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Abstract: Background: Polycyclic aromatic hydrocarbon (PAH) metabolites have received increasing
attention because several of these organic substances are highly carcinogenic or mutagenic. Exposure
to PAHs is associated with many harmful health effects; however, we are not aware of any study that
has explored the exposure to PAHs and urinary conditions in the general population. The present
work aimed to investigate the correlation among PAH and urine flow rate (UFR). Method: Cross-
sectional data from the National Health and Nutrition Examination Survey (NHANES) 2009–2012
were used in our study. A total of 4172 participants and a total of nine PAH metabolites were
examined. The UFR was measured as the amount of urine excreted in a period of time (mL/h). Several
covariates were adjusted in linear regression models. Result: After adjusting for variables, the PAH
metabolites in urine showed a significant correlation with UFR. Dose-dependent associations between
PAH metabolites in the urine and UFR were also found. Higher quartiles of PAH metabolites in urine
exhibited higher regression coefficients. Conclusion: Our study highlighted that PAH metabolites
in urine had a strong association with decreased UFR in the US adult population. These findings
support the possibility that PAH exposure is related to bladder dysfunction. Further prospective
studies are warranted.

Keywords: polycyclic aromatic hydrocarbons; urine flow rate; bladder dysfunction; cross-sectional
data; National Health and Nutrition Examination Survey

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are nonpolar molecules that are composed
of more than two aromatic rings. PAHs are formed through incomplete combustion from
crude oil, wildfire, cigarette smoke and various industrial activities [1]. People can be
exposed to PAHs via breathing them in, absorption by the skin, and oral consumption. The
great majority of PAHs are excreted from the body through urination [2]. Over the last few
years, PAHs have received increasing awareness due to several of these organic substances
being highly carcinogenic or mutagenic [3,4]. Benzo(a)pyrene (BaP) causes a DNA adduct,
which has been associated with lung cancer [5]. The International Agency for Research on
Cancer (IARC) classified BaP as carcinogenic to humans (Group 1) [6] and classified naph-
thalene as possibly carcinogenic to humans (Group 2B). Although many PAHs, including
fluorene and phenanthrene, are undetermined due to a lack of investigations, exposure
to PAHs brings out many other potentially harmful effects on human health [7], includ-
ing oxidative stress [8,9], inflammation [10,11], cardiovascular disease [12,13], respiratory
disease [14], and poor fetal development [15]. A cross-sectional study revealed that PAH
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metabolites, such as 2-hydroxyfluorene, 3-hydroxyfluorene, and 3-hydroxyphenanthrene,
have a possible effect on rheumatoid arthritis [16]. Moreover, a recent study demonstrated
that total urinary PAH metabolites were dose-dependently associated with increased risk of
atherosclerotic cardiovascular disease [17]. In fact, there are 16 PAHs listed on the priority
pollutant list of the United States Environmental Protection Agency (US EPA) that need
strict monitoring [18]. The short-term effects of PAHs on human health have been revealed
to be exacerbated lung function [19] and thrombotic events in people who had coronary
heart disease [20]. The long-term effects of PAH exposure were identified as the cause
of multiple cancers, such as lung cancer [21], bladder cancer [22], and oral cancers [23].
However, we are not aware of any study that has investigated the possible relevance of
exposure to PAHs and urinary conditions in the general population.

The number of studies involving urine biomonitoring for chemical exposure assess-
ment has increased rapidly. In the past, urinary concentrations were considered to represent
the level of chemical exposure. For biomonitoring of PAHs, 1-hydroxypyrene is most com-
monly used as biomarker of exposure to PAHs [24]. However, due to the fact that humans
are exposed to a mixture of PAHs, the biomonitoring of other urinary hydroxylated PAHs
would give us a more comprehensive assessment of PAH exposure [25]. In fact, the
metabolites of urinary PAHs, including naphthalene, fluorene, phenanthrene, and pyrene,
are commonly presented as indicators of exposure to PAHs in several research [26,27].
Nevertheless, the random variation, including urine flow rate (UFR), may confound the
interpretation of the association between urinary concentration and health outcomes. Thus,
studies that depend on spot urine samples should consider collecting additional UFR
data [28]. The National Health and Nutrition Examination Survey (NHANES) begun col-
lecting data on UFR in 2009. UFR is measured with uroflowmetry, which is a noninvasive
and convenient way to reflect the hydration status and voiding condition [29]. The UFR is
regulated by the strength of detrusor contraction and the resistance of the bladder outlet,
and it appears to be a useful tool for excluding the presence of obstructive uropathy disease
in humans [30,31].

