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ABSTRACT: We introduce a new mixed resolution, all-atom/
coarse-grained approach (AACG), for modeling peptides in
aqueous solution and apply it to characterizing the aggregation
of melittin. All of the atoms in peptidic components are
represented, while a single site is used for each water molecule.
With the full flexibility of the peptide retained, our AACG
method achieves speedups by a factor of 3−4 for CPU time
reduction and another factor of roughly 7 for diffusion. An Ewald
treatment permits the inclusion of long-range electrostatic
interactions. These characteristics fit well with the require-
ments for studying peptide association and aggregation, where
the system sizes and time scales require considerable computa-
tional resources with all-atom models. In particular, AACG is well suited for biologics since changes in peptide shape and long-
range electrostatics may play an important role. The application of AACG to melittin, a 26-residue peptide with a well-known
propensity to aggregate in solution, serves as an initial demonstration of this technology for studying peptide aggregation.
We observed the formation of melittin aggregates during our simulations and characterized the time-evolution of aggregate size
distribution, buried surface areas, and residue contacts. Key interactions including π-cation and π-stacking involving TRP19 were
also examined. Our AACG simulations demonstrated a clear salt effect and a moderate temperature effect on aggregation and
support the molten globule model of melittin aggregates. As a showcase, this work illustrates the useful role for AACG in
investigations of peptide aggregation and its potential to guide formulation and design of biologics.

■ INTRODUCTION

Peptide association is key for the structural organization within
cells and for the proper functioning of biological processes1−7

with associating partners ranging from oligo peptides, globular
proteins, antibodies, and membrane proteins such as GPCRs.
Misassociation of proteins, particularly proteinaceous aggre-
gates,8 can cause diseases such asmad cow disease (bovine spongi-
form encephalopathy)9 and Alzheimer’s disease.10,11 Control or
disruption of peptide association is exploited by parasites,12−14

venoms,15−17 viruses,18−20 and drugs.21−27 Peptide−peptide
interactions also need to be considered when formulating
biologics, particularly with the recent trend of producing injectable
biologics formulations at high concentrations which can
suffer from high viscosity, aggregation, and precipitation.28−31

The underlying problem may be that at high concentrations con-
ventionally folded proteins can stick together or, more problem-
atically, peptides can unfold leading to aggregation. For the latter,
the aggregation has a greater propensity to be irreversible.
A range of experimental methods including size exclusion

chromatography,32 analytical ultracentrifugation,33,34 static light

scattering,35 dynamic light scattering,36 nanoparticle tracking
analysis,37 resonant mass measurement,38 circular dichroism,39

light obscuration,40 electrophoresis,41 NMR,42 and mass
spectrometry43 can be applied to study association and small-
scale aggregation of peptides in solution.44,45 Usually, specific
structural information on the nature of the aggregates is hard
to obtain or not available making a rational approach to
understanding and controlling aggregation difficult, if not
impossible. Additionally, issues such as evaluating shelf life
present significant challenges since problematic aggregation can
develop over periods of months. Instead of a rational approach,
experience-based trial and error or indirect methods such as
chemical or thermal denaturation are used to detect and assist in
resolving problems.
In principle, computer modeling can provide structural

information on peptide aggregates. For example, computation-
ally identified aggregation hot spots can be useful in identifying
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potential risks.46 Computer simulations of molecular systems,
including molecular dynamics and related techniques, can
provide structural information on the specific nature of the
molecular interactions involved in aggregation or increased
viscosity. This information can complement experimental
information in solving problems for formulating biologics.
A number of simulations of protein aggregation have been
performed ranging from fully atomistic simulations47−49 to
more simplified representations.50−53 Atomistic simulations can
represent the full flexibility of the peptides; however, these
calculations tend to be limited to smaller systems containing only
one or a few peptides and for durations much shorter than the
association lifetimes. Simplified representations for proteins in
solution, typically at a coarse-grained level, permit the simulation
of larger systems for much longer times and have been used
to understand the increased viscosity in concentrated peptidic
solutions.50−52 However, these approaches are limited in their
ability to represent protein flexibility and unfolding.
Mixed resolution simulations in which all of the atoms (AA)

or, in some cases, united atoms (UA, typically a single site
representing a heavy atom and the hydrogen atoms bonded
to it) for the peptide are embedded in a coarse-grained (CG)
environment may have a useful role to play by modeling peptide
flexibility while gaining increased efficiency, permitting
larger system sizes and longer simulations as compared to purely
atomistic models.54−66 Models of solvated peptides using
spherically symmetric water sites representing multiple mole-
cules have been published using Gromacs CG water61 or Martini
CG water57 in conjunction with established AA force fields.
Alternatively PACE uses a new effective UA force field60 for
the peptides designed to function well with Martini CG water.
All of these approaches truncate the potentials at a fixed distance.
These approaches offer large decreases in computer time as
compared to atomistic simulations. To improve the quality of the
results, both the Gromacs and Martini approaches have been
extended to include among other things dipoles57 and explicit
layers of all-atom waters between the proteins and CG
water62,65,67 to better mimic the general electrostatics of the
systems and the short-range solvent−peptide interactions. These
refinements do lead to improved results; however, they increase
the complexity and decrease the efficiency of the models.
A related approach using the WatFour model for water,68 which
represents 11 water molecules by a tetrahedron in conjunction
with atomistic models for water, has also been explored.64

Models in which a CG water site represents a single water
molecule can be accurate; however, the reductions in computer
time as compared to AA water are more modest. The MS-CG
approach69 uses force matching to develop such potentials
from atomic simulations, typically, on a system by system basis.
The AA/ELBA force field56,63 uses an AA force field for
the peptide combined with a CG model in which each water
molecule is represented by a Stockmayer particle (Lennard-Jones
potential + fixed dipole) which has been parametrized using
solvation thermodynamics and potentials of mean force. The
inclusion of dipoles in individual water molecules results in a
model that has a speed that is comparable to an all-atom model.
While great progress has been made, a number questions on

how the nature of the mixed resolution models impact the speed
and accuracy remain. The following questions are examples:

• What is a suitable representation for the peptides (AA vs
UA)?

