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Mnemonic representations allow humans to re-experience the past or simulate future
scenarios by integrating episodic features from memory. Theoretical models posit that
mnemonic representations require dynamic processing between neural indexes in the
hippocampus and areas of the cortex providing specialized information processing.
However, it remains unknown whether global and local network topology varies as
information is encoded into a mnemonic representation and subsequently reinstated.
Here, we investigated the dynamic nature of memory networks while a representation
of a virtual city is generated and reinstated during mental simulations. We find
that the brain reconfigures from a state of heightened integration when encoding
demands are highest, to a state of localized processing once representations are
formed. This reconfiguration is associated with changes in hippocampal centrality at
the intra- and inter-module level, decreasing its role as a connector hub between
modules and within a hippocampal neighborhood as encoding demands lessen. During
mental simulations, we found increased levels of hippocampal centrality within its
local neighborhood coupled with decreased functional interactions between other
regions of the neighborhood during highly vivid simulations, suggesting that information
flow vis-à-vis the hippocampus is critical for high fidelity recapitulation of mnemonic
representations.

Keywords: fMRI, graph theory, hippocampus, navigation, orientation, virtual environment

INTRODUCTION

One of the most striking features of the human mind is our ability to re-experience the past in
vivid detail. Memories pervade daily life, allowing us to develop a sense of self, find new and
familiar locations, and identify more effective strategies for interacting with the world. The ability
to encode and reinstate complex mnemonic representations by binding features from previous
experiences is thought to be the primary function of an episodic memory system in humans
(Tulving, 2002). These representations are hypothesized to be conjunctive in nature, integrating
sensory features from the environment – such as people, places, and objects – into holistic
representations that can be used to guide behavior into the future (Davachi, 2006; Byrne et al., 2007;
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Chersi and Burgess, 2015). Theoretical and computational
models suggest that these mnemonic representations are formed
by integrating information processed throughout the neocortex
in convergence zones (Marr, 1971; Damasio, 1989; Nadel and
Moscovitch, 1997; Burgess, 2008; Meyer and Damasio, 2009),
most notably the hippocampus (HC), where processes such as
pattern completion allow representations to then be reinstated
using a partial set of input features (Marr, 1971; Norman and
O’Reilly, 2003; Rugg and Vilberg, 2013). Recent research has
provided support for these models, showing that inter-regional
communication dynamics assist to concentrate information flow
to the HC (Mišić et al., 2014), and that the HC acts as a primary
convergence zone during associative memory tasks (Gordon
A.M. et al., 2014; Backus et al., 2016), allowing different types
of information processed in the neocortex to be reinstated and
integrated into a holistic representation (Staresina et al., 2013;
Horner et al., 2015).

Although there is preliminary empirical evidence for
hippocampal-based information integration during memory
retrieval (Gordon A.M. et al., 2014; Iaria et al., 2014; Robin
et al., 2014; Schedlbauer et al., 2014; Horner et al., 2015;
Backus et al., 2016), key questions remain about how
mnemonic representations are encoded across networks of
brain regions. A critical but untested component of prominent
theoretical models is that when encoding occurs, there is
a heightened demand to integrate information processed
in sensory and first-order association cortices into neural
patterns within memory structures that form the basis of
a mnemonic representation (Marr, 1971; Damasio, 1989;
Squire and Zola-Morgan, 1991; McClelland et al., 1995; Nadel
and Moscovitch, 1997; Meyer and Damasio, 2009). Recent
work using functional magnetic resonance imaging (fMRI)
analyses has shown that encoding associations between sensory
features depends on neural activity in areas of the cortex
specialized to the specific feature, which are encoded by
neural indexes in the hippocampus (Horner et al., 2015), and
that hippocampal–cortical functional interactions increase
when stimuli features need to be combined into a single
associative representation during retrieval (Zeithamova et al.,
2012; Staresina et al., 2013; Gordon A.M. et al., 2014). This
suggests that memory structures such as the hippocampus
interact dynamically with other regions across the cortex
during the initial encoding and subsequent reinstatement
of a mnemonic representation. Surprisingly though, there
has yet to be a systematic evaluation of global and local
network topology during encoding using complex network
measures such as graph theory. Graph theory allows for the
quantification of more nuanced aspects of network processes
(Bassett et al., 2012), specifically relating to communication
dynamics and the integration of information across components
of a network (Sporns et al., 2007; Bullmore and Sporns,
2009) that are of critical importance to understanding
memory function in humans (Chrastil, 2012; Ekstrom et al.,
2014). The central aim of this study is to provide such an
investigation by quantifying putative changes in network
topology and the dynamic role of the hippocampus within brain
networks.

