
added, in turn causing the soft tissue resolution of CBCT images
to decrease and produce more strip or band artifacts. The
electron density is inaccurate and difficult to correct. Soft-
tissue visualization also is hindered by tissue/breathing motion
artifacts because of long (30–60 s) image acquisition. Therefore,
CBCT images need to be modified to meet the requirements of
clinical treatment (6).

Many correction methods are used for CBCT artifacts,
including hardware-based pre-processing (7, 8) and software-
in.org 2
based post-processing methods (9–12). Although these methods
have been proven to be able to eliminate artifacts and improve
image quality they cannot correct the HU values in CBCT
images, and comprehensively considering the calculation
amount and complexity of the algorithm, additional scanning
time consumption, and incidental increased radiation dose, and
clinical practicality is necessary. After consulting the literature,
two main methods based on image post-processing are currently
used for the correction of HU values in CBCT images. The first
method is the image registration-based method, mainly
including the deformation field registration and histogram
matching methods. Chevillard et al. used an elastic
deformation registration algorithm to establish the nonlinear
mapping relation between CBCT and CTsim, and the CT image
after registration not only had anatomical structure information
of CBCT but also accurate electron density of CTsim (13).
Derksen et al. improved the deformation field registration
method and constrained the deformation area by adding the
OAR contours acquired by the image segmentation method, to
improve registration accuracy between CBCT and CTsim images
(14). Abe et al. established the greyscale linear relation between
CBCT and CT images by the histogram-matching method to
correct Hounsfield unit (HU) values in CBCT images, and the
experimental results showed that CBCT images after histogram
matching could be applied to therapeutic plan formation of
cervical and prostatic cancer (15). Although this type of
method can correct HU information in the CBCT image, it has
high accuracy requirements for the image registration algorithm
and matching method, and the setting of an objective function is
also complicated. The second method is the pseudo-CT
synthesis-based method, which mainly includes machine
learning and deep learning-based synthesis methods. Yang
et al. proposed the alternate random forest method based on
an automatic context model to extract multiscale texture features
between CBCT and CT image pairs to establish nonlinear
mapping relations and save the data model. New CBCT images
were input into the trained model in the prediction phase to
acquire virtual CT images with CBCT anatomical structure (16).
Wang et al. used the fuzzy C-means clustering algorithm to
classify voxel points inside CBCT images and assign CT values to
voxel points according to weight information. Finally, they
synthesized complete pseudo-CT images and verified the
accuracy of HU values of pseudo-CT images from the aspect
of dosimetry (17). Nevertheless, regardless of whether image
registration or machine learning-based methods are used to
March 2021 | Volume 11 | Article 603844
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synthesize pseudo-CT images, strict alignment of voxel
information between CBCT and CTsim images must be
guaranteed and restricted by patient differences in bladder
filling degree or soft tissue deformation in different periods of
the scanning process. Acquiring CBCT and CT image pairs with
completely matched anatomical structures is very difficult
in practice.

To solve these problems, scholars have proposed the deep
learning-based cycle generative adversarial network (CycleGAN)
to synthesize pseudo images (18). Different from the traditional
GAN network, CycleGAN is a loop network consisting of two
GANs with mirror symmetry. The two GANs share two
generators and two discriminators. This network is constrained
by introducing a cycle consistency loss function to ensure that the
model can effectively learn the nonlinear mapping relationship
between unpaired image data in two image domains. Liang et al.
applied the CycleGAN network to a pseudo image synthesis task
between CBCT and CTsim images and verified the accuracy of
head and neck pseudo-CT images from the aspects of anatomical
structure and dosimetry, respectively (19). Kida et al. proved that
pseudo-CT images synthesized based on CycleGAN could be
applied to prostate cancer treatment. Compared with the
original CBCT, the image quality of the synthesized pseudo-CT
image showed a substantial improvement in HU values, spatial
uniformity, and artifact suppression. The anatomical structures of
the CBCT image were well preserved in the synthesized image
(20). However, these models are all applied to 2D CT image
synthesis tasks. Spatial and structural information will be lost if a
2D convolutional kernel is used. Furthermore, the greater the
number of 2D slices input into the network, the longer the model
training time. In addition, due to artifacts caused by various factors
in the CBCT image, the image quality will be degraded. Directly
using the CycleGANmethod to establish the mapping relationship
between CBCT and CT images would result in falsely synthesized
pseudo-CT images. Therefore, a 3D CycleGAN network carrying
residual connection and attention gates was proposed in this
study, and the gradient loss function was added into the
objective function to further improve the accuracy of the
synthesized CT images. The purpose of this study is to prove
that electron density and organ relative position of the pseudo-CT
images obtained based on improved CycleGAN are more accurate
than those obtained by other deep learningmethods. The accuracy
of pseudo-CT images is also verified in terms of anatomy and
dosimetry. The pseudo-CT images obtained by the new method
are proved to have more accurate electron density for dose
calculation. In this study, we also compared the pseudo-CT
images obtained by 2D CycleGAN and 3D CycleGAN to prove
the advantages of 3D network in the task of synthesizing pseudo-
CT images. To avoid GPU memory restrictions imposed on 3D
neural networks in training, the network was trained using a 3D
image block-based network computing model, which could
acquire abundant feature information while improving
computing efficiency. On the basis of the literature review, this
study is the first to use the 3D CycleGAN method to synthesize
the 3D pseudo-CT from the CBCT image of the pelvic region.
Frontiers in Oncology | www.frontiersin.org 3
MATERIALS AND METHODS