• Is it necessary to develop new potentials for the peptides
in mixed all-atom/coarse-grained models or can well-
established, purely AA, potentials be adapted for such
studies?

• Can models with peptides solvated in simplified CG water
molecules approach the accuracy of purely AAmodels, and
if so, what detail in the solvent, including the number of
water molecules per site, is appropriate?

• Are explicit features, such as dipoles, needed to adequately
represent the electrostatic influence of the solvent or are
simpler dielectric treatments sufficient?

• Are truncated electrostatics adequate or are Ewald treat-
ments needed?

Melittin, a small peptide composed of 26 amino acids,
comprises about half of the peptide content in bee venom by
weight70,71 and is one of the most extensively studied peptides of
this size. In aqueous solution, melittin exists as a random-coil
monomer or a predominantly α-helical tetramer depending on
concentration, pH, and ionic strength. Wilcox and Eisenberg
proposed that secondary, tertiary, and quaternary structures of
melittin form simultaneously.72 The transition between a helical
tetramer and a random-coil monomer has been suggested as
a model for protein folding.72−74 Melittin is also known to
associate in membranes75,76 and is regarded as a model system
for understanding peptide interactions within membranes77

in addition to peptide association in solution.78 Given its size,
melittin lies at the transition between oligopeptide and small
protein. The large amount of experimental information available
makes melittin an excellent prototypical system to study, yielding
insights relevant to issues encountered for small peptidic
drugs and for protein aggregation using a relatively small protein
especially given that melittin is highly charged (+6), a char-
acteristic of many peptides in biologics. Melittin has been subject
to a number of simulation studies.79−91 Among these is a long
time scale atomistic simulation of melittin association91 in
aqueous solution, which demonstrated variations in aggregation
behavior with temperature and salt concentration. The stepwise
aggregation process and the tendency to form tetramers in
solution, at least under some conditions, were rationalized.
Herein, we present a new mixed all-atom/coarse-grained

model, which we refer to as AACG, and apply it to studying
melittin aggregation in pure water. Our goal is to closely
approach the accuracy attained by atomistic models for peptides
to model the detailed nature of peptide aggregation including
conformational variations and preferences while gaining the
efficiencies provided by coarse-graining to make these calcu-
lations more practical. In this model, we use an AA represen-
tation for the peptides withmany valence terms fromOPLS,92−94

while the nonbonded potentials were parametrized anew to
function well in a CG environment. While a UA model for the
peptide, such as that used by PACE, does reduce computational
costs, for biologics the great majority of the system is solvent,
which even when it is coarse-grained greatly reduces that speedup.
The general trend for single resolution detailed modeling of
proteins has been to use purely AA models to attain the most
accurate results. We use a relatively fine-grained representation of
water for a CGmodel, one molecule per CG site, in part to enable
detailed interactions between water and the peptide including
within environments in which specific water molecules can play a
role (e.g., when bridging peptide side chains or within binding
pockets). The combination of spherical water sites in an inhomo-
geneous environment with highly charged species poses challenges
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for calculating electrostatics. We use an inhomogeneous dielec-
tric treatment in which the charges for simple ions are scaled
using the dielectric constant for water, while the charges within
the peptides are scaled using a smaller dielectric constant (35% of
that for water). Additionally, in contrast to most CG models, we
use particle mesh Ewald95 as opposed to truncation to calculate
electrostatic interactions, a feature that may be important given
the highly charged nature of many biologics. This combination
of features is unique to our AACG model and provides a useful
perspective on the design considerations for such mixed
resolution models.
In the following, we present our simulation procedures

followed by an overall description of our AACG model for
melittin including its rationalization and functional form.
The speedup relative to AA systems will be characterized.
We then apply this model to the study of melittin aggregation
with variations in salt concentration and temperature, character-
izing the nature of the aggregation in both time and structure.
Following that, we summarize our results for melittin and suggest
further improvements that can be made to our AACG model
while highlighting its strengths.

■ METHODS
Simulation Protocols. For studying the behavior of

biophysical systems, constructing CG potentials that give the
right structure and volume at the same time can be challenging.
As a result, CG potentials are sometimes first constructed
exclusively for constant particle number, volume, and temper-
ature (NVT) ensemble simulations, where an appropriate
volume is predetermined96,97 so long as the CGmodel maintains
a small positive pressure. We are using this approach for the
current generation of AACG models. To obtain the appropriate
volume and to take advantage of existing AA tools, we first set up
and equilibrate an AA representation of the system using the
constant particle number, pressure, and temperature (NPT)
ensemble. This system is then converted into an AACG system.
The AA simulations are also used to provide some of the
information used in parametrizing the AACG potentials.
All of our AACG simulations were performed using the

Desmond/Maestro simulation package98−100 from the suite
2015-3 release. The AA model systems were constructed using
the system builder utility included with Desmond. We used cubic
simulation boxes with user-defined rather than automatically
determined sizes. Protocols for adding water and ions within AA
melittin systems, and the subsequent relaxation and simulation,
are available in the Supporting Information.
Conversion from an AA representation to an AACG

representation involves recognizing the components of the
system present, mapping the nonpeptide atoms onto coarse-
grained sites, determining the AACG site types for both the
peptidic atoms and nonpeptidic sites, and assigning interaction
parameters. Figure S1 depicts the atom types used, and Table S1
lists the masses used for the peptidic atoms and CG site types.
Normally, a newly converted AACG system is subjected to an

energy minimization before a simulation is started. For AACG
simulations, the initial velocities were selected by first randomly
sampling from the Boltzmann distribution followed by the
removal for any net center of mass motion of the system
as a whole. Our NVT ensemble AACG simulations used Nose ́
Hoover thermostats101,102 with time constant τT = 1 ps. Produc-
tion simulations used time steps of 2 fs for valence, Lennard-
Jones, and real space Ewald terms, while 6 fs was used for the
reciprocal space Ewald calculations. These are the same values

used for AA simulations because the fastest motions are related to
the valence potentials of the protein which are generally similar.
The simulations reported in this article contained 1, 4, or 20

melittin molecules. Since the folding time for melittin monomers
from a random conformation may be longer than what we
can easily simulate, unless otherwise noted, simulations were
started from monomer conformations from the crystal structure,
2MLT,103,104 which is predominantly α-helical.