Even though many researchers have shown that a variety of PAHs metabolites influ-
ences the health status, little awareness has been given to the disclosure of the correlation
between exposure to PAHs and bladder function. The previous research has focused on the
causation of PAHs and bladder cancer. To date, no previous literature has discussed the
influence of PAH exposure to UFR. Thus, the purpose of our analysis was to attempt to find
the relationship between PAHs and UFR by analyzing the NHANES dataset of 2009–2012.

2. Materials and Methods
2.1. Study Population and Design

A total of 20,293 participants from the NHANES dataset of 2009–2012 were involved
in our study. NHANES is a continuing survey with a cross-sectional design. Noninstitu-
tionalized citizens in the USA are examined every year, and NHANES is performed by the
National Center for Health Statistics (NCHS). NHANES mainly consists of two parts. The
first part is interviews with participants at their homes. After agreement was provided
by the NCHS Ethics Review Board, every participant completed informed consent forms
and completed detailed questionnaires. In the second part, NHANES conducted examina-
tions, including laboratory analysis of biologic samples (blood, urine and tissue samples).
We excluded the participants with loss of data, such as biochemistry data, and so finally
4172 participants were included in our study (Table 1). All the data we analyzed in this
study were obtained from the website https://www.cdc.gov/nchs/nhanes/index.htm (the
NHANES dataset., accessed on 17 May 2021), including the urinary polycyclic aromatic
hydrocarbon metabolites, urine flow rate, and relevant covariates.

2.2. Measurement and Analysis of Polycyclic Aromatic Hydrocarbons

Urine samples were collected from the study participants in mobile exam centers
(MECs) and stored at −20 ◦C by trained professionals. Samples with visible contam-
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ination with bacteria or mold were rejected. A 0.2 mL sample is the minimum vol-
ume for the test. The methodological procedures included enzymatic hydrolysis of glu-
curonidated/sulfated urinary hydroxylated PAH metabolites, extraction using on-line solid
phase extraction, and separation and quantification using the method of isotope dilution
high-performance liquid chromatography–tandem mass spectrometry (HPLC/MS/MS).
The limit of detection for 1-hydroxynaphthalene is 48 pg/mL; for 2-hydroxynaphthalene it
is 40 pg/mL; and for the other OH-PAHs it is 10 pg/mL. The coefficient of variation for
each PAH metabolite was as follows: 2.8 to 4.9 for 1-hydroxynaphthalene; 2.4 to 6.3 for
2-hydroxynaphthalene; 4.5 to 8.5 for 3-hydroxyfluorene; 2.5 to 6.2 for 2-hydroxyfluorene;
0.7 to 5.8 for 3-hydroxyphenanthrene; 1.2 to 6.6 for 1-hydroxyphenanthrene; 1.1 to 4.3 for
2-hydroxynaphthalene; 5.0 to 11.7 for 1-hydroxypyrene; and 2.9 to 8.3 for 9-hydroxyfluorene.
The summary statistics and quality control chart of each OH-PAH and the whole procedure
was described in detail on the webpage of NHANES, Lab Methods for Monohydroxy-
Polycyclic Aromatic Hydrocarbons (https://wwwn.cdc.gov/nchs/nhanes/2011--2012
/PAH_G.htm, accessed on 17 May 2021). In this study, nine hydroxylated PAH metabo-
lites were examined in total, including 1-hydroxynaphthalene, 2-hydroxynaphthalene,
1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 2-hydroxyfluorene,
3-hydroxyfluorene, 9-hydroxyfluorene, and 1-hydroxypyrene.