Data Acquisition and Image Processing
A total of 120 sets of CT-CBCT image pairs used for training and
prediction were obtained from 120 different patients. All image
data selected in this experiment were 3D volume data of cervical
cancer patients undergoing Volumetric Modulated Arc Therapy
(VMAT). Among them, 100 cases were used for fivefold cross-
validation to train the model, and the other 20 cases were used
for testing. The CT images used in the entire process were
obtained in the simulation stage, and the CBCT images were
obtained by the patients after one week of treatment. CT images
were acquired via an Optima CT520 device produced by GE
Corporation (United States). Scanning conditions were as
follows: tube voltage 120 kV, tube current 220 mA, image size
512×512×(102–119), and voxel spacing 0.9765×0.9765×3mm3.
CBCT was equipped for an infinity linear accelerator, which was
produced by Elekta Corporation (Sweden), was used to scan
patients who had already accepted treatment for one week.
Scanning conditions were as follows: tube voltage 120 kV, tube
current 20 mA, image size 410×410×(50–76), and voxel spacing
1×1×5 mm3. CycleGAN input did not need two-group data with
one-to-one registered voxel information. However, to improve
the efficiency of operation, facilitate the training of the model,
and reduce the interference of background voxel points outside
the imaging area on image synthesis, we performed rigid
registration based on bone landmarks on CT-CBCT image
pairs to be input into the network. Before the model training,
we also resampled the CT and CBCT images and preprocessed
them with bicubic interpolation. Voxel spacing of preprocessed
image data was unified as 1×1×1 mm3 and image size as
384×192×192. The minimum HU value of image data was
unified as −1,000. For the convenience of GPU memory and
acquiring refined image features, a complete 3D image was
divided into 32×32×32 small image blocks in the experiment
as input dimensions of the network model. During the
acquisition of the image blocks, step size was set as 16, and an
overlapping area occurred between adjacent image blocks,
thereby ensuring that all imaging content was distributed in
the image blocks and loss of image information was avoided.

Pseudo-Computed Tomography Image
Synthesis Based on 3D CycleGAN
The traditional GAN is unidirectional. CycleGAN used in this
experiment was a loop network consisting of one unidirectional
CBCT!CT GAN and another unidirectional CT!CBCT GAN.
The CycleGAN contained two discriminators, in which
discriminators 1 and 2 were used to judge the authenticity of
the CBCT and CT images, respectively. CycleGAN also included
two generators that were each used to generate pseudo-CT and
pseudo-CBCT images. By acquiring an input image from original
domain A, this model transmitted the input image to the first
generator in the form of voxel block, converted it into an image
block in target domain B, and reconstructed a complete image.
The generated image was also used as the input in the form of
March 2021 | Volume 11 | Article 603844
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voxel block to be transmitted into the second generator,
converted into an image block in original domain A, and
reconstructed into an output image. This output image must
be approximate to the original input image in gray level and
anatomical structure. Here, the nonlinear mapping relationship
between two unpaired image data is set. CBCT and CT images
served as input images of the original domain to train two
independent GAN networks. An association was established
through the cycle consistency loss function to constitute a
complete CycleGAN. Its overall network structure is shown in
Figure 1.

Generators and Discriminators of 3D
CycleGAN
A CNN with a residual connection has already been proven to
have excellent application effects in many image processing tasks
(21–23). This CNN expresses network output as a linear
superposition of nonlinear transformation of inputs through
identity shortcut connection. In comparison with a directly
connected convolutional neural network, ResNet directly
transmits feature information of the input network along the
shortcut, which can protect information integrity to a certain
degree, simplifying and clarifying the model learning goal and
solving the gradient missing problem in training (24). In
addition, the attention gate has been proven to be able to
complete the CBCT!CT image synthesis task well. The model
with attention gates uses attention coefficients to highlight image
regions with salient features and suppress the feature responses
of irrelevant regions during training, that is, effectively suppress
Frontiers in Oncology | www.frontiersin.org 4
the artifact regions in CBCT images. Interested readers can refer
to the paper by Liu et al. (25) on the detailed design of the
network with an attention gate. The generator used in this study
was a deep convolutional neural network similar to U-Net with
residual connection and attention gates, in which 32×32×32
patch voxel blocks in CTsim and CBCT image domains were
used as inputs of the synthesis direction of the two pseudo
images in the network. Before each skip connection, the network
with attention gates added a gating signal to the output of the
encoder and corresponding decoder under each resolution.
These signals were used to define the importance of image
features at different positions in 3D image space and readjust
the output features of the network layer. The patch blocks input
into the generative network first passed through three ConvBlock
blocks. ConvBlock consisted of two convolutional layers with a
step size of 1 and one convolutional layer with a step size of 2, in
which each convolutional layer included conv, BN, and LReLU
operations, and the padding was SAME. The output abstract
features passed through another three-group concatenate and
deconvolutional layers, and the inputs of each concatenate group
were the output of the previous convolutional layer and the
output after it passed through the attention gate module together
with its corresponding ConvBlock. Each deconvolutional layer
included deconv, BN, and LReLU operations. Step size was 2 and
the padding was SAME. Abstract features passed through the
remaining ResNet and convolutional layers of the generator,
aiming to enhance network nonlinearity. The dimensions of the
convolution kernel used in all network layers were 3×3×3. The
concrete network structure of the generator is shown in Figure 2.
FIGURE 1 | Total network structure of CycleGAN. It is a ring network composed of a GAN from CBCT to CT synthesis direction and a GAN from CT to CBCT
synthesis direction. CTps, pseudo CT obtained by generator1. CBCTps, pseudo CBCT obtained by generator2. CTcyc, pseudo CT synthesized again through the
cycle network. CBCTcyc, pseudo CBCT synthesized again through the cycle network.
March 2021 | Volume 11 | Article 603844
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Both discriminators of CycleGAN were conventional full
convolutional neural networks (FCN), which received patch
blocks in the CBCT and CT image domains as inputs,
respectively. Each discriminator contained four convolution layers
and three fully connected layers. Each convolutional layer included
convolution, BN, and LReLU operations. Dimensions of
convolution kernel were 4×4×4; step sizes were 2, 2, 2, and 1,
respectively; and padding was SAME. LReLU served as the
activation function in the first two fully connected layers, and the
Sigmoid activation function was used in the third fully connected
layer to acquire judgment results of the discriminator regarding the
authenticity of the input image. The result value was a probability.
Feature maps at all layers of the discriminator were 16, 32, 64, 128,
256, 128, and 1, respectively. The concrete network structure of the
discriminator is shown in Figure 3.