An important characteristic of brain network topology is
modularity (Bertolero et al., 2015). Modular systems are sub-
networks or communities defined by dense interconnections
between intra-module components, with sparse or weak inter-
module connections (Newman, 2006). Of importance here,
the dynamic formation and interaction of modules and their
components defined using functional interactions between brain
regions has been proposed to provide a neural correlate for
adaptability (i.e., learning) in the brain (Ghosh et al., 2008;
Meunier et al., 2010; Werner, 2010), putatively through a reduced
cost to rapidly change network configurations in response to
environmental demands (Kirschner and Gerhart, 1998; Kashtan
and Alon, 2005). Dynamic shifts in modularity have been
associated with motor learning tasks (Bassett et al., 2011) and
working memory paradigms such as the n-back task (Stanley
et al., 2014; Cohen and D’Esposito, 2016). In the context
of memory function, this view suggests that changes to the
modularity of networks may allow the brain to regulate the
degree to which sensory information is integrated into a neural
index during encoding by altering the degree to which network
modules communicate with one another. In the present study,
we use this perspective on network modularity to investigate
whether the dynamic reconfiguration of modular systems across
the brain is associated with encoding and reinstating mnemonic
representations based on the degree to which environmental
features needs to be integrated over time. This tests the long held,
but sparsely tested, perspective that information is integrated
across sensory and associative cortices during representation
encoding, and that this integration is mediated in part by the
hippocampus (Nadel et al., 2000).

Drawing from theoretical models and empirical work, it
is possible to formulate three key predictions about the basis
of network reconfiguration and adaptability as mnemonic
representations are encoded. First, when encoding demands are
highest, the topology of brain networks should be organized in
a manner that increases the capacity to integrate information
processed across distributed systems in the brain. We term this
the global integration hypothesis. Second, once representations
are formed, there should be a reconfiguration of network
topology from a state of global network integration to one of
localized processing, as the need to integrate stimuli features
lessens and the demand to reinstate and maintain neural
representations within memory systems increases. We term this
the state transition hypothesis. Third, critical convergence zones
such as the HC should display flexibility in how they interact
with global and local brain networks, such that when encoding
demands are the highest, they act to integrate information across
different systems in the brain, but change to localized processing
as environmental feature integration demands decrease. We term
this the node flexibility hypothesis.

Integrative processes additionally appear to play a role
in the subsequent reinstatement and use of multi-featural
representations (Gordon A.M. et al., 2014; Iaria et al., 2014;
Robin et al., 2014; Schedlbauer et al., 2014; Horner et al.,
2015; Backus et al., 2016). Prospection, the cognitive ability
to think about, predict, and simulate possible future events is
theorized to rely on a similar neurocognitive system dedicated
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to dynamically encoding experiences, extracting features from
those memories, and actively combining those features into
representations, or mental ‘scenes,’ that are used to optimize
behavior (Buckner and Carroll, 2007; Schacter and Addis,
2007; Hassabis and Maguire, 2009; Moulton and Kosslyn,
2009; Schacter et al., 2012; Szpunar et al., 2013). As with the
encoding of mnemonic representations, the HC is predicted
to be critical to prospection, using a neural index to reinstate
mnemonic representations through interactions with sensory
and associative regions across the brain (Janzen and van
Turennout, 2004; Horner et al., 2015). In humans, recent
work has shown that goal-specific trajectories and intervening
locations can be decoded during prospection using patterns of
hippocampal activity (Brown et al., 2016), further supporting the
role of the HC in coordinating the neural codes underlying the
spatial context for prospective mental simulations. Importantly,
however, prospective representations in humans appears to
involve additional brain regions, including the parahippocampal,
perirhinal, and retrosplenial cortices (Brown et al., 2016),
suggesting that integrative and distributed information processes
are also involved.

Although it appears that the HC dynamically interacts with
other regions across the brain during prospection (Hassabis and
Maguire, 2009; Schacter et al., 2012), fundamental questions
remain about how this occurs and whether these interactions
vary based on how featural information encoded in memory
is integrated into a mnemonic representation subserving
prospection. Variability in the fidelity of prospective mental
simulations has been proposed as a measure of feature integration
(Arnold et al., 2016), providing a quantifiable metric of how task-
oriented mnemonic representations are generated through multi-
feature reinstatement. Critically, this suggests that variance in the
fidelity of prospective mental simulations may be associated with
the degree of functional interactions within the hippocampal–
cortical networks supporting prospection, rather than relying on
neural processes occurring in the hippocampus alone, and may
provide a window into how dynamic network processes support
memory function.

As with encoding, it is possible to formulate specific research
questions about how distributed and dynamic network processes
provide a mechanism for prospection. First, we asked which
regions of the brain coordinated information processing during
mental simulations with the HC. Due to the putative role
of the HC in coordinating the reinstatement of information
processing in sensory and associative regions (Nadel et al.,
2000; Horner et al., 2015; Backus et al., 2016), we hypothesized
that simulations with high visual and spatial fidelity would be
associated with increased functional connectivity between the
HC and areas of the visual cortex, allowing for reinstatement
of patterns of activity coding visual and spatial features of the
route being simulated. We term this the feature reinstatement
hypothesis. Second, we asked whether variance in the vividness
and spatial coherence of mental simulations is associated with
differences in hippocampal network topology. The capacity for
both whole brain networks and the HC to efficiently coordinate
information flow has been shown to facilitate the reinstatement
of spatial contexts during retrieval tasks (Arnold et al., 2014b;

Schedlbauer et al., 2014). This suggests that feature reinstatement
and integration during prospection may also benefit from
network topologies with increased communication efficiency,
as features and their associative structure are recapitulated
across the brain and integrated into a task-oriented mnemonic
representation used to simulate behavior. Based on this
perspective, we hypothesized that high simulation fidelity
would require more widespread interactions between the HC
and neocortex, and therefore demonstrate increases in graph
theoretical measures quantifying the communication capacity
of hippocampal networks. We term this the feature integration
hypothesis.