Table 1. Characteristics of the study population (n = 4172).

Variables Percent or Mean (Range)

Continuous Variables, Mean (Range)

Age (years) 41.64 (6–80)
Aspartate transaminase (U/L) 25.90(7–733)

Creatinine (mg/dL) 0.89(0.16–7.33)
Glucose (mg/dL) 100.23(34–458)

1-hydroxynaphthalene (ng/mL) 26.47(0.05–16658.08)
2-hydroxynaphthalene (ng/mL) 7.94(0.13–181.35)

3-hydroxyfluorene (ng/mL) 0.27(0.01–6.39)
2-hydroxyfluorene (ng/mL) 0.57(0.01–15.07)

3-hydroxyphenanthrene (ng/mL) 0.12(0.01–6.68)
1-hydroxyphenanthrene (ng/mL) 0.20(0.01–7.48)
2-hydroxyphenanthrene (ng/mL) 0.10(0.01–3.26)

1-hydroxypyrene (ng/mL) 0.22(0.01–8.52)
9-hydroxyfluorene (ng/mL) 0.52(0.01–32.55)

Category Variables, (%)

Gender
Male 50.7

Female 49.3

Race
Mexican American 15.0

Other Hispanic 10.7
Non-Hispanic White 41.8
Non-Hispanic Black 21.4

Other 11.0

Congestive heart failure 2.5
Coronary heart disease 3.4
Angina/angina pectoris 1.6

Heart attack 3.2
Ever smoking 36.8

2.3. Assessment of Urine Flow Rate

Using uroflowmetry, UFR was measured as the amount of urine excreted in a period
of time (mL/h). The study participants had to document their last time of urination before
they came to the MECs. Then, they voided at the MECs where their urine amount and
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time of collection were recorded. The participants’ urine was collected more than two
times if their urine volume was not sufficient for analysis. The procedures regarding the
urine collection and management were recorded in the NHANES Laboratory/Medical
Technologists Procedures Manual (LPM).

2.4. Assessment of Covariates

Multivariable adjustment of demographic information, including age, sex, race, medi-
cal history, and biochemistry results, was performed in the study. Race was divided into
Mexican American, other Hispanic, non-Hispanic white, non-Hispanic black, and other.
History of heart disease was defined as the occurrence of congestive heart failure, coronary
heart disease, angina pectoris, and heart attack. Smoking status was defined as never
smoked or smoking at least 100 cigarettes during one’s lifetime. Aspartate aminotrans-
ferase (AST) was detected by the DxC800 with the enzymatic rate method; serum plasma
glucose was measured by the DxC800 with Beckman Oxygen electrode (glucose oxidase
method) from blood samples obtained from participants. The level of creatinine (Cr) was
detected by the DxC800 system with the Jaffe rate method (kinetic alkaline picrate) from
urine specimens. Standardized principles were used for all of the protocols and were
documented on the NHANES webpage https://wwwn.cdc.gov/nchs/nhanes/2011--2012
/BIOPRO_G.htm (accessed on 17 May 2021).

2.5. Statistical Methodology

Statistical Package for the Social Sciences version 18.0, for Windows (SPSS Inc.,
Chicago, IL, USA), was used in our study for analyses. Statistical significance was defined
as a p-value < 0.001. We used four models to adjust for the following variables: age, sex,
race, history of heart disease and smoking, plasma glucose, aspartate aminotransferase,
and creatinine. We defined Model 1 as the unadjusted model; Model 2 was adjusted for age,
sex, and race; Model 3 was adjusted for the same covariates as Model 2 and additionally for
the AST level, creatinine level, and serum glucose level; Model 4 was adjusted for the same
covariates as Model 3 and further for history of heart disease and smoking. We normalized
the distributions of the UFR with log transformation. The relevance of PAH metabolites
and log-transformed UFR was analyzed by linear regression. β coefficients were explained
as alterations in log-transformed UFR for each increase in the PAH metabolite level. PAH
metabolite levels were divided into quartiles to confirm if there was a dose-dependent
association between PAH exposure and decreased UFR by linear regression analysis.