Loss Functions of 3D CycleGAN
The loss function of the CycleGAN network contains two parts:
generator loss and discriminator loss functions. The main task of
the discriminator is to distinguish real image data from pseudo
image data synthesized via a generator. According to the GAN
network structure of mirror symmetry, CycleGAN has
discriminators in two image domains, where discriminator 1 is
used to judge the authenticity of CBCT data. To calculate the loss
function, discriminator 1 includes two inputs and two
corresponding outputs. Discriminator 1 uses pseudo-CBCT
Frontiers in Oncology | www.frontiersin.org 5
image G2(XCT) generated by generator 2 as an input to obtain
output D(G2(XCT)) and real CBCT image YCBCT as another input
to obtain output D(YCBCT). Hence, the loss function of
discriminator 1 is defined as follows:

LD1
= LBCE(1,D(YCBCT )) + LBCE(0,D(G(XCT ))) (1)

where LBCE is the binary cross-entropy loss function, which is
defined in Formula 2. Z represents an input image data label, the
value of which is taken as 1 or 0 based on data authenticity. Z’

denotes the probability for the discriminator to predict the input
image as a real or pseudo image, and its value range is [0,1].

LBCE(Z,Z
0
) = −oN

i=1Zi log (Z
0
i) + (1 − Zi) log (1 − Z

0
i) (2)

Discriminator 2 is used to judge the authenticity of CT data. It
also includes two inputs and two outputs, and its loss function is
defined as follows:

LD2
= LBCE(1,D(YCT)) + LBCE(0,D(G(XCBCT ))) (3)

where YCT is a real CT image, and the corresponding output is D
(YCT). G(XCBCT) is a pseudo image generated by generator 1. The
corresponding output is D(G(XCBCT)), and the total loss function
of this discriminator is shown in Formula 4.

LD = LD1 + LD2
(4)
FIGURE 2 | U-Net network structure of generator with residual connection and attention gates.
March 2021 | Volume 11 | Article 603844
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The main task of the generator is to acquire pseudo image
data which is as approximate as possible to real input image data
in the aspects of gray level and anatomical structure, to perplex
the generator. The loss function of the generator includes
adversarial, cycle consistency, and gradient losses. For
generator 1, its adversarial loss is the binary cross-entropy
LBCE (1, D (G1(XCBCT))) of the probability for discriminator 2
to discriminate pseudo-CT image G1(XCBCT) generated by
generator 1 as a real image. The probability is 1. Similarly, the
loss function of generator 2 is binary cross-entropy LBCE (1, D(G2

(XCT))) of probability D(G2(XCT)) and 1.
In addition to the adversarial loss of classical GAN, the

CycleGAN network also has cycle loss (26). The network needs
to ensure that the generated image reserves the characteristics of
the original image. Thus, if one generator in the network is used
to generate a 3D pseudo image, then the other generator should
be used to recover the original input 3D image data as much as
possible. This process needs to satisfy cycle consistency. L1 loss
was used in this study as cycle consistency loss. Cycle consistency
losses of generators 1 and 2 are defined as follows:

Lcyc−G1
=o

N

i=1
jjG2(G1(XCBCT)) − XCBCT j2j (5)
Frontiers in Oncology | www.frontiersin.org 6
Lcyc−G2
=o

N

i=1
jjG1(G2(XCT)) − XCT j2j (6)

In addition, the L1 loss function used in the cycle consistency
loss will lead to image fuzziness, a gradient loss function was
added in this study to enhance 3D gradient similarity between
pseudo image data synthesized by the generator and real image
data so that the texture information of the pseudo image can
be as accurate as possible. Gradient loss functions LGL-CT and
LGL-CBCT are defined in Formulas (7) and (8), respectively.