Functional Form for AACG Potential. The AACG
potential has a form that is, in part, an adaptation of the AA
potential functional form used by the OPLS force field92 and
encompasses valence and nonbonded terms. As with the OPLS
force field, the valence terms include the following:

= −V r K r r( ) ( )s ij s ij 0
2
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for stretch, bend, and torsion contributions, respectively. Here, rij
is the distance between atoms i and j; θijk is the angle formed by
atoms i, j, and k; φijkl is the dihedral angle formed by atoms i, j, k,
and l;Ks,Kb,Ktm, r0, and θ0 are constants that depend on the types
of atoms involved in the interaction.
AACG potentials retain these valence terms among peptidic

atoms. In the current study, the species in the environment,
water, and simple ions are represented by single sites, so no
valence terms are needed for these components. The parameters
used for these valence potentials are largely the same as in the
OPLS2005 force field,93 although adjustments have been made
to many terms especially for torsions. Tables S2, S3, and S4 list
the stretch, bend, and torsional parameters used in the AACG
model for melittin.
To permit flexibility during AACG model development, we

decided to use a nonbonded potential of the form
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where the cn terms are constants. This potential can encompass
the normal OPLS Coulombic and Lennard-Jones terms as well
as more complex multiwell potentials sometimes used in CG
force fields. AACG potentials do not use combining rules for
nonbonded interactions, so all nonbonded interactions need
to be parametrized. These potentials are truncated at 12 Å.
No correction for average dispersion is used in common with
some other CG approaches,96,97,105 and hence, the potentials
are fit consistent with the particular cutoff distance used.
Other cutoff distances should not be used with these potentials.
The current approach is focused on fairly fine-grained CG
models for the solvent. For coarser-grained models, it may be
necessary to adjust the cutoff distance. The parameters in eq 1 for
the nonbonded potentials are listed in Table S5.
The AACG potential retains the pairwise Coulombic and

12−6 Lennard-Jones potentials92 used in OPLS force fields
for atoms separated by three bonds, sometimes referred to as
1−4 interactions
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where Aij and Cij are constants that depend on the types of
the two interacting atoms i and j; qi and qj are the charges on
these atoms; and ϵ0 is the vacuum permittivity. The AACG 1−4
potential parameters are listed in Table S6.
In AACG simulations, as for AA simulations, hydrogen atoms

within the protein were constrained using SHAKE.106,107

See Table S7 for a list of the types of bonds restrained and the
bond lengths used.
AACG Potential Parametrization. The overall para-

metrization process is described in more detail in the Supporting
Information. Here, we focus on the main points that may
influence other parametrization efforts. Although the focus of
this article is on melittin, the development of the AACG model
was based upon many systems including pure POPC
membranes, globular proteins, a transmembrane protein, and
small peptides. The performance of the AACG force field on this
broader class of systems will be documented in a separate article.
We elected to use the force-matching method to generate

initial AACG potentials.69,108,109 Simulations using these
potentials rapidly displayed distortions in the protein structures.
As a result, we elected to make incremental changes to the
potentials. Several hundred cycles of adjustment, each of which
typically involved more than one type of interaction within the
CG region and between the AA and CG regions, eliminated the
most extreme distortions; however, it became clear that to obtain
better quality results the potentials between the AA portions of
the system also needed to be adjusted. The process of improving
the results for the AA portions of the system showed that
adequate matching of radial distribution functions for topolog-
ically distant interactions did not necessarily lead to good local
conformations as evidenced by poor Ramachandran plots for
some residues, poor side chain dihedral distributions, and in
some cases, excessive, topologically local, hydrogen bonding.
As a result, the potential parameters affecting dihedral angle
distributions, the coefficients in dihedral angle potentials, and
those for 1−4 interactions were adjusted. In some cases, contacts,
typically involving hydrogen bonding between polar side chain
groups and topologically local backbone N−H or CO groups,
were still too frequent as compared to both the crystal structures
and the corresponding AA simulations. In these cases, extra
terms were added to the list of 1−4 interactions even though the
atoms were more than three bonds apart. Please see Table S8 for
a complete list of these interactions. These extra terms are local
correction terms and are applied in addition to the general
nonbonded interactions between these atoms.
During the process of adjusting the potentials for all of these

systems, it was clear that truncation of the Coulomb potentials
even with shifting the net potential to 0 at the cutoff was
problematic for two reasons: The slope of the Coulombic
potential is large out to long distances, and interactions beyond
the cutoff distance matter. This problem was resolved in three
stages. In the first, we essentially replaced the direct Coulomb
contributions in the nonbonded potentials with just the real
space part of the Ewald sum, something quite similar to the Wolf

approximation which has proven to be fairly effective at repro-
ducing the energetics and dynamics of a number of systems.110,111

In the second stage, we also included longer range effects by
turning on the Fourier space terms via a PME treatment.95 These
terms use the atomistic charges from the OPLS2005 force field
for the protein and formal charges on ions in solution. However,
since our water model does not inherently include the dielectric
constant of water, we reduced the magnitude of the charges
provided to the PME terms by the temperature-dependent bulk
dielectric constant of water as given by