3. Results
3.1. Characteristics of the Study Population

Our study included a total of 4172 people from NHANES from 2009–2012. The
characteristics of our study population are listed in Table 1. The average age of the
population was 41.64, ranging from 6 to 80 years old. A total of 50.7% of the population
was male. The laboratory biochemical levels of aspartate transaminase (U/L), creatinine
(mg/dL), and glucose (mg/dL) were 25.90 (ranging from 7 to 733), 0.89 (ranging from 0.16
to 7.33), and 100.23 (ranging from 34 to 458), respectively. Histories of congestive heart
failure, coronary heart disease, angina/angina pectoris, and heart attack were reported.
The correlation between quartiles of the PAH metabolites in urine and UFR is shown in
Figure 1.

3.2. Polycyclic Aromatic Hydrocarbon Metabolites and Urine Flow Rate

As presented in Table 2, PAH metabolites in urine showed a significant correlation with
UFR. Associations were discovered by linear regression analysis, and all PAH metabolites in
urine were associated with decreased UFR except 1-hydroxynaphthalene when unadjusted
and even when fully adjusted (all PAH metabolites except 1-hydroxynaphthalene, Models
1–4, p-value < 0.001). The β coefficients between PAH metabolites in urine and UFR
were as follows: 1-hydroxynaphthalene 0.000 (p-value = 0.023, 95% CI = 0–0 which does
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not contain 0), 0.000 (p-value = 0.060, 95% CI = 0–0 which does not contain 0), 0.000
(p-value = 0.057, 95% CI = 0–0 which does not contain 0), and 0.000 (p-value = 0.061, 95%
CI = 0–0 which does not contain 0) for Models 1–4, respectively; for the β coefficients and
p-values for the other PAH metabolites, please refer to Table 2.

Figure 1. Cont.
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Figure 1. The correlation between quartiles of the PAH metabolites, including (A) 1-hydroxynaphthalene,
(B) 2-hydroxynaphthalene, (C) 3-hydroxyfluorene, (D) 2-hydroxyfluorene, (E) 3-hydroxyphenanthrene,
(F) 1-hydroxyphenanthrene, (G) 2-hydroxyphenanthrene, (H) 1-hydroxypyrene, (I) 9-hydroxyfluorene, and UFR.

3.3. Dose-Dependent Relationship between Polycyclic Aromatic Hydrocarbon Metabolites and
Urine Flow Rate

Table 3 presents the dose-dependent effects of the PAH metabolites in urine and UFR.
For all PAH metabolites, the p-values were <0.001. This indicates that the dose-dependent
associations were significant between quartiles of PAH metabolites in urine and UFR.
With or without adjustment, higher quartiles of PAH metabolites in urine had higher
regression coefficients.
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Table 2. Associations between the PAH metabolites and urine flow rate.

Variables Model 1 a

B b (95% CI) p-Value Model 2 a

B b (95% CI) p-Value Model 3
B b (95% CI) p-Value Model 4

B b (95% CI) p-Value

1-hydroxynaphthalene 0.000 (0.000, 0.000) 0.023 0.000 (0.000, 0.000) 0.060 0.000 (0.000, 0.000) 0.057 0.000 (0.000, 0.000) 0.061
2-hydroxynaphthalene −0.017 (−0.020, −0.014) <0.001 −0.018 (−0.021, −0.016) <0.001 −0.018 (−0.021, −0.015) <0.001 −0.019 (−0.021, −0.016) <0.001

3-hydroxyfluorene −0.211 (−0.262, −0.159) <0.001 −0.248 (−0.299, −0.197) <0.001 −0.250 (−0.301, −0.199) <0.001 −0.274 (−0.328, −0.220) <0.001
2-hydroxyfluorene −0.128 (−0.156, −0.100) <0.001 −0.145 (−0.173, −0.117) <0.001 −0.146 (−0.173, −0.118) <0.001 −0.159 (−0.188, −0.130) <0.001