LGL�CT = jj∇ G1(XCBCT )x −j j∇ XCTxjj2+jj

∇ G1(XCBCT )y −j j∇ XCTyjj2+jj

∇ G1(XCBCT )z −j j∇ XCTzjj2 (7)

LGL�CBCT = jj∇ G2(XCT )x −j j∇ XCBCTxjj2+jj

∇ G2(XCT )y −j j∇ XCBCTyjj2+jj

∇ G2(XCT )z −j j∇ XCBCTzjj2 (8)

In summary, the total loss function of the generator is as
follows:

LG = LBCE(1,D(G1(XCBCT ))) + LBCE(1,D(G2(XCT )))

+ l1LCyc−G1
+ l2LCyc−G2

+ l3LGL−CT + l4LGL−CBCT (9)

where l1=l2 = 10 and l3=l4 = 0.5.

Cross-Validation of the Trained Model
To validate the model’s performance, a fivefold cross-validation
technique was used for training and testing steps, where 100
cases are randomly partitioned into five groups. For each
experiment, four groups (including 80 cases) are selected for
testing the trained model. Once the model is trained, it is applied
to each test subject’s CBCT image to generate the pseudo CT.
Pseudo CT synthesized based on a 3D GAN with a U-Net
generator (CTunet-GAN) and 3D GAN with an FCN generator
(CTFCN-GAN) were selected as the control experiments to verify
the accuracy of the pseudo-CT images acquired based on the
improved CycleGAN (27, 28).

The accuracy of each subject’s pseudo CT and real CT was
evaluated using the voxel-wise mean absolute error (MAE)
calculated in the pelvic region:

MAE(CTreal,CTps) =
1
No

N

i=1
CTreal(i) − CTps(i)
�� �� (10)

where the N is the total number of the voxels in the pelvic region
of the CT. The CTreal is the real image scanned by a CT machine.
The CTps is the pseudo CT obtained based on the improved
CycleGAN. Another metric used to evaluate the prediction
accuracy of the model is the structural similarity coefficient
(SSIM). Its mathematical definition is as follows:
FIGURE 3 | Network structure diagram of discriminator based on FCN.
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SSIM =
(2mrmp + C1)(2drp + C2)

(m2
r + m2

p + C1)(d 2
r + d 2

p + C2)
(11)

µr and µp are the mean values of HU of real CT image and
pseudo-CT image, respectively, dr and dp is the variance of HU
values of real CT image and pseudo-CT image, respectively, drp is
the covariance, the parameters C1 = (k1L)

2 and C2 = (k2L)
2 are

two variables to stabilize the division with weak denominators, L
is the range of HU values in CT image. k1 = 0.01, k2 = 0.02. The
SSIM value range is [0,1], the closer the value is to 1, the greater
the similarity between the two images.

Evaluation
Dice similarity coefficient (DSC) (29) was used to evaluate the
accuracy difference between pseudo-CT images obtained by
different methods and CTgt images on multiple organs at risk. In
this study, the distinct curve-guided FCN proposed by He et al. was
used to segment the OARs in the pelvic region of the pseudo-CT
images and CBCT images (30). Segmentation accuracies of
bladder and uterus regions in the pseudo-CT images were
evaluated through DSC. The ground truth is the contour of the
bladder, uterus, rectum, and bone regions manually segmented on
the CTgt images. The overlapping ratio of OARs between pseudo-
CT images obtained through different algorithms and CTgt images
was calculated. An accurate segmentation result should have a
high overlapping ratio of organ volumes. DSC is defined as follows:

DSC =
2 LCTgt

∩ LCTps

���
���

LCTgt

���
��� + LCTps

���
���

(12)

where LCTgt
and LCTps

represent segmentation results of OARs in
real CT and pseudo-CT images acquired through different
algorithms, respectively. The closer the DSC value to 1, the
higher the similarity between OAR regions in pseudo-CT image
and the corresponding region in CTgt image.

Two quantitative measurement methods, namely, normalized
mutual information (NMI) (31), peak signal-to-noise ratio
(PSNR) (32), and were used in this study to evaluate the
accuracy of pseudo-CT images obtained through 3D and 2D
CycleGAN in anatomical structure.

The first quantitative index is NMI, which is used to evaluate
the similarity between pseudo-CT images acquired through
different methods and CTgt. Its expression is as follows:

NMI(CTgt ,CTps) =
2I(CTgt ,CTps)

H(CTgt) + H(CTps)
(13)

I(CTgt ,CTps) = H(CTgt)

− H(CTgt CTps) = H(CTgt) −H(CTps

�� ��CTgt)

(14)

I(CTgt,CTps) is the mutual information value between
pseudo-CT and ground truth CT images. H(CTgt) and H
(CTps) are information entropies. The closer the NMI value is
to 1, the better the image registration effect.
Frontiers in Oncology | www.frontiersin.org 7
The second quantitative index is PSNR, the formula of which
is as follows:

PSNR¼20 log10
MAXIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
XYZoX−1

x=0oY−1
y=0oZ−1

z−1 jIgt(x, y, z)−Ips(x, y, z)j2
q

0
B@

1
CA

(15)

In Formula (13), Igt and Ips denote CTgt and pseudo-CT
images, respectively. X, Y, and Z represent image sizes. MAXI is
the maximum gray value in the CT image. The greater the PSNR
value, the more approximate the synthesized pseudo-CT image
to the CTgt image.