=
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where Tc and T are the temperature in °C and K, respectively.
Here, ϵr(T) is the relative dielectric constant of water as a
function of temperature112 resulting in a temperature depend-
ence in the effective charges, qi

ef f(T). Similar introductions of
Ewald (including PME) electrostatics have been used in previous
CG studies.96,97,113 While this scaling of the reciprocal space
terms may appear inconsistent with not explicitly screening
the shorter range real space potentials, we note that many of
these had been dramatically reduced as part of our iterative
adjustments so that they inherently include effective short-range
screening due to water. In the third stage, given that there is
evidence that the effective dielectric constant within the peptide
is smaller than that for water,114 we scaled the charges in the
peptides used in the Fourier space portion of the PME
calculation by a different, dielectric constant, 35% of that for
water. Interestingly, even though significant adjustments had
been made to the potentials before and between these three
stages, there was a near universal reduction in the RMSD of the
Cα atom coordinates relative to the crystal structures for the
peptides used in parametrization with each of these stages.
Additional iterative adjustments were made to the potentials
after these changes to the electrostatic potential.
Overall roughly 1000 cycles of adjustment were employed to

obtain the potentials used in the current study. Aside from the
scaling and including the electrostatic real-space terms in the
nonbonded potentials, the majority of the nonbonded poly-
nomial potentials have been modified. By comparison, changes
to the valence terms involved less than 10% of the torsional
potentials and less than 5% of the 1−4 interactions along with the
addition of another approximately 2.5% of the terms, repre-
senting the more topologically distant pair interactions treated in
the samemanner as 1−4 interactions. Most adjustments involved
reducing or correcting the interactions of atoms with larger
charges with the solvent or with each other. The final potentials
needed for themelittin simulation are provided in the Supporting
Information.

Table 1. System Size and Simulation Speed (ns/day) for a 10 mMMelittin System Containing 4 Melittin Molecules, 24 Cl− Ions,
and 20,762 Water Molecules Simulated at 310 K for both AA and AACG Representations

AA AACG ratio AACG/AA

number of atoms or sites 64,054 22,530 0.352
1 × 2.2 GHz AMD Opteron processor 0.335 (ns/day) 1.35 (ns/day) 4.03
8 × 2.2 GHz AMD Opteron processors 2.85 (ns/day) 10.2 (ns/day) 3.58
1 NVIDIA GeForce GTX 780 GPGPU 27.5 (ns/day) 86.7 (ns/day) 3.15
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■ RESULTS
Computational Speed. The main motivation for coarse-

graining in molecular simulations is to increase the amount of
time simulated per unit of computer or wall clock time. AACG
simulations attain a reduction in CPU time for a model involving

CG sites due to the relatively small number of atoms mapped
onto each CG site for only a portion of the system. The retention
of the normal masses and fast local motions in the portions of the
system represented atomistically means that with the current
approach we must use the same time steps for AA and AACG

Table 2. Systems Simulateda

number of molecules (concentration)

system label melittin water NaCl temperature (K) time (ns)

1melXtal 1 11,092 0 310 200
1melRandom 1 11,071 0 310 200
4melXtal 4 21,050 0 310 200
20mel283 20 (10 mM) 105,031 0 283 200
20mel310 20 (10 mM) 105,031 0 310 200
20mel330 20 (10 mM) 105,031 0 330 200
20mel283NaCl 20 (10 mM) 102,530 189 (100 mM) 283 200
20mel310NaCl 20 (10 mM) 102,530 189 (100 mM) 310 200
20mel330NaCl 20 (10 mM) 102,530 189 (100 mM) 330 200

aIn all cases, six Cl− ions for each melittin molecule were also included to maintain overall charge neutrality.

Figure 1. Aggregation of melittin during the 200 ns course of the “20mel310NaCl” simulation at the top. Sequential snapshots of the entire system,
labeled with the simulation time in ns, are depicted. The outline corresponds to the simulation box which is cubic with sides 149 Å in length. NaCl and
most of the water present in the simulation are omitted from these images to focus on the behavior of melittin. Most monomers are depicted with blue to
mauve colors; however, four monomers that eventually form one aggregate are drawn with brighter colors: yellow, green, red, and cyan. These four
monomers are also depicted in close-up at the bottom with all other monomers hidden. Despite starting out widely separated, first contact between any
of these monomers, the green and yellow molecules, occurs at 2 ns. By 3 ns, the other pair of molecules, red and cyan, has come into contact, and soon
thereafter contact between the red and yellow molecules results in the initial formation of the tetramer. The structure of this aggregate progressively
becomes more compact as the simulation proceeds.
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simulations. Table 1 gives the relative speeds for AA and AACG
simulations of the samemelittin system. Overall the speedups are
3.6−4 on CPUs and 3.15 on GPGPUs for melittin, values which
are similar to those obtained for globular proteins and for a
GPCR embedded in a membrane.
CG potentials often yield artificially faster dynamics.67,97,115

For the AACG model, the diffusion rate for a melittin monomer
alone in water with 100 mM NaCl is 2.5 ± 0.4 × 10−9 m2/s,
which is 7.2 times faster than in the corresponding AA system,
3.4± 0.6× 10−10 m2/s. This artificial speedup can be problematic
if one is interested in detailed kinetics; however, if one is
interested in attaining equilibrium, then it can be helpful since
the simulation is effectively proceeding faster than it would
otherwise. The effective overall speedup can be regarded as the
product of the increase in the amount of time formally simu-
lated per unit of CPU time and the increase in the speed of the
relevant process for the system being studied. For instance, if one
simulates an isolated protein, then the overall speedup will be
close to that from the reduction in computer time needed
(a factor of 3−4) with little benefit from faster diffusion.
However, if the phenomena of interest depend on diffusion, such
as the association of melittin molecules leading to aggregation in
the current study, then the speedup is closer to 22.
Melittin Simulations Performed. We performed simu-