3-hydroxyphenanthrene −0.527 (−0.666, −0.389) <0.001 −0.614 (−0.752, −0.477) <0.001 −0.623 (−0.760, −0.486) <0.001 −0.630 (−0.769, −0.491) <0.001
1-hydroxyphenanthrene −0.545 (−0.648, −0.443) <0.001 −0.573 (−0.675, −0.472) <0.001 −0.584 (−0.685, −0.483) <0.001 −0.586 (−0.687, −0.484) <0.001
2-hydroxyphenanthrene −0.871 (−1.070, −0.673) <0.001 −0.987 (−1.183, −0.791) <0.001 −1.001(−1.197, −0.806) <0.001 −1.008 (−1.205, −0.810) <0.001

1-hydroxypyrene −0.267 (−0.339, −0.195) <0.001 −0.310 (−0.381, −0.239) <0.001 −0.318 (−0.389, −0.247) <0.001 −0.323 (−0.395, −0.251) <0.001
9-hydroxyfluorene −0.068 (−0.092, −0.043) <0.001 −0.074 (−0.098, −0.050) <0.001 −0.074 (−0.098, −0.050) <0.001 −0.074 (−0.098, −0.049) <0.001
a Adjusted covariates: Model 1: unadjusted; Model 2: Model 1 + age + gender + race; Model 3: Model 2 + AST + Cr + glucose, serum; Model 4: Model 3 + history of heart disease + history of smoking.
b β coefficients were interpreted as the change in the log-transformed urine flow rate for each increase in different PAHs.

Table 3. Association between quartiles of the PAH metabolites and urine flow rate.

PAH Metabolites
Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1

p for Trend
β

(95% CI) p-Value β

(95% CI) p-Value β

(95% CI) p-Value

1-hydroxynaphthalene (ng/L)

Model 1 −0.379 (−0.461, −0.297) <0.001 −0.380 (−0.462, −0.298) <0.001 −0.465 (−0.547, −0.383) <0.001 <0.001
Model 2 −0.392 (−0.473, −0.311) <0.001 −0.386 (−0.466, −0.305) <0.001 −0.494 (−0.573, −0.413) <0.001 <0.001
Model 3 −0.389 (−0.469, −0.308) <0.001 −0.383 (−0.463, −0.302) <0.001 −0.494 (−0.575, −0.413) <0.001 <0.001
Model 4 −0.389 (−0.469, −0.308) <0.001 −0.390 (−0.471, −0.309) <0.001 −0.521 (−0.606, −0.436) <0.001 <0.001

2-hydroxynaphthalene (ng/L)

Model 1 −0.358 (−0.438, −0.278) <0.001 −0.509 (−0.589, −0.429) <0.001 −0.657 (−0.737, −0.577) <0.001 <0.001
Model 2 −0.379 (−0.457, −0.300) <0.001 −0.555 (−0.633, −0.476) <0.001 −0.716 (−0.796, −0.637) <0.001 <0.001
Model 3 −0.378 (−0.456, −0.299) <0.001 −0.551 (−0.630, −0.473) <0.001 −0.715 (−0.795, −0.636) <0.001 <0.001
Model 4 −0.387 (−0.465, −0.309) <0.001 −0.569 (−0.648, −0.490) <0.001 −0.755 (−0.837, −0.673) <0.001 <0.001

3-Hydroxyfluorene (ng/L)

Model 1 −0.364 (−0.446, −0.283) <0.001 −0.467 (−0.549, −0.386) <0.001 −0.425 (−0.507, −0.343) <0.001 <0.001
Model 2 −0.396 (−0.475, −0.316) <0.001 −0.549 (−0.630, −0.469) <0.001 −0.529 (−0.611, −0.448) <0.001 <0.001
Model 3 −0.396 (−0.476, −0.317) <0.001 −0.553 (−0.633, −0.472) <0.001 −0.533 (−0.614, −0.452) <0.001 <0.001
Model 4 −0.398 (−0.478, −0.319) <0.001 −0.561 (−0.641, −0.480) <0.001 −0.582 (−0.669, −0.495) <0.001 <0.001