Pseudo-CT images synthesized through different deep
learning methods and CT images acquired through registration
were imported into the Monaco planning system (Elekta,
Sweden), where the latter was selected as the ground truth
image for dosimetry verification. Three radiotherapists with
rich clinical experience jointly re-delineated PTVs and OARs
on a CTgt image and copied them onto pseudo-CT and CBCT
images. VMAT radiotherapy plans were prepared respectively on
CTgt and pseudo-CT images acquired through three deep
learning methods based on Monte Carlo algorithm. The dose
of the original 4500 cGy/25 F prescription was modified into the
new prescription dose 3600 cGy/20 F. Dose calculation was
implemented via the Monte Carlo algorithm based on the CTgt

image, and then the optimized plan was copied onto different
pseudo-CT images and CBCT image after conforming to clinical
requirements. To compare the difference between pseudo-CT
and CTgt images in the radiotherapy plan, the 3600 cGy
prescription dose with 95% PTV was used as the passing
criterion of the plan. The doses in PTV and OARs of cervical
cancer patients, which were obtained based on pseudo-CT and
CTgt images under the same optimization conditions of VMAT
treatment in the planning system, were compared. OARs
included bladder, femoral head, and small intestine. The main
dosimetry evaluation indexes included dose-volume histogram
(DVH), dose covering 98% of the PTV (D98%), mean dose
(Dmean), and dose to 2% of the PTV (D2%). In addition, based
on the dose distribution of CTgt, the pass rate of g analysis was
evaluated for the central level dose of pseudo CT obtained by
three methods (33). The parameter standard was 2%/2 mm (dose
difference 2%, distance difference 2 mm).
RESULTS

Evaluation of Anatomical Structure
As for anatomical structure verification, Table 1 provides a
summary of MAE and SSIM metrics computed based on the
real and different pseudo CT for each fold in the fivefold
validation. Compared with other GAN methods, the pseudo-
CT synthesized by the improved CycleGAN method proposed in
this study has higher accuracy, and its MAE value decreases and
SSIM value increases. This finding indicates that the results
obtained by CycleGAN with gradient information in the
March 2021 | Volume 11 | Article 603844
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unpaired CBCT and CT image synthesis tasks are closer to the
real CT images with higher quality.

The graphical results of CTgt image and pseudo-CT images
acquired through different deep learning methods in three axial
directions are presented in Figure 4. Here, CTgt was a CT image
after registration of CBCT and CTsim images. The specific
registration method has been clarified in the II. D.section.
Given that the 3D FCN-GAN method could largely acquire
pseudo-CT images (CTFCN-GAN), but its imaging quality was
poor, the resolution of soft tissues was low and the bone region
underwent deformations to different degrees. In comparison
with the former, a pseudo-CT image (CTunet-GAN) acquired
based on the 3D Unet-GAN method had a better effect, but
the skeleton region still experienced partial deformation and
some soft tissues were inaccurate. The pseudo-CT image
(CTCycleGAN) acquired based on the 3D CycleGAN method
was the most approximate to CTgt image in anatomical
Frontiers in Oncology | www.frontiersin.org 8
structure, and textures of soft tissues and organs in this image
were similar to those in the CTgt image. Figure 5 shows CT value
difference plots between pseudo-CT images acquired through
different deep learning methods and CTgt, where 5(a) shows the
CT value difference plot between CTgt and CTCycleGAN. Their CT
value difference in the soft tissue region was within 50 HU.
Figure 5B displays the CT value difference plot between CTgt

and CTunet-GAN, and 5(c) is that between CTgt and CTFCN-GAN.
CT values of the latter two pseudo-CT images were different
from those of CTgt in the skeleton and soft tissue regions to
different degrees. Table 2 presents the DSC measurement results
of 3D volume overlapping differences of ladder, uterus, rectum,
and bone regions between real CT and different pseudo-CT
images of predicted volume data of 20 cases. Different OARs in
CTCycleGAN and CTgt images had higher DSC values.

Figure 6 shows the comparison result of pseudo CT obtained
based on 3D and 2D CycleGAN. The pseudo-CT images
TABLE 1 | Metric results of MAE and SSIM computed between real CT image and different pseudo-CT images for fivefold cross-validation.

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

CycleGAN MAE 52.03 ± 4.26HU 50.69 ± 5.25HU 52.48 ± 4.42HU 51.27 ± 4.56HU 51.65 ± 3.97HU
SSIM 0.87 ± 0.02 0.86 ± 0.03 0.85 ± 0.02 0.85 ± 0.03 0.87 ± 0.03

Unet-GAN MAE 55.36 ± 5.42HU 56.33 ± 5.02HU 57.18 ± 5.23HU 57.22 ± 5.06HU 56.54 ± 5.58HU
SSIM 0.80 ± 0.03 0.82 ± 0.03 0.82 ± 0.02 0.81 ± 0.02 0.81 ± 0.02