lations of melittin for the systems listed in Table 2. All simula-
tions are 200 ns in duration. We do not adjust time scale reported
in this paper for the 7 times faster diffusion rate of melittin
in water as is sometimes done for coarse-grained models.
For simulations with multiple melittin molecules, this factor
suggests an upper bound of ≈1.5 μs on the actual time simu-
lated. The techniques used for analyzing these simulations are
described in the Supporting Information. The two simulations
with a monomer were primarily to explore the solvent-accessible
surface area for individually solvated melittin molecules starting
from two very different conformations, one with a high initial
α-helical content from the melittin crystal structure (2MLT) and
the other with a low initial α-helical content (prepared by a short
simulation at a high temperature) to provide independent checks
onmonomer characteristics. Simulations starting from a tetramer
extracted from the crystal structure (2MLT) were performed
using the AACG, OPLS2005, and OPLS3 force fields to provide
an assessment of the quality of the AACG force field for melittin.
Given that melittin is believed to form aggregates consisting
of approximately 4 monomers, we elected to use simulations
containing 20 melittin molecules permitting the study of a
number of separate aggregates. As the concentration of melittin
in the simulation box is lowered, more solvent needs to be
included resulting in a larger simulation box. We chose to use a
melittin concentration of 10 mM, which is on the higher end of
the range of concentrations used in experimental studies, while
being near the lower bound of melittin concentrations that we
can practically simulate. The melittin monomers (10 from chain
A and 10 from chain B of 2MLT) were manually placed at well-
separated positions in a simulation box and with orientations that
are not parallel to nearby monomers, as depicted in Figure 1 at
0 ns. We followed the time evolution of the size distribution of
melittin aggregates for three different temperatures each with
and without 100 mM salt. The methods used to analyze these
simulations are described in the Supporting Information.
Melittin Tetramer Characterization. To compare the

AACG force field results with those produced by all-atom
force fields, we also ran equivalent simulations of “4melXtal”
(a solvated melittin tetramer starting from the crystal structure)

using the all-atom force fields, OPLS3, and OPLS2005. Figure 2
shows the secondary structure profile per residue as well as
the secondary structure content averaged over all residues.
The starting structure of melittin (taken from 2MLT) is highly
ordered with 90% α-helical content. Previous NMR studies
have shown that melittin tetramers in aqueous solution consist
of two helical segments (residues 2−11 and 13−23) and have an
unstructured C-terminal region.116 Melittin tetramers in our
AACG simulations have two helical segments and follow a
per-residue secondary structure profile similar to the one we
observed in the OPLS3 (all-atom force field) simulation. Melittin
tetramers in OPLS2005 (another all-atom force field) simu-
lations are less ordered. AACG gives an overall % helicity (57%)
which compares favorably with the experimentally measured %
helicity of melittin tetramers in aqueous solution, about 60%.73

The buried surface area (Figure 3) and contact (Figure 4)
profiles from the AACG simulation are similar to those observed
in OPLS3 and OPLS2005 simulations, with the exception of the
C-terminal residues (23−26) which are known to be unstruc-
tured in aqueous solution.116

Riniker et al.61 found a large increase (41%) in the total
number of intraprotein hydrogen bonds when a supramolecular
coarse grain solvent (four water molecules are represented by
one CG site) was used to solvate an all-atom protein as opposed
to when an AA solvent is used. We integrated the radial distri-
bution function between polar hydrogens and hydrogen bond
acceptors involving only melittin atoms (PHA) for the four

Figure 2. Percent helicity by residue number in melittin for simulations
starting from the tetramer from the crystal “4melXtal” using (a) AACG,
(b) OPLS3, and (c) OPLS2005 force fields averaged over the second
half of the simulations (100−200 ns). For comparison, the % helicity
from the tetramer in the crystal structure is given in panel (d). The
overall helicity (averaged over all residues) is given at the top right
corner of each plot. The analysis of the simulations gave 0% β-strand
content in all cases.
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systems corresponding to (a) through (d) in Figure 2 to obtain
comparable information on polar hydrogen contacts from our
simulations. The results are described in detail in the Supporting
Information. Our PHA counts are also higher for the AACG
model relative to the OPLS3 (5.6%) and OPLS2005 (28%)
simulations, although these increases are smaller than found by
Riniker. Interestingly, the PHA count for our AACG simulation
is lower (−3.9%) than that for the tetramer in the crystal.
Aggregation Events Examined Using Snapshots. The

evolution of the entire “20mel310NaCl” system as a function of
time is depicted in Figure 1 (top). The simulation started from a
configuration with the monomers dispersed throughout the
cell without intermelittin contacts. The formation of aggregates
proceeds quickly with the initial intermolecular contacts being
established within 1 ns. Within 8 ns, nearly all of association
events observed within the 200 ns simulation have occurred.
In Figure 1 (bottom), we follow the evolution of four monomers
that eventually form one aggregate. The tetramers observed in
our simulations are dynamic, internally disordered, and on average
more bent than in crystalline tetramers. They show amphiphilic
folded structures but are less compact than crystalline tetramers
(Figure S2). After monomers come into contact to become a
member of an aggregate, they rarely separate.
Salt and Temperature Effects on Aggregation. Time

evolution of size distribution of melittin aggregates, under four
different conditions, is shown in Figure 5. Nearly all aggregation
events happen in the first 10−30 ns for the systems containing
20 melittin molecules as compared to a recently published AA
simulation study of the aggregation of 4 melittin molecules with
events occurring on time scales longer than 200 ns,91 illustrating
the effect of the higher diffusion coefficient in AACG models.
Figure 6 shows the distribution of melittin counts among the
different sizes of aggregates at the end of the simulations (200 ns)
for all six simulations with 20 monomers. The presence of salt
clearly enhances aggregation, leading to the formation of larger
aggregates at all three temperatures studied. Since the addition of
salt should screen the net electrostatic repulsions between the

highly positively charged melittin monomers, this shift to larger
aggregates with the addition of salt is expected. Figure 6 also
displays a weak tendency to form larger aggregates as the tem-
perature is lowered, both with and without added salt. This trend
makes sense as higher temperatures should favor states with
more disorder and thus smaller aggregates. Similar trends were
noted in the aggregation of four melittin molecules in a recently
published study using an AA model,91 although in the current
study, we observe the formation of some aggregates containing
five melittin molecules.