To test the three outlined hypotheses on encoding mnemonic
representations and the two on reinstating representations
during prospection, we constructed a large-scale virtual city
and calculated bivariate and graph theoretical measures using
fMRI data acquired while people encoded the spatial layout of
landmarks in the city and then conducted mental simulations of
the different routes between landmarks. Spatial navigation is a
model system for understanding how mnemonic representations
are encoded and reinstated to guide behavior and inform decision
making processes (Chersi and Burgess, 2015; Arnold et al., 2016),
with past research demonstrating that the topology of resting-
state (Arnold et al., 2014b) and task-active networks facilitate
the accurate reinstatement of spatial representations (Watrous
et al., 2013; Arnold et al., 2014a; Schedlbauer et al., 2014).
Figure 1 provides an overview of the task. The analyses herein
were conducted on the navigation blocks from the encoding
phase, and the simulation blocks from the simulation phase. For
the global integration hypothesis during representation encoding,
we calculated the modularity index Q, global efficiency, and
global flow of distributed networks, and compared navigation
blocks from the encoding phase where participants were unsure
about landmark locations to trials in which they were highly
confident of knowing the landmark location. Similarly, for
the node flexibility hypothesis, we calculated and compared
the betweenness centrality, participation, and flow coefficient
for the HC between high and low confidence navigation
blocks in the encoding phase. These graph theoretical metrics
assess the centrality of the HC at the global, inter-module,
and local network level, respectively. Third, for the state
transition hypothesis, we calculated the local efficiency of
the hippocampal networks during navigation blocks of the
encoding phase to identify whether localized network processing
increased as the need to integrate environmental information
decreased. For prospection, we tested the feature reinstatement
hypothesis on simulation blocks from the simulation phase
using general psychophysiological (gPPI) models to identify
areas of the brain showing increased functional connectivity
with the HC during prospection based on high fidelity
representations. For the feature integration hypothesis, we
again used the node-based graph theoretical measures of
betweenness centrality, flow coefficient, and local efficiency
using hippocampal nodes to identify potential differences in
communication efficiency relating to variance in representation
fidelity observed during the simulation blocks of the simulation
phase.
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FIGURE 1 | Task design. (A) Top-down view of the city. During the exposure phase, participants viewed a video of passive first-person movement along the city
perimeter outlined in blue. Also displayed are the locations of the five target landmarks. (B) During the encoding phase, participants navigated between the five target
landmarks. The city was composed of buildings using variations of three architectural styles, while the target landmarks were selected to be visually salient. (C) Block
sequence order during scanning of the encoding phase. Each trial began with a fixation cross, followed by a recall block in which one of the target landmarks was
displayed and participants rated on a scale of 1–4 their confidence in knowing its location. A navigation block followed, where participants were instructed to
navigate to the landmark as quick as possible. (D) Timing information for the simulation phase. After the initial 12 s fixation period, participants were cued with a
starting landmark (left) and a target landmark (right). They were given 15 s to simulate movement between the two landmarks in as much detail as possible.
Completion of the PS-Q was open ended as was the subsequent navigation period between the two cued landmarks and the two remaining questions of the PS-Q.

MATERIALS AND METHODS

Participants
Fourteen right-handed undergraduates (nine female; mean
age = 21.64, SD = 2.56) recruited through the University of
Calgary research participation pool participated in the study
and the study was approved by the research ethics board at the
university (CHERB 22848). Sample size was similar to previous
studies on the function of memory networks (Ekstrom and
Bookheimer, 2007; Libby et al., 2012; Watrous et al., 2013; Arnold
et al., 2014b). Participants were pre-screened to exclude anyone
who reported previously experiencing nausea while playing a
videogame. All participants provided informed consent prior to
scanning, received $50 reimbursement whether they completed
the experiment or not, and were debriefed after the experiment.

Environment Design
The virtual city was designed using Unity3D (version 4.61).
The city was composed of an interconnecting series of roads
lined with buildings (Figure 1A). The configuration of the

1https://unity3d.com

roads was constructed to be nearly symmetric across the city to
minimize the potential to derive location information based on
global geometrical cues. The city buildings consisted of target
landmarks and non-target buildings. The non-target buildings
were variations of three architectural styles that were repeated
throughout the city and selected to be visually similar in order
to reduce their use as spatial cues during navigation trials. Five
target landmarks were selected to be visually unique relative
to the rest of the city (Figure 1B). The location of the target
landmarks was selected by applying a 10×10 grid over the
city layout and randomly selecting grid locations to place the
landmarks. Numerous shortcuts were created by placing walkable
paths between the buildings and a series of back alleyways. We
also included two blockades on the main roads in order to
ensure that the shortest path between any two target landmarks
were only available by taking shortcuts. Movement speed was
capped at 6 virtual m/s, which approximates to a 4.47× increase
over an average real world walking speed of 1.34 m/s given
the relative scale of the virtual city. Post-experiment interviews
suggested that participants primarily used relative orientation of
target landmarks to one another to guide navigation. Aside from
the exposure phase (see below), participants viewed the city by
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projecting it on a mirror in the scanner and moved using four
buttons coded to forward and backward movement, and left and
right rotation.