FCN-GAN MAE 67.63 ± 5.49HU 65.36 ± 6.02HU 62.34 ± 6.35HU 62.97 ± 7.19HU 63.64 ± 7.87HU
SSIM 0.75 ± 0.04 0.74 ± 0.03 0.78 ± 0.02 0.79 ± 0.02 0.77 ± 0.03
March 2021 | Volume 11
FIGURE 4 | Comparison of the results of CTgt images and pseudo-CT images obtained based on different deep learning methods in the axial, coronal, and sagittal
directions. CTgt: The real CT images. CTCycleGAN: Pseudo CT obtained based on CycleGAN. CTunet-GAN: Pseudo CT obtained by GAN with U-net generator.
CTFCN-GAN: Pseudo CT obtained by GAN with FCN generator. MAE: mean absolute error. SSIM: structural similarity coefficient.
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synthesized by 2D CycleGAN are the result of training after
modifying the network layer of the 3D network and the loss
function to the 2D mode. Figure 6A is the real CT images.
Figures 6B, C show the 3D pseudo-CT images based on 3D
CycleGAN and 2D CycleGAN with interpolation reconstruction.
Figure 6D shows the CBCT images. Compared with the 2D
results, the organ structures in the pseudo-CT images are more
continuous in the Z direction. Table 3 shows the evaluation
results between pseudo-CT and real CT images based on 3D and
2D CycleGAN under NMI and PSNR measurement methods,
and the comparison results between CBCT and real CT images
are used as a reference. The numerical results indicate that,
compared with CBCT images, the HU values in pseudo-CT
images obtained by the two CycleGAN methods are closer to the
real CT images, but the 3D method is more accurate than the
2D method.

In addition, to prove the training effect of the gradient loss
function on CycleGAN, we use CycleGAN with gradient loss and
CycleGAN without it to perform pseudo-CT synthesis. The
result is shown in Figure 7. For the CycleGAN method
without gradient loss, the synthetic pseudo-CT image is
generally fuzzy, caused by the L2 Euclidean distance loss
function in the cyclic consistency loss function. In terms of
details, the difference in areas with large gray gradient changes
such as bones is more obvious, the edge information between
organs is blurred, and the overall skin contour of patients is not
accurate. Figures 7D, E also show that the improved CycleGAN
with gradient loss can obtain pseudo CT with more accurate
anatomical structure. In Figures 7D, E, the area with a bright
visual effect is the CTgt with a window range of (−600,600)HU,
whereas the area with a dark visual effect is the pseudo CT with a
window range of (−400,800)HU.
Dosimetric Evaluation
In terms of dosimetry verification, the cross-sectional dose
distributions of the treatment plan casting on CTgt,
CTCycleGAN, CTunet-GAN, CTFCN-GAN, and CBCT images for
Frontiers in Oncology | www.frontiersin.org 9
one of the testing patients were shown in Figures 8A–E. The
experimental results showed that the dose distribution difference
between CTCycleGAN and CTgt in overall PTV was minor, and the
dose distribution in the high-dose region of CTCycleGAN was
approximate to that of CTgt. PTV is a region that includes part of
the uterus, bladder, rectum, and other OARs. PTV is delineated
with reference to the RTOG 63 report. The dose in the
intersection region between the femoral head and PTV of
CTunet-GAN was deficient with inaccurate dose distribution.
Many high-dose regions were found in PTV of CTFCN-GAN.

CTgt is compared with pseudo-CT images acquired through
three methods in the DVH plot as shown in Figure 9, where the
solid line is a DVH plot of a radiotherapy plan prepared based on
patient CTgt image, and the dotted line is a DVH plot based on a
pseudo-CT image. Figure 9A shows a DVH difference plot
between CTCycleGAN and CTgt. Figure 9B displays a DVH
difference plot between CTunet-GAN and CTgt. Figure 9C is a
DVH difference plot between CTFCN-GAN and CTgt. The
overlapping degree of volumetric dose curves of multiple
OARs in the DVH plot between CTCycleGAN and CTgt was the
highest, and the volumetric dose curve difference in PTVs of
the two was also small. In comparison with CTCycleGAN, the
volumetric dose curve of OARs in the DVH difference plot
between CTunet-GAN and CTgt was different, the volumetric dose
curve of PTV and multiple OARs of CTFCN-GAN differed
considerably from that of CTgt, and the volume of its high-
dose region was also large. Figure 9D shows the difference of
DVH between CBCT and CTgt. Table 4 lists the comparison
results of dose indexes in PTV and OARs in the radiotherapy
plan based on four CT images and one CBCT image. The
average, maximum, and minimum doses in OARs and PTV in
the CTCycleGAN-based radiotherapy plan differed minimally from
those in CTgt-based radiotherapy plans. Figure 10 shows the
comparison result of g analysis (2%/2 mm) between the
radiotherapy plan based on three types of pseudo-CT images
and the radiotherapy plan based on CTgt images. We use 90% g-
pass rate as the standard. The bluer the dots in the difference
map, the smaller the dose difference between the two plans, and
A B C

FIGURE 5 | Results of HU values difference between CTgt and pseudo CT obtained by different deep learning methods. (A) HU values difference between CTgt and
CTCycleGAN. (B) HU values difference between CTgt and CTunet-GAN. (C) HU values difference between CTgt and CTFCN-GAN.
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the higher the overall g-pass rate. The three plans based on
CTCycleGAN, CTunet-GAN, and CTFCN-GAN had a g-pass rate of
97.0%, 93.7%, and 84.9% respectively, indicating that the dose
difference between the plans based on CTCycleGAN and CTgt was
the smallest.
Frontiers in Oncology | www.frontiersin.org 10
DISCUSSION

Pseudo-CT images acquired through deep learning methods
based on CBCT images have various advantages in clinical
radiotherapy and can solve the poor CBCT imaging quality of
TABLE 2 | DSC (%) measurement results of segmentation accuracy between real CT images and pseudo-CT images synthesized by three different methods.