Buried Surface Area. To better understand the nature of
melittin aggregates, we examine residue-based properties
including buried surface area (Figure 7), solvent-exposed surface
area (Figure S3), and number of inter- and intrachain residue
contacts (Figure 8) for the least aggregating condition (330 K
without salt, “20mel330”) and for themost aggregating condition
(283 K with NaCl, “20mel283NaCl”). For comparison, the same
analysis is performed on a melittin tetramer extracted from
the crystal structure. Since TRP19 has been identified as a key
residue for characterizing aggregation, we examine a breakdown
of its contacts with other residues (Figure 9) as well. For the
averaged buried surface area per residue in Figure 7, we plot time
averages over all monomers for 0−10, 50−100, and 100−200 ns.
Here, 0−10 ns represents the early-to-midstages of aggregate
formation during which 80% or more of the monomers come
into contact and aggregate growth proceeds (Figure 5). The
buried surface areas for 0−10 ns are distinctly lower than those
for 50−100 ns, which in turn is quite similar to those for
100−200 ns. So the melittin aggregates seem to be mature
throughout the second half of our simulations, and we will omit
the 50−100 ns in subsequent discussions.
In the crystal structure of a melittin tetramer (Figure 7), ILE2

and TRP19 have the highest buried surface areas. Hydrophobic
residues VAL5, LEU6, VAL8, LEU9, LEU13, LEU16, and ILE20
are also highly buried. All of these are among the most buried
residues in our simulations. Among charged residues, LYS23 and
ARG24 are the most buried in the crystal tetramer. With a few

Figure 3. Buried surface area (in Å2) per residue from the “4melXtal” simulations for the AACG, OPLS3, and OPLS2005 force fields averaged over the
second half of the simulations (100−200 ns).

Figure 4. Number of inter- and intrachain contacts for simulations starting from the “4melXal” structure for the AACG, OPLS3, and OPLS2005 force
fields. These results are averages over the second half of the simulation (100−200 ns).
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exceptions, the buried surface area of the residues (Figure 7)
is noticeably higher for the most aggregating condition
(“20mel283NaCl”) as compared to the least aggregating
condition (“20mel330”) with the largest increases for most of
the hydrophobic residues ILE2, LEU6, VAL8, LEU9, LEU13,
and LEU16. The polar residues are generally more buried
in “20mel283NaCl” than in “20mel330” with the exception of
SER18, while the charged residues are relatively unaffected with
the exception of ARG24, which is significantly more buried
in “20mel283NaCl”. TRP19 is highly buried in the melittin
aggregates formed during our simulations. The buried surface
area of TRP19 roughly doubles to 83 Å2, about 81% of that for
the tetramer for the crystal structure, under the most aggregating
condition (“20mel283NaCl”) becoming the residue with the
highest buried surface area. LYS23 is relatively unburied in our
simulations, suggesting that packing effects may be responsible
for its large buried surface area in the crystal.
The general pattern of the exposed surface area, broken down

by residue, is similar in both of the simulations of individual

monomers with higher levels of hydration near the ends of the
chain for residues 7−11 and for residues 21−24 (Figure S3).
The most exposed residues in the crystal also tend to be the most
exposed in solution. Interestingly, LYS21 and more distinctly
LYS23 have smaller surface areas in the crystal than in our simu-
lations, perhaps reflecting packing effects specific to the crystal
structure. Overall, these results suggest that solvent exposure of
residues in melittin depends mostly on the nature of the residue
(i.e., hydrophobic vs hydrophilic) and proximity to either end of
the chain with aggregation significantly reducing the exposure of
the more hydrophobic residues.

Residue Contacts. Interchain contacts follow a similar over-
all pattern under the least aggregating conditions (“20mel330”,
Figure 8a) and the most aggregating conditions (“20mel283-
NaCl”, Figure 8b) with generally higher counts for the latter
except for residue VAL5 which drops slightly. Most residues
with high interchain contacts in the crystal (Figure 8c) also
have high levels of contact within the aggregates with the excep-
tion of LYS21 which loses essentially all contacts in solution.

Figure 5. Characterization of aggregation during the simulations. Panels (a) and (b) are for 310 K without and with NaCl, respectively. Panel (c) is for
the least aggregating condition, 330 K without salt, and panel (d) is for the most aggregating condition, 283 K with NaCl. The left-hand plot for each
condition tracks the number of aggregates of each size as a function of time, while the right-hand bar graphs give the breakdown of themonomers present
in aggregates of each size at times: 10 ps, 10 ns, 20 ns, and 200 ns. Blue is used for melittin in unaggregated monomers, red for dimers, green for trimers,
purple for tetramers and light blue for pentamers.
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The level of intramolecular contacts for the two aggregat-
ing conditions (Figure 8d and e) closely correspond with a
small overall drop under conditions of increased aggregation

(Figure 8e). Consistent with the shifts in buried and exposed
surface areas for LYS23, there is a dramatic drop in the
number of intrachain contacts for LYS23 from about 1.5 to less

Figure 6. Effect of added salt and different temperatures on aggregation. These bar graphs depict the number of monomers in aggregates for each size at
the end (200 ns) of the six simulations containing 20 melittin monomers. Blue is used for melittin in unaggregated monomers, red for dimers, green for
trimers, purple for tetramers and light blue for pentamers.