2-Hydroxyfluorene (ng/L)

Model 1 −0.460 (−0.539, −0.380) <0.001 −0.600 (−0.680, −0.519) <0.001 −0.583 (−0.663, −0.502) <0.001 <0.001
Model 2 −0.491 (−0.568, −0.413) <0.001 −0.678 (−0.756, −0.599) <0.001 −0.688 (−0.767, −0.608) <0.001 <0.001
Model 3 −0.490 (−0.568, −0.413) <0.001 −0.672 (−0.751, −0.593) <0.001 −0.687 (−0.767, −0.608) <0.001 <0.001
Model 4 −0.494 (−0.571, −0.416) <0.001 −0.685 (−0.764, −0.606) <0.001 −0.745 (−0.829, −0.660) <0.001 <0.001
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Table 3. Cont.

PAH Metabolites
Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1

p for Trend
β

(95% CI) p-Value β

(95% CI) p-Value β

(95% CI) p-Value

3-Hydroxyphenanthrene (ng/L)

Model 1 −0.339 (−0.420, −0.259) <0.001 −0.484 (−0.565, −0.404) <0.001 −0.579 (−0.661, −0.497) <0.001 <0.001
Model 2 −0.370 (−0.448, −0.292) <0.001 −0.546 (−0.625, −0.467) <0.001 −0.671 (−0.752, −0.590) <0.001 <0.001
Model 3 −0.377 (−0.455, −0.299) <0.001 −0.551 (−0.630, −0.473) <0.001 −0.677 (−0.758, −0.597) <0.001 <0.001
Model 4 −0.382 (−0.460, −0.304) <0.001 −0.561 (−0.640, −0.482) <0.001 −0.707 (−0.790, −0.625) <0.001 <0.001

1-Hydroxyphenanthrene (ng/L)

Model 1 −0.372 (−0.451, −0.293) <0.001 −0.546 (−0.625, −0.467) <0.001 −0.715 (−0.795, −0.636) <0.001 <0.001
Model 2 −0.382 (−0.459, −0.304) <0.001 −0.579 (−0.656, −0.501) <0.001 −0.756 (−0.834, −0.678) <0.001 <0.001
Model 3 −0.386 (−0.463, −0.309) <0.001 −0.593 (−0.670, −0.516) <0.001 −0.773 (−0.851, −0.656) <0.001 <0.001
Model 4 −0.389 (−0.466, −0.312) <0.001 −0.600 (−0.677, −0.522) <0.001 −0.785 (−0.863, −0.706) <0.001 <0.001

2-Hydroxyphenanthrene (ng/L)

Model 1 −0.364 (−0.444, −0.284) <0.001 −0.494 (−0.575, −0.412) <0.001 −0.599 (−0.680, −0.518) <0.001 <0.001
Model 2 −0.395 (−0.473, −0.317) <0.001 −0.561 (−0.641, −0.482) <0.001 −0.680 (−0.760, −0.600) <0.001 <0.001
Model 3 −0.407 (−0.485, −0.329) <0.001 −0.574 (−0.654, −0.495) <0.001 −0.696 (−0.776, −0.616) <0.001 <0.001
Model 4 −0.411 (−0.489, −0.334) <0.001 −0.582 (−0.661, −0.502) <0.001 −0.717 (−0.798, −0.635) <0.001 <0.001

1-hydroxypyrene (ng/L)

Model 1 −0.301 (−0.382, −0.221) <0.001 −0.460 (−0.541, −0.380) <0.001 −0.600 (−0.681, −0.518) <0.001 <0.001
Model 2 −0.347 (−0.426, −0.268) <0.001 −0.553 (−0.632, −0.473) <0.001 −0.713 (−0.794, −0.632) <0.001 <0.001
Model 3 −0.368 (−0.447, −0.289) <0.001 −0.571 (−0.650, −0.491) <0.001 −0.733 (−0.814, −0.652) <0.001 <0.001
Model 4 −0.370 (−0.449, −0.291) <0.001 −0.585 (−0.665, −0.505) <0.001 −0.765 (−0.848, −0.682) <0.001 <0.001