Organ Method

CycleGAN Unet-GAN FCN-GAN

bladder 91.58 ± 0.45* 88.63 ± 0.51 87.83 ± 0.56
uterus 88.14 ± 1.26* 87.52 ± 1.60 85.31 ± 2.72
rectum 87.23 ± 2.01* 85.64 ± 2.33 84.39 ± 3.51
bone 92.59 ± 0.33* 89.57 ± 0.47 86.78 ± 0.58
March 2021 | Volume 11 | A
*Indicates significant improvement via paired t -tests (p < 0.05).
The bold is used to show the best performance.
A

B

C

D

FIGURE 6 | Comparison results of CTgt and pseudo CT obtained based on 3D and 2D CycleGAN. (A) real CT images(CTgt). (B) pseudo-CT images obtained based
on 3D CycleGAN. (C) pseudo-CT images obtained based on 2D CycleGAN. (D) CBCT images.
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soft tissues and the impossible direct correction of an adaptive
radiotherapy plan. In clinical ART, a CTgt image applied to plan
correction is acquired based on an image registration algorithm.
This method needs to set the corresponding objective function
according to the complexity of the registration region or
anatomical structure. The non-rigid registration method is time-
consuming for image registration tasks with complex texture
information. Given that the boundary between the soft tissues
of the CT(CBCT) image is not clear, the registration accuracy is
not accurate. The CycleGAN-based deep learning method can
construct the nonlinear mapping relationship between two image
domains by a multilayer convolutional neural network with high
Frontiers in Oncology | www.frontiersin.org 11
feature extraction effect and efficiency, so it can solve the
disadvantages of the deformation registration method.

According to comparative experimental results in the aspects
of anatomical structure and dosimetry, the FCN-GAN-based
method has unsatisfactory results in the skeleton region of
synthetic rigid structure and the soft tissue region of nonrigid
structure because paired data after registration are needed in
FCN-GAN training. Otherwise, data mismatching and distortion
can be easily caused. Moreover, the generator based on a fully
convolutional neural network only contains convolutional layers
without a shortcut connection of residual network, so it fails to
combine superficial-layer features with deep-layer features.
TABLE 3 | Metric results between real CT images and different CT images of 20 patients with cervical cancer.

Metric CT images

CTCycleGAN-3D CTCycleGAN-2D CBCT

NMI 0.90 ± 0.01 0.87 ± 0.02 0.79 ± 0.02
PSNR (dB) 30.70 ± 0.78 29.72 ± 0.59 27.15 ± 0.57
March 2021 | Volume 11 | A
CTCycleGAN-3D, pseudo-CT images obtained based on 3D CycleGAN; CTCycleGAN-2D, pseudo-CT images obtained based on 2D CycleGAN.
A B C

D E

FIGURE 7 | Results of pseudo-CT images obtained by adding gradient loss function and not adding it in CycleGAN. (A) CTgt. (B) pseudo CT obtained by CycleGAN with
gradient loss. (C) pseudo CT obtained based on CycleGAN without gradient loss. (D) The comparison result of (A, B). (E) Comparison result of (A, C).
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Consequently, the accuracy of model synthesis is degraded.
The Unet-GAN-based method has a better synthetic effect
than the former, but partial deformation still takes place in the
skeleton region and some soft tissues are also inaccurate because
preprocessed paired volume data are also needed for its training.
A pooling layer is included in the U-Net network, resulting in
losses of feature information of some anatomical structures.
Then, the HU value in the synthesized pseudo-CT image is
inaccurate. The improved CycleGAN network method proposed
in this study can acquire pseudo-CT images better. Compared
with a conventional GAN network only containing an
adversarial loss function, the CycleGAN carrying cycle loss is a
GAN synthetic network that contains two symmetrical mapping
relations (CBCT!CT and CT!CBCT). The cycle loss function
is L2 Euclidean distance between the input of the original image
domain and pseudo image output in the same image domain
acquired by twice feature transformation. Based on this
bidirectional feature transformation pattern, the model can be
trained without needing paired data (34). Owing to the existence
Frontiers in Oncology | www.frontiersin.org 12
of deformation and positioning set up errors of soft tissues to
different degrees, the image data of the same patient acquired in
different periods during the clinical radiotherapy are not the
same, but the CycleGAN network can train unpaired CBCT-CT
volume data to acquire pseudo image data, so it conforms to
clinical practical application. However, 3D volume data are rich
in feature information, so guaranteeing the accuracy of texture
feature information of synthesized images only through the
traditional loss function. Thus, the 3D gradient loss function
was added into the objective function in this study to reserve
detailed information of pseudo-CT images as much as possible.

An encoding–decoding pattern with a residual connection
is used for the generator of the 3D CycleGAN network. Under
this pattern, the output sharing the same dimensionality
with the input is acquired through down-sampling, feature
transformation, and up-sampling operations of the input
volume data. Redundant feature information in the image can
be compressed, to effectively extract image feature information
(35). This network will splice the output of the previous layer
FIGURE 8 | Dose distribution of radiotherapy plan based on four CT images at the isocenter level. (A) Dose distribution of CTgt at isocenter. (B) Dose distribution of
CTCycleGAN at isocenter. (C) Dose distribution of CTunet-GAN at isocenter. (D) Dose distribution of CTFCN-GAN at isocenter. (E) Dose distribution of CBCT at isocenter.
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A B

C D

FIGURE 9 | DVH comparison between CTgt and pseudo CT obtained by three different deep learning methods. (A) DVH difference between CTgt and CTCycleGAN.
(B) DVH difference between CTgt and CTunet-GAN. (C) DVH difference between CTgt and CTFCN-GAN. (D) DVH difference between CTgt and CBCT. The solid line is the
dose line of CTgt. The dotted line is the dose line of CTgt or CBCT.
TABLE 4 | Comparison of dose indexes of PTV and OARs in four CT images based on Monte Carlo optimization.