Figure 7. Average buried surface area (in Å2) per residue. The top panel gives the results from the least aggregating simulation, “20mel330”, while the
middle panel contains the results for the most aggregating simulation, “20mel283NaCl”. The bottom panel gives the results obtained using a melittin
tetramer extracted from the crystal structure (2MLT).
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than 0.25 between the crystal structure and aggregates in
solution.
We have broken out the contacts TRP19 forms by residue

within the aggregates and the crystal structure (Figure 9). The
overall level of intermolecular contacts for TRP19 is dramatically
higher under the most aggregating condition (Figure 9b) as
compared to the least aggregating condition (Figure 9a) in our
simulations, while the level of intramolecular contacts is similar
(Figure 9d and e).
In the crystal structure of a melittin tetramer, TRP19 of

each melittin molecule is in contact with five residues (ILE2,
TRP19, ILE20, LYS23, and ARG24) from other melittinmolecules

(Figure 9c) and residues ARG22 and LYS23 within the same
molecule (Figure 9f). In aggregates formed during our simu-
lations, the TRP19 of each melittin molecule comes in contact
with most of the residues of other melittin molecules. This
indicates that melittin aggregates in solution are less ordered than
in the crystalline tetramer. The most frequently observed
contacts are with TRP19 and ARG24 of other melittin molecules
which also occurs in the crystal structure, while contacts with
ILE2, ILE20, and LYS23 are comparatively uncommon in con-
trast to the crystal structure. Intermolecular contacts with ARG22,
ALA15, and LEU16 are moderately common in solution, while
they are completely absent in the crystal structure. In the melittin

Figure 8. Number of inter- and intrachain contacts. Interchain contacts based upon whole residues (including backbone atoms) for “20mel330”,
“20mel283NaCl”, and the tetramer from the crystal structure are given in panels (a), (b), and (c), respectively, while the corresponding intrachain
contacts for these systems are given in panels (d), (e), and (f), respectively. LEU9 and TRP19 undergo the greatest increase in interchain contacts upon
increased aggregation.
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aggregates formed during our simulations, the most common
intramolecular contact residue for TRP19 is also ARG22, while
intramolecular contact with LYS23 is rare. The drop in both intra-
and intermolecular contacts between crystal and aggregated forms
for LYS23 with TRP19 is consistent with the shifts in buried and
exposed surface area for LYS23 noted earlier.
TRP-ARG and TRP-LYS interactions are π-cation inter-

actions, a well-known interaction motif in structural biology, with
TRP-ARG being more frequently observed.117 So the extensive
contacts between TRP and ARG in our simulations (Figure 10)

are expected, as is the preference for ARG-TRP contacts over
LYS-TRP contacts. Intermolecular TRP-TRP interactions are
π-stacking interactions, which is another type of well-recognized
interactionmotif in folded proteins and is observed inmany crystal
structures. Figure 11 depicts such interactions which in our simu-
lations seem to be tightly coupled to π-cation interactions.

■ DISCUSSION

Aggregation of Melittin. In our simulations starting from
well-separated melittin molecules at 10 mM, we have observed

Figure 9.Number of residues in contact with TRP19 averaged over the second half of the simulation (100−200 ns). The distance cutoff for contacts was
4.0 Å. The top three panels are for intermolecular contacts, and the bottom three panels are for intramolecular contacts.
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aggregation of melittin into dimers, trimers, tetramers, and
pentamers. Aggregation events are readily observed, with most of
them occurring within the first 10−30 ns (roughly 10% of the
total time simulated) as compared to a recently published AA
simulation study of the aggregation of four melittin molecules
with events occurring on time scales longer than 200 ns,91

illustrating the effect of the higher diffusion coefficient in AACG
models. Since we rarely see dissociation events, we cannot con-
clude that we have reached the equilibrium size distribution.
On the other hand, the frequency of association events has
dramatically decreased by the end of our simulations suggesting

that our simulation time is long enough to characterize melittin
aggregation. In order to more thoroughly study equilibrium
behavior, we would need to either lengthen the duration of simu-
lation by orders of magnitude or employ a method for enhancing
the frequency of dissociation events. We observe both a clear
increase in aggregation with the addition of salt and a subtle but
noticeable increase in aggregation as the temperature is lowered.

Residue Characterization.We observe significant increases
in the amount of buried surface area after the initial period of
large-scale monomer aggregation. This is consistent with the
idea that the aggregates are fluid and that the initial monomer

Figure 10. π-cation interactions involving TRP19 observed during our simulations. The left panel is a close-up view showing an example. TRP19 and
ARG22 of the samemelittin molecule are colored dark orange, and ARG24 from a neighboring melittin molecule is colored green. The right panel shows
this same example in the environment of the entire tetramer. The side chains of TRP19, ARG22, and ARG24 from all four melittin molecules are
depicted in CPK rendering. The carbon atoms and ribbon color are given a distinct color (dark orange, green, red, light blue) for each melittin molecule
to make it easier to see which interactions are intramolecular and which are intermolecular. Intermolecular and intramolecular π-cation interactions are
observed 54% and 83% of the time, respectively, in “20mel283NaCl” (the most aggregating condition). They are observed 18% and 91% of the time,
respectively, in “20mel330” (the least aggregating condition).

Figure 11. π-stacking interactions observed during our simulations. In each of the top images, a pair of TRP19 residues is shown. In the bottom images,
surrounding ARG residues are also shown. As in Figure 10, the carbon atoms and ribbons for each molecule are given a distinct color. These interactions
are observed 50% of the time in “20mel283NaCl” and 15% in “20mel330”.
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contacts evolve. All residues with little buried surface area in the
tetrameric structure from the crystal structure, especially the
C-terminal residues, are significantly more buried in the simu-
lated aggregates because of the overall disordered state of the
aggregates.
The residue properties for the most aggregating and the least

aggregating conditions follow similar patterns except that the
results are shifted toward compactness for the former, namely,
higher buried surface areas, slightly lower solvent exposed surface
areas, slightly higher levels of inter chain contacts, and slightly
lower levels of intrachain contacts. For the buried surface area
and interchain contacts, there are dramatic changes between the
initial 0−10 ns and final 100−200 ns period. This indicates large-
scale evolution of the systems and the need for relatively long
simulations. Melittin aggregates formed during our simulations
have amphiphilic folded structures, but they are less compact and
less ordered than crystalline tetramers. We observed π-cation and
π stacking interactions involving TRP19 as key characteristics of
melittin aggregates in solution.
Conformational State of Melittin Aggregates. Hartings