Task Design
The task was divided into three phases: an exposure, encoding,
and simulation phase. Prior to entering the scanner, participants
were given an overview of the task and completed the exposure
phase. The overview consisted of giving participants instructions
on the mechanics of the task in each phase and provided time
for them to ask the experimenter any questions. The exposure
phase consisted of watching a video of first person movement
along the perimeter of the city (Figure 1A). The video stopped for
5 s at each of the target landmarks and the experimenter pointed
to the landmark on the screen and verbally confirmed that the
participant had seen it before proceeding. The video stopped at
the same point it had started, which was a randomly selected
point along the perimeter and was consistent across participants.
The exposure phase was designed to give the participants a
sense of scale of the city and a baseline knowledge of the target
landmark identities and locations.

Once inside the scanner, participants completed the
encoding phase. This phase consisted of a sequence of fixation,
reinstatement, and navigation blocks (Figure 1C). It began
by placing participants at a random starting point in the city
(randomized once and held consistent across participants),
showing them an image of one of the target landmarks, and
asking them to rate on a scale of 1–4 their confidence in knowing
the location of the landmark (1: not at all, 4: very well). This is
termed the reinstatement block. Afterward, the participants were
instructed to find the cued landmark as quick as possible. This
is termed the navigation block. Once located, the participants
walked into the front of the building which prompted the next
rest/reinstatement/navigation block sequence. We also included
a helper arrow that was initiated once participants had taken
more than 90 s to locate the landmark. The helper arrow always
pointed in the cardinal direction of the cued landmark, requiring
the participants to still make decisions on how best to navigate to
it. The helper arrow was included based on results from an initial
pilot study that showed trials where participants took longer
than 90 s frequently resulted in getting lost. Optimal path time
between each landmark pair was calculated by taking the quickest
possible path between landmarks using available shortcuts (mean
path time for optimal routes = 24.85 s, SD = 7.15; mean number
of turns = 5.9, SD = 2.33). As with the starting point, the order
of starting-goal landmark pairs was randomized once and held
consistent across participants. The encoding phase lasted for
23 min and had an upper limit of 21 possible trials consisting
of all pairwise combinations of landmarks in both directions, as
well as the initial starting trial. At the end of the 23 min, scanning
stopped irrespective if they had completed all the trials or not.

After the encoding phase, participants completed the
simulation phase (Figure 1D). All participants conducted two
practice trials prior to entering the scanner to ensure they
properly understood the task instructions and provide them with
the opportunity to ask the experimenter questions. Participants
were instructed that the simulation portion would begin with

the word ‘Simulation’ on the center of the computer screen.
Afterward, they would be shown two images of the five target
landmarks – one on the left and one on the right. Once the
landmarks disappeared from the screen, they were instructed to
mentally simulate in as much detail as possible moving through
the city from the landmark on the left to the one on the right.
The experimenter emphasized that it was important to mentally
immerse themselves in the city and to take as much time as
they needed to properly navigate the route. Participants were
instructed to mentally navigate the quickest route between
landmarks rather than trying to specifically recall the route they
had previously taken.

Of critical importance here, participants were not instructed to
simply try and remember their initial route between landmarks
in the encoding phase. The reason for this is twofold. First,
routes between landmarks in the encoding phase occurred with
different levels of environmental familiarity due to their place
in the trial order. As such, simple replay of past experiences
during simulations are not in all cases representative of the fastest
possible routes between two landmarks. Second, the interest
here is in predictive simulations rather than memory replay.
Simulations allow participants to incorporate spatial information
they’ve learned throughout the experiment rather than trying to
recall specific instances of an episode.

Inside the scanner, each trial of the simulation phase began
with a fixation period for 12 s in which a white fixation cross
was placed on top of a black background. Next, the word
‘Simulation’ displayed on the screen for 2 s. Following that,
images of the starting and target landmark appeared for 3 s.
Immediately afterward, the screen turned to black and the
participants began to mentally simulate the route. The simulation
period lasted for 15 s. The length of this block was determined
using a larger behavioral study that recorded precise simulation
times using the same experimental paradigm (Arnold et al.,
2016). In that study, we observed that the average simulation
period was approximately 15 s (SD = 11.21). Importantly, we
also observed no statistical differences in simulation length
comparing high (mean simulation time = 12.11 s, SD = 9.55)
and low (mean simulation time = 14.5 s, SD = 14.03) vividness
simulations [t(127) = 0.96, p = 0.34], nor were there when
comparing high (mean simulation time = 12.94 s, SD = 10.72)
and low (mean simulation time = 15.04 s, SD = 13.44)
spatial coherence simulations [t(98) = 0.8, p = 0.42]. This
suggests that potential confounds due to participants engaging
in other forms of cognition after completing a simulation,
but before the block has ended, are consistent across all
levels of the analyses and therefore will have a minimal
impact on the data. After the simulation, participants complete
a 14 item post-simulation questionnaire (PostSQ). Table 4
outlines the wording for each question/response and how they
were grouped into different factors for analysis. The PostSQ
included items modified from the Memory Characteristics
Questionnaire (Johnson et al., 1988), as well as novel items,
and was intended to probe qualitative aspects of the simulation
experience. This included questions about spatial and temporal
coherence, vividness, fractionation, confidence in knowing the
starting/target locations, and perceived accuracy of their memory
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for the route. Each item was rated on a scale of 1–4. Immediately
following the questionnaire, participants were placed within
the virtual city facing the starting landmark and navigated to
the target landmark as quick as possible. Once there, a post
navigation questionnaire (PostNQ) was displayed where they
rated two items on a scale of 1–4 assessing how well they
simulated the route and how well the simulation matched their
navigation experience. In total, 10 routes were included in the
simulation phase. The starting-destination landmark pairs were
pseudo-randomly selected such that each of the five landmarks
were included as a starting point and destination only once.