Plan Name Metric PTV intestine bladder Femur-L Femur-R

CTgt Dmax N/A 3,742.0 3,930.8 3,666.9 3,440.6
Dmin N/A 157.5 1749.3 478.1 406.7
Dmean 3,701.4 1,681.2 3,281.5 1,451.1 1,401.3
D98% 3,583.7 N/A N/A N/A N/A
D2% 3,819.1 N/A N/A N/A N/A

CTCycleGAN Dmax N/A 3,746.9 3,938.2 3,683.9 3,453.0
Dmin N/A 148.4 1,737.8 485.1 403.7
Dmean 3,721.1 1,678.6 3,296.1 1,438.3 1,407.3
D98% 3595.4 N/A N/A N/A N/A
D2% 3828.3 N/A N/A N/A N/A

CTunet-GAN Dmax N/A 3,753.4 4,001.5 3,758.6 3,455.3
Dmean 3,726.8 1,681.3 3,301.0 1,444.0 1,396.1
Dmin N/A 143.0 1,729.1 464.2 404.1
Dmean 3,726.8 1,681.3 3,301.0 1,444.0 1,396.1
D98% 3,601.7 N/A N/A N/A N/A
D2% 3,857.7 N/A N/A N/A N/A

CTFCN-GAN Dmax N/A 3816.3 4053.0 3792.0 3544.3
Dmin N/A 153.7 1775.9 501.8 417.9
Dmean 3,818.5 1,713.8 3,374.0 1,484.7 1,428.1
D98% 3,684.1 N/A N/A N/A N/A
D2% 3943.9 N/A N/A N/A N/A

CBCT Dmax N/A 3,861.9 4,056.5 3,840.2 3,604.8
Dmin N/A 162.6 1,808.1 506.7 417.0
Dmean 3,837.3 1,742.7 3,378.7 1,505.2 1,447.1
D98% 3,687.6 N/A N/A N/A N/A
D2% 3,974.0 N/A N/A N/A N/A
Frontiers in Oncology | www
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Dmax, maximum dose; Dmean, mean dose; Dmin, minimum dose; D98%, dose covering 98% of the PTV; D2%, dose to 2% of the PTV.
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with the output of the most adjacent convolution block before
each up-sampling layer. This residual connection mode ensures
integrating features of different layers during pseudo-CT synthesis.
When increasing the network depth, this mode can improve the
utilization efficiency of volume data features, acquiring accurate
pseudo-CT images. In addition, if the network is operated by using
3D volume data of global dimensions as the input, considerable
GPU video memory will be consumed, so parallel input mode
based on image block can help to extract additional local feature
information of the image while saving training time and reducing
video memory consumption (36).

All data adopted in this study were volume data of abdominal
cervical cancer patients. Relative to head and neck images,
abdominal images acquired in different periods could have
evident deformation changes in their internal soft tissues and
OARs. The accuracy and reliability of images generated based on
the CycleGAN could be better verified. Furthermore, the 3D
pseudo-CT image acquired based on a 3D training model had
spatial information in the Z direction, and it could not only be
applied to positioning verification but also to the correction of
radiotherapy plans. The pseudo-CT images synthesized by 2D
CycleGAN cannot guarantee the continuity of the Z direction.
Each layer is synthesized independently, leading to false
registration between the images in two image domains in the
2D image synthesis task, resulting in false pseudo-CT synthesis.
For example, establishing a mapping relationship between one
CBCT slice and multiple CT slices is possible. If the pseudo-CT
images synthesized based on 2D CycleGAN are not subjected to
image post-processing, the final reconstructed 3D images cannot
easily be used in clinical radiotherapy.

The pseudo-CT acquisition method based on 3D CycleGAN
also has limitations. Given that the network contains GAN
networks in two synthetic directions, the training speed is
lower than that of unidirectional GAN. A pseudo-CT image
with a satisfactory effect can be acquired only by multiple epochs.
In the subsequent experiment, patch image blocks of different
input dimensions will be adjusted by debugging hyperparameters
Frontiers in Oncology | www.frontiersin.org 14
of generators and discriminators, like learning rate, to elevate the
training speed. In addition, multiple regions of interest will be
divided according to density differences of OARs and different
objective functions will be set to realize stepwise pseudo-CT
synthesis, thereby further improving imaging quality of pseudo-
CT images in the aspect of local details.
CONCLUSION

An improved method of acquiring pseudo-CT images based on a
3D CycleGAN network with residual connections and attention
gates was raised in this study. In the aspect of anatomical
structure verification, the similarity degree of texture greyscale
information of pseudo-CT images obtained through the new
method with that of CTgt images was experimentally proven
higher in comparison with other GAN deep learning methods.
For the sake of dosimetry verification, the dose distributions
between radiotherapy plans prepared based on CTgt image and
those prepared based on pseudo-CT images acquired through
the improved method were approximate under the same
optimization conditions. Owing to its capability of eliminating
the disadvantages of CBCT images in practical clinical
application, the pseudo-CT image has outstanding application
prospects in adaptive radiotherapy of cervical cancer.
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