et al.118 obtained fluorescence and circular dichroism data
on single-residue mutants of melittin, V5F, and V5Y(NO2) and
observed that helicity increases as the concentration of melittin
is raised from 2 to 20 μM but with no blue shift in TRP19
fluorescence indicating that TRP19 side chain remains largely
solvent-exposed. From these observations, they suggested
that these peptides assemble into a dimer rather than a tetramer.
An alternate explanation may be that they assemble into less
ordered, more dynamic tetramers, inwhich TRP19 ismore solvent
exposed than in the crystalline tetramer as we are observing in our
simulations ofmelittin. Hagihara et al.119 found thatmelittin aggre-
gates are in the molten globule state based on circular dichroism
and differential scanning calorimetry results as well as the radius of
gyration. Our results are consistent with the molten globule state.
The crystal structure results in Figure 7−9, show a strong

contrast with many of the residues having values of 0, while the
largest values are comparable to or larger than the largest ones
obtained from simulation. Generally, the simulation results for
surface areas and contacts are distinctly nonzero for all residues
where the measure applies in contrast to the crystal structure,
again consistent with a dynamic molten globule model for
melittin aggregates. However, in most cases, residues with large
values of buried surface area in the crystal also have large values in
the simulations.

■ CONCLUSIONS
We have developed a new AACG (all-atom/coarse-grained)
model. The structural results obtained using the AACG force
field for a melittin tetramer in solution compare favorably
with those for the OPLS2005 and OPLS3 AA force fields.
We subsequently applied the AACG force field to study melittin
aggregation behavior in aqueous solution obtaining results that
are in good agreement with the experiment. Starting from a
configuration consisting of 20 well-separated melittin molecules
in a periodic box, we are able to observe the formation of melittin
dimers, trimers, tetramers, and pentamers during the time scale
of our simulations. The extent of aggregation, monitored by the
size distribution over time, the buried surface area, and the counts
of residues that come in contact with each residue is found to
increase when salt is present and to a lesser extent as temperature
decreases. We found that TRP19 and hydrophobic residues
are important for the formation of aggregates and noted
the prominent role of π-cation and π-stacking interactions.

Overall our results are consistent with the molten globule model
for melittin aggregates.119 Our results, including the influence of
salt and temperature on melittin aggregation, suggest that the
AACGmodel described in this paper performs reasonably well at
mimicking the behavior of melittin in water.
The 3−4 fold reduction in CPU time, as compared to AA

simulations, can be useful in some cases when studying the
behavior of individual peptides; however, one should weigh this
benefit against the more approximate results obtained. When the
diffusion of molecules is important for the phenomena being
studied, such as for peptide aggregation, the 7 times higher
diffusion rates for peptides in our AACG model are relevant,
resulting in simulations that are at least 20 times more efficient
than a simulation of the same system using an AA model.
Simulating large systems, particularly for larger aggregating
peptides or proteins (e.g., globular proteins or antibodies) at the
concentrations of interest, would require systems with about
107 atoms. Systems with this many particles are hard to fit into
the memory on current GPGPU cards. AACG models require
roughly 3 times fewer particles than AA models to mimic the
same amount of aqueous peptidic solution, permitting sub-
stantially larger systems to be simulated. The rarity of monomer
separations from aggregates in our AACG studies of melittin
suggests that care is needed when interpreting simulations of
peptide aggregation.
In common with the PACEmodel,60 we have elected to derive

anew interactions or modify interactions, particularly the non-
bonded interactions, within the finer grain portions of our mixed
resolution models as compared to existing UA or AA models.
This approach seems reasonable given that the interactions
between coarse-grained solvent particles are typically signifi-
cantly weaker than those between atoms in purely AA models.
Other mixed resolution models may benefit from similar
adjustments.
While the various mixed resolution models for proteins

have their own strengths, our AACG model has advantages for
studying the aggregation of peptides. The most significant of
these advantages is the built-in compatibility with particle mesh
Ewald treatments, while most other models truncate electrostatic
interactions sometimes in combination with a reaction field
method treatment.57,60−62,67,69 Given that experimentally
controlling the net charge on peptides is a key tool for
controlling aggregation issues for biologics, a careful treatment
of electrostatics on long-length scales would be critical. Evidence
for this is available from a few sources including the general shift
to Ewald methods in atomistic simulations to avoid artifacts
noticed when cutoffs are used120 and our own observations that
as we progressively introduced particle mesh Ewald into our
calculations our results systematically improved. Other simu-
lation approaches with explicit solvent particles that do not rely
on explicit representation of the solvent’s electrostatics (such as
dipoles or partial charges) might benefit from our two-level
dielectric treatment of electrostatics which shares some of
the spirit of how electrostatics is handled in implicit solva-
tion methods such as the Generalized Born121 and Poisson−
Boltzmann122 approaches.
The coverage of the AACG force field is currently limited to

peptides, proteins, POPC lipids, water, a small set of ions and
cofactors, and a few types of ligands and cosolvents (see the
Supporting Information for a more detailed list). Given that
the model was developed using peptides, globular proteins, and
GPCR, it should be reasonably transferable within these types of
systems. To explicitly test and verify transferability of the AACG
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model beyond peptides in aqueous solution, we plan to
characterize AACG simulations of globular and membrane-
bound proteins in future publications. The AACG approach has
required and will continue to require time-consuming para-
metrization. Following the experience of other force fields after
their introduction, it will require further refinement. We plan
to extend the AACG modeling approach by further refining
the peptidic potentials and developing a mechanism to make
fitting parameters for new atom types easier so that coverage of
chemical space can be more readily extended. In addition, we
plan to relax the requirement for NVT simulations to permit the
direct construction and simulation of AACG systems without the
need to prepare and relax an AA system prior to creating an
AACG representation. It should be possible to achieve further
speedup of AACG simulations by using hydrogen mass
redistribution.123,124

We believe that the AACG model fills a useful niche in the
modeling field between fully atomistic models and fully coarse-
grained models where electrostatics and molecular flexibility are
combined with longer time frame phenomena.We anticipate that
the AACG model will prove useful for studying the association
of proteins in many biological processes and also in biologics
formulations.
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