9-hydroxyfluorene (ng/L)

Model 1 −0.375 (−0.455, −0.294) <0.001 −0.474 (−0.555, −0.393) <0.001 −0.596 (−0.677, −0.514) <0.001 <0.001
Model 2 −0.390 (−0.469, −0.311) <0.001 −0.524 (−0.603, −0.444) <0.001 −0.660 (−0.740, −0.579) <0.001 <0.001
Model 3 −0.394 (−0.473, −0.316) <0.001 −0.521 (−0.600, −0.442) <0.001 −0.663 (−0.743, −0.583) <0.001 <0.001
Model 4 −0.401 (−0.479, −0.322) <0.001 −0.534 (−0.614, −0.454) <0.001 −0.689 (−0.771, −0.607) <0.001 <0.001

Adjusted covariates: Model 1: unadjusted; Model 2: Model 1 + age + gender + race; Model 3: Model 2 + AST + Cr + glucose, serum; Model 4: Model 3 + history of heart disease + history of smoking.
Independent variables: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-Hydroxyfluorene, 2-Hydroxyfluorene, 3 Hydroxyphenanthrene, 1-Hydroxyphenanthrene, 2-Hydroxyphenanthrene, 1-hydroxypyrene,
9-hydroxyfluoren, and 4-phenanthrene (ng/L). Dependent variables: urine flow rates (log mL/h). Definition of abbreviations: Q1 = Quartile 1, Q2 = Quartile 2, Q3 = Quartile 3, and Q4 = Quartile.
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4. Discussion

Urinary biomonitoring is an optimal method to assess exposure to numerous chemical
elements and metabolites. Because of individual exposure to PAHs through numerous
paths, including breathing them in, oral consumption, and absorption by the skin, the
amount of PAHs in vivo from the environment is difficult to estimate. By the time the PAHs
are absorbed into the body, they are mainly metabolized by cytochrome P450-dependent
monooxygenases (CYP1A1, 1A2, 1B1, and 3A4) to hydrosoluble metabolites and excreted in
urine [32]. Consequently, the urinary PAH concentration is frequently used as biomarkers
to evaluate a population’s current exposure to PAHs [33]. While 24-h urine samples are
preferred over spot urine samples, they are impractical for large-scale biomonitoring due
to the large amount of the samples and participant compliance issues [34]. Collection of
spot urine or first morning voids is an alternative method, but several variables should be
appropriately adjusted. NHANES examinations began to collect UFR data in 2009, which
entailed collecting urine sample from participants in the Mobile Examination Center (MEC),
leading to the evaluation of the total amount of substances excreted in a 24-h period [35].
Previous research has shown the dose-dependence between urinary concentrations of PAH
metabolites and the risk of bladder cancer [22]. However, our present work is the foremost
study to attempt to describe the correlation between PAH metabolites and UFR.

This study elucidates the strong relevance between PAH metabolites in urine and UFR
in multiple models. In addition, a dose-dependent relationship between PAH metabolites
in urine and UFR was found. In fact, no literature on the relationship between PAH
metabolites and UFR has been found to date.

A number of studies have indicated that PAH metabolites may lead to oxidative
stress and inflammation [8–11,36]. Several studies have shown that PAHs are ligands of
aryl hydrocarbon receptors (AhR), and are able to activate these receptors [37,38]. AhR
is a ligand-activated transcription factor that is located in the cytoplasm. Upon ligand
binding, the AhR complex translocates to the nucleus and a part of the AhR complex is
dissociated in the cytoplasm to stimulate c-Src activity, which is followed by activation
of mitogen-activated protein kinase signaling [39], contributing to induce the expression
of cyclooxygenase-2 (COX-2) and NADPH oxidase-2 (NOX-2), which increased reactive
oxygen species [40]. The representative PAHs of this possible effect is high molecular
weight PAHs, including BaP, benzo[k]fluoranthene, and indeno [1,2,3-cd]pyrene [41]. Ex-
posure to PAHs is positively associated with increasing levels of C-reactive protein and
leukocyte counts. In an exploratory data of 200 pregnant women, 2-hydroxynapthalene,
9-hydroxyphenanthrene, and 1-hydroxypyrene were found to have a significant association
to the inflammation markers [42]. In animal models, the importance of oxidative stress
has been investigated in many studies and correlated with bladder dysfunction [43,44].
Oxidative stress causes damage to both the bladder mucosa and muscular layer; more-
over, functional bladder disorders develop [45]. Oxidative stress probably underlies the
relationship between PAH metabolites and UFR.