Functional MRI Data Acquisition
All MRI data were collected using a 3T GE Discovery MR750w
scanner with a 32-channel head coil. A single shot EPI sequence
was used, consisting of 38 interleaved T2∗-weighted slices per
volume (flip angle: 77◦, TR: 2000 ms, TE: 30 ms, 3.6 isotropic
voxel size, 64×64 matrix size). The first five volumes were
discarded to allow for T1 equilibrium. Additionally, a T1-
weighted three dimensional FSPGR anatomical image using
1 mm isotropic voxels was collected to assist with normalization
of the EPI data.

Functional MRI Preprocessing
All fMRI data were preprocessed through Nipype (Gorgolewski
et al., 2011) using FSL (version 5.0.92) and Advanced
Normalization Tools (ANTs3). Data were first realigned
with MCFLIRT, smoothed using a 7 mm FWHM Gaussian
filter, intensity normalized, and temporally filtered using a 90-s
high-pass filter for the encoding phase data and a 60-s filter for
the simulation phase data. Next, all data were denoized using
MELODIC to remove non-hemodynamic components based
on inspection of the time course and power spectrum for each
component. Anatomical and EPI data were then normalized
into MNI152 space and resliced into 2 mm voxel space using
ANTs by first computing a transformation matrix for registering
each participant’s anatomical image to the MNI152 2 mm
template, and then applying a linear transform of each EPI
volume using the computed matrix. To further minimize non-
BOLD signal from the data and to normalize the distribution
of correlation values between ROIs, anatomical images were
segmented into gray matter, white matter, and cerebral spinal
fluid (CSF) estimates. These tissue classes were then used to
apply the CompCor noise correction method (Behzadi et al.,
2007) by regressing out principle components obtained from
each participant’s white matter and CSF estimates from signal
located in gray matter.

Node Definition
Three hundred and thirty-three regions of interest (ROIs)
spanning across the entire cortex were obtained from resting-
state functional connectivity boundary mapping conducted by
Gordon E.M. et al. (2014). We additionally included subject-
specific ROIs for the left and right HC for a total of 335

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
3https://github.com/stnava/ANTs

ROIs in the analyses. These hippocampal ROIs were obtained
through segmenting subcortical regions in native space for each
participant’s anatomical scan using FIRST (Patenaude et al.,
2011), and then applying the transformation matrix calculated
from ANTs to resample and register each ROI to MNI152 2 mm
space.

Graph Construction
Correlation matrices for all network analyses were calculated
using the CONN toolbox inside SPM12. A series of general
linear models (GLMs) were constructed using the encoding
phase data by binning reinstatement and navigation periods at
the trial level based on the confidence rating for each trial.
That is, for each participant we binned their reinstatement
and navigation blocks into four levels by how confident the
participant was in knowing the target landmark location (1: not
at all, 4: very well). For the simulation phase data, simulation
period blocks were binned into four levels based on participant
ratings for (i) simulation vividness (a composite measure of
six questions; see Table 4), and (ii) the spatial coherence of
featural information during a mental simulation (1: vague,
4: clear/distinct). Each GLM was then convolved with the
canonical hemodynamic response function in SPM12 and used to
calculate 335×335 correlation matrices using Fisher transformed
r-values.

Graph Analyses
Calculation of all graph metrics was done using the brain
connectivity toolbox for Python (version 0.44). Briefly, a graph
G (N,E) is characterized as a set of N nodes (here, 335 ROIs)
and E edges (here, Fisher transformed r-values) representing
the relationship between time varying data in any pairwise
combination of nodes. Graphs are represented as a correlation
matrix Cij where i, j is defined by the number of nodes being
analyzed. We analyzed a number of graph metrics for both global
and local networks. A global network is composed of the entire
set of nodes that share at least one direct connection with another
node, while a local network is defined as a subset of nodes that
share some form of connection with a specific node. Both left and
right hippocampal nodes were used to define local networks in
the present study.

Each graph metric was calculated across a range of density
levels by thresholding each correlation matrix Cij based on a
series of cost values (k). Cost thresholds are applied to isolate
a fixed percentage of edges (i.e., connections) between nodes
in a graph. For the present study, we investigated each graph
metric across a k value range of 0.1–0.25 at 0.05 increments
representing the top 10–25% edges in each graph, a similar range
used to identify developmental (Khundrakpam et al., 2013) and
clinical (Bassett et al., 2008) changes in network topology. Each
thresholded correlation matrix was then binarized by setting all
supra-threshold edges to 1 and all sub-threshold edges to 0 to
produce an adjacency matrix used for calculating different graph
metrics.

4https://github.com/aestrivex/bctpy
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Global Network Metrics
We calculated three metrics to investigate reorganization of
global network topology: modularity, global efficiency, and global
flow. Modularity was calculated using a spectral community
detection algorithm developed by Newman (2006). Modules
are defined as a subset of nodes in a graph G (N,E) such
that nodes within a module are more densely connected than
between modules. Partitioning of a graph into modules is
done by maximizing the modularity index Q by iterating
over possible sub-divisions of a network. Q is obtained by
first calculating a modularity matrix Bij using the formula:

Bij = Aij −
kikj

2m

where Aij is the observed number of edges between node i and

j, and kikj
2m is the expected number of edges in a random graph

where ki and kj are the degrees of each node and m = 1
2
∑

i ki is
the total number of edges in the graph. The modularity matrix is
then used to find the most positive eigenvalue and corresponding
eigenvector. Next, the graph is subdivided into two parts based
on the signs of the elements in the vector and repeated for
each of the parts using a general modularity matrix defined as:

B(g)
ij = Bij − δij

∑
k∈g

Bik

where B(g)
ij is the matrix indexed by i,j within group g. See

Newman (2006) for a complete overview of the algorithm
and a full description of the parameters used to optimize
Q.

Global efficiency is the inverse characteristic path length
in a graph ([.e., the average shortest path length between
any two pairs of nodes (Watts and Strogatz, 1998)]. In
functional brain networks, it represents the minimum number
of statistical associations required to link any two brain
regions and is indicative of the integrative and communicative
capacity of a network to share information (Sporns et al.,
2007; Bullmore and Sporns, 2009; van den Heuvel and
Hulshoff Pol, 2010). Its inclusion in the present analysis is to
provide a metric of global integration across all nodes in the
network. Global flow is the average flow coefficient (Honey
et al., 2007) across all nodes in a graph and represents the
degree to which, on average, nodes act as hubs within local
neighborhoods. Its inclusion here is quantify integration at a local
scale.

Node Centrality Metrics for Left and
Right HC
To investigate the role of the left and right hippocampal
nodes within global and local networks, we calculated four
commonly used metrics: betweenness centrality, flow coefficient,
the participation coefficient, and local efficiency. Betweenness
centrality is the number of shortest paths in a network that pass
through a specific node and indicates the importance of a node to
global processing in a network. It is calculated with the formula:

bi =
1

(n− 1)(n− 2)

∑
h, j ∈ N

h 6= i, h 6= j, i 6= j

ρ
(i)
h,j

ρh,j

where ρh,j is the number of shortest paths in a graph that
pass between h and j, and ρ

(i)
h,j represents the number of

shortest paths between h and j that pass through node
i.

The flow coefficient is a measure of local efficiency (Honey
et al., 2007) that quantifies the fraction of all paths with a length
of two divided by the total possible number of paths with length
two that traverse a node. It is calculated as:

FC =
po

pp

where p0 is the number of actual paths with a length of two and
pp is the number of possible paths with a length of two.

The participation coefficient quantifies the amount of inter-
module connections for a node such that nodes with a high
participation coefficient act as connector hubs in a modular
network by integrating processing across different communities.
The participation coefficient is calculated as:

yi
= 1−

∑
m∈M

(
ki(m)

ki

)2

where M is the set of modules identified using a community
detection algorithm, and ki(m) is the number of edges between
node i and all nodes in module m.

Local efficiency is similar to global efficiency but is calculated
using a subset of nodes that share a direct connection with
a particular node. As such, in functional networks it may be
thought of as quantifying communication capacity of a network
centered on a particular brain region. It is defined by Latora and
Marchiori (2001) as the efficiency of a subgraph Gi composed
centered on the ith node, where the subgraph is composed solely
of nodes that are immediate neighbors of i. It is calculated using
the formula:

Eloc(i) =
1

NGi(NGi − 1)

∑
j,h∈Gi

1
ljh

where ljh is the shortest path length between nodes j and h, and
NGii is the number of nodes in the subgraph Gi.

gPPI Data Analysis
To address the feature reinstatement hypothesis, fMRI data were
analyzed at the bivariate level using generalized psychophysical
interaction (gPPI) models and at the multivariate level using
graph theoretical measures. Generalized PPI models allow for the
assessment of context-specific changes in functional connectivity
between a seed region and sets of voxels across the brain
(McLaren et al., 2012). Models are constructed by taking the
interaction between the time course of the seed region and a GLM
describing a task context, and searching for sets of voxels with a
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time course that correlates to the interaction model. Here, we use
right and left hippocampal seeds defined using subject-specific
segmentations generated using the FIRST algorithm in FSL to
investigate context-specific changes in functional connectivity
between simulation and navigation periods, as well as between
simulation periods with different levels of reported vividness and
spatial coherence. All gPPI analyses were conducted as whole
brain analyses and used the standard corrections for multiple
comparisons with a voxel height threshold of p < 0.001 and a
cluster threshold of pFWE < 0.05.