Another possible explanation of this correlation may be atherosclerosis. Numerous
studies have reported that PAHs may deteriorate blood vessel conditions by causing
atherosclerosis [20,46,47]. A cross sectional study revealed that high levels of naphthalene,
fluorene, and 2-phenanthrene increased the risk of dyslipidemia [46]. In addition, another
recent study demonstrated that total urinary PAH metabolites were dose-dependent associ-
ated with increased risk of atherosclerotic cardiovascular disease [17]. In prior investigation,
2-hydroxynaphthalene, 2-hydroxyfluorene, 1-hydroxypyrene, and 1-hydroxynaphthalene
tend to exhibit estrogenic activity [47], which could induce adipocyte-fatty acid binding
protein (AFABP) released from adipocytes. The influence of AFABP on atherosclerosis is
based on their effect on macrophages [48]. Lipid metabolism in macrophages is changed
by AFABP, which facilitates the formation of foam cells and develops atherosclerosis [49].
Research on human subjects revealed that a genetic variation at the AFABP locus con-
tributes to decreased adipose tissue AFABP expression as well as lower serum triglyceride
levels [50]. In this aspect, adipocyte–fatty acid-binding protein was recently regarded as
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a biomarker to predict cardiovascular disease and the progression of atherosclerosis [51].
In the past few years, a causation between atherosclerosis and bladder dysfunction has
been identified [52,53]. The vesical arteries provide the blood supply of the bladder, and
atherosclerotic change in the arteries may influence the blood flow of the bladder, which
has a close relationship with bladder wall compliance [54]. The correlation between these
conditions suggests that exposure to PAHs may be responsible for bladder dysfunction.

Finally, neurotoxicity of PAH metabolites has been explored in many studies [55,56].
BaP induced neurotoxicity and its mode of action was found in a rodent research [57]. The
potential pathway may be the anti-acetylcholinesterase activity [58–60]. As far as we know,
cholinergic transmission is the major excitatory mechanism in the human bladder [61].
Neurologic impairment may be responsible for interfering with bladder smooth muscle
cells, contributing to decreased UFR.

As mentioned above, these findings might indicate possible mechanisms underlying
the association between PAH metabolites and UFR in our study. Dose-dependent asso-
ciations between PAH metabolites in urine and UFR were observed in our study. As we
are aware, this is the foremost study to demonstrate the dose-dependent effects of PAH
metabolites on UFR.

Several limitations should be mentioned in our study. The major concern is the study
design of NHANES is cross-sectional, preventing the determination of a causal relationship
between PAH metabolites and decreased UFR. Additionally, no assessment of detrusor
condition by cystometry was included in the dataset, so we cannot precisely infer the
influence of PAHs on the bladder. Another important limitation is that PAH metabolites
were examined for each participant using only one spot urine sample, which may not
provide enough information about long-term exposure to PAHs [62]. Finally, the medical
history of the patient may be influenced by recall bias.

5. Conclusions

Our study highlighted that PAH metabolites in urine had a strong association with
decreased UFR in the US adult population. In addition, dose-dependent effects were also
observed in our study. These findings support the possibility that PAH exposure is related
to bladder dysfunction. Further prospective studies on the association and the causes of
the association between PAH exposure and decreased UFR are warranted. Recognizing the
mechanism may be helpful to prevent or treat the toxicity related to PAH exposure.
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