RESULTS

Behavioral Performance
The experiment began with an exposure phase in which
participants viewed a video of passive first person movement
along the perimeter of the city (Figure 1A). Following that,
participants completed the encoding phase in the scanner
(Figure 1C). Each trial began by cueing a target landmark
and asking participants to rate their confidence in knowing its
location within the city (termed the recall block), after which they
were asked to navigate to the cued landmark as quickly as possible
(termed the navigation block). All analyses in this manuscript
that use data from the encoding phase were conducted on the
navigation blocks. A total of 14 participants completed on average
13.14 trials (SD = 4.91) of 21 possible trials during the encoding
phase. Mean path time for the navigation block was 82.7 s
(SD = 69.24) and the average length of time during the recall
block was 2.85 s (SD = 2.09). There was a total of 69 trials
in the low confidence bin and 50 in the high confidence bin.
Path number (i.e., whether a path occurred at the beginning
or end of the encoding phase) and confidence rating were
significantly correlated [r(117) = 0.55, p < 0.001], indicating that
low confidence trials occurred early in the encoding phase and
confidence ratings increased with exposure to the environment.
Confidence ratings were negatively correlated with observed
path time [r(117) = −0.32, p < 0.001] and path efficiency
[r(117) = −0.31, p < 0.001], indicating that higher confidence in
knowing landmark locations was associated with more efficient
navigation.

Following the encoding phase, participants performed the
simulation phase. Here, participants were cued with a starting
and destination landmark from the encoding phase and given
15 s to mentally simulate a route between them in as much
detail as possible. After the simulation, they were placed in front
of the starting landmark within the virtual city and asked to
navigate to the target landmark as fast as possible. Participants
completed an average of 7.79 trials (SD = 2.26) out of 10 possible
trials and spent an average of 1112.37 s (approximately 18 min
and 30 s; SD = 84.2 s) completing the simulation phase. Mean
path time was 60.8 s (SD = 53.98). Simulation vividness (mean
rating = 2.96, SD = 0.75) and spatial coherence (mean rating = 2.9,
SD = 0.99) were significantly correlated [r(102) = 0.52, p < 0.001],
suggesting that highly vivid mental simulations are also spatially
ordered. We also investigated whether simulation vividness and
spatial coherence correlated to observed path time for each of

the subsequent routes. Here, we found a statistically significant
negative correlation [r(102) = −0.41, p < 0.001] between
simulation vividness and observed path time, as well as one
between simulation spatial coherence and observed path time
[r(102) = −0.2, p = 0.044]. This demonstrates that aspects of
feature reinstatement are relating to behavioral performance on
the task, where more vivid and spatially coherent simulations
relating to quicker subsequent path times. We have outlined and
discussed similar findings with a larger behavioral dataset more
widely in a previous study (Arnold et al., 2016), where we suggest
a model in which more effective feature integration relates
to quicker simulation times and subsequently more efficient
wayfinding. Importantly, 44 of the 102 (40%) routes completed
in the simulation phase were not navigated during the encoding
phase, and there was a non-significant correlation for path time
between identical routes in the encoding and simulation phase
[r(58) = 0.18, p = 0.14]. Together, these findings suggest that
participants were not simply replaying memories from the routes
in the encoding phase during mental simulations but instead
simulating novel routes (Arnold et al., 2016).

Global Network Reorganization During
Encoding
Our global integration hypothesis predicts that functional
networks across the brain will demonstrate dynamic
reorganization as mnemonic representations are encoded,
increasing in modularity and decreasing in the amount
integration as encoding occurs. Briefly, graph theoretical
measures are calculated primarily at three levels: (1) across a
global network, where the number of nodes and edges being
analyzed is the total set of nodes and edges in a network; (2)
across local networks, which are subsets of nodes and edges
within a global network that share some specific criteria (e.g., all
nodes in a local network have a direct connection with a certain
node); or (3) on individual nodes and the direct connections
between that node and others in a global or local network. To
investigate this hypothesis, we calculated three graph metrics
at the global network level that are proxies for the degree
of integration occurring at different stages of the encoding
phase. These metrics were calculated first by binning trial-level
navigation blocks (mean path time = 82.7 s) based on the
confidence rating for knowing the target landmark location and
compared them across a range of density thresholds. Confidence
ratings during memory retrieval has been shown to act as an
effective proxy for the engagement of memory-selective neurons
in the HC that are involved in indexing mnemonic features
within declarative memory systems (Eichenbaum et al., 2007;
Rutishauser et al., 2015). Here, they are used to infer encoding
demands. We reasoned that low confidence judgments indicate
higher encoding demands as the participants need to encode
more environmental information into their representations of
the city, whereas high confidence judgments are the result of
feature rich representations. Importantly, we included a choice
during confidence ratings (confidence rating = 1; see “Materials
and Methods”) for when participants were unsure of the target
landmark location, in attempts to remove trials from the low
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confidence bin where the participant was simply guessing or did
not attempt to retrieve the landmark location. In this context, we
believe that the low confidence level (i.e., confidence level = 2)
analyzed here is inclusive of only trials in which the participants
had some sense of where the landmark may be located, but
did not have a detailed memory of how to navigate there and
therefore had higher demands on encoding spatial information.

The first graph metric analyzed was the modularity index
Q (Newman, 2006), a measure of the degree of modularity
observed in a network. Briefly, higher values of Q indicate that
a global network has a more robust modular structure (see
“Materials and Methods” section on global network metrics
for details on the algorithm used to compute Q). Modularity
is theorized to provide a mechanism for adaptability in the
brain (Ghosh et al., 2008; Meunier et al., 2010; Werner, 2010),
with low levels of modularity relating to a higher capacity to
integrate information across a global network. Previous research
has associated changes in modularity with motor learning tasks
(Bassett et al., 2011) and working memory paradigms such as
the n-back task (Stanley et al., 2014; Cohen and D’Esposito,
2016). Our global integration hypothesis uses this perspective
to predict that there would be an increased modular structure
within the brain as mnemonic representations of the virtual
city are encoded. We found support for this hypothesis with
the modularity index Q. For the navigation blocks, there was a
statistically significant difference using paired-samples t-tests the
majority of density thresholds (see Table 1 for complete list of
statistics). We also computed a summary metric by collapsing
across all density thresholds and comparing differences of Q.
There were also statistically significant differences in Q using
this summary metric, [t(55) = −4.87, p < 0.001]. Figure 2A
summarizes these results.

Next, to complement the modularity analysis, we
computed the global efficiency values for each graph
across the different density thresholds. Global efficiency
is calculated at the global network level and represents
the integrative and communication capacity of a network
by indicating, on average, how interconnected nodes in a

TABLE 1 | Statistical results across density thresholds for the global integration
hypothesis.

Hypothesis Graph metric Density (k) t-statistic p-value

Global integration

Q 0.1 −1.85 0.087

0.15 −2.57 0.023

0.2 −2.63 0.021

0.25 −2.5 0.026

Global efficiency 0.1 2.5 0.027

0.15 2.64 0.02

0.2 2.66 0.02

0.25 2.65 0.02

Global flow 0.1 2.32 0.38

0.15 2.54 0.024

0.2 2.69 0.019

0.25 2.72 0.018

network are (Sporns et al., 2007; Bullmore and Sporns, 2009;
van den Heuvel and Hulshoff Pol, 2010). More generally, high
global efficiency networks are characterized by short path lengths
(i.e., the number of edges needed to connect any two nodes in
a network), indicating high levels of information integration,
and has been linked to the capacity to recall spatial features
from memory (Arnold et al., 2014b). As with modularity, our
prediction here was that higher encoding demands on low
confidence trails compared to high confidence ones would
require more integration of information processed across the
brain and therefore be related to higher levels of global efficiency.
We found support for this prediction across all density thresholds
(Figure 2B). There were statistically significant differences across
all density thresholds (Table 1) and for the summary metric
[t(55) = 5.23, p < 0.001].

Thus far the data suggest that as encoding demands decrease,
brain networks reorganize into a more modular state coupled
with a reduction in global integration. Another important aspect
of information flow in networks is based on the topological
structure of local networks (i.e., neighborhoods). Local networks
in the brain are subsets of nodes (i.e., parcellated brain regions)
that share some characteristic, such as a statistically significant
functional correlation with a certain node, and do not incorporate
information about the spatial distribution of nodes. That is, local
networks can consist of spatially distant regions of the brain that
have similar functional activations in response to a task. In the
context of encoding mnemonic representations, it is plausible to
suggest that higher encoding demands are also associated with
increased need for processing within local networks early on.
More specifically, as features of an environment are encoded
into a representation, there may be a higher demand placed
on not only integrating between, but also processing within,
task-relevant systems such as the visual, somatosensory, and
attentional subnetworks. To quantify and compare this, we
calculated the global flow coefficient (Honey et al., 2007). This
metric is the average flow coefficient of the complete set of
nodes within a global network. The flow coefficient (Honey
et al., 2007) represents how efficiently information flows between
neighboring nodes and is therefore representative of integration
within local networks. As such, the global flow coefficient
represents the amount of integration occurring within the
complete set of local neighborhoods in a global network rather
than one neighborhood in particular. Here, the prediction was
that higher values of global flow (and therefore more local
integration) would be associated with the increased encoding
demands of low confidence trials. As with modularity and global
efficiency, we found support for our hypothesis (Figure 2C).
There were statistically significant differences for all density
thresholds (Table 1) and for the summary metric [t(55) = 5.28,
p < 0.001].

Hippocampal Centrality During Encoding
The node flexibility hypothesis predicts that critical convergence
zones such as the HC dynamically change functional interactions
with other brain regions to alter the degree to which
environmental information is integrated into a neural index.
To test this, we investigated how the HC acts as a network
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FIGURE 2 | Global network reconfiguration during representation encoding. Graph metrics evaluating the global integration hypothesis. (A) Increases in the
modularity index Q were observed across the whole 335 ROI network during high confidence navigation blocks across all the density thresholds (upper 10–25% of
connections in the network). (B) Similarly, there were increased global efficiency values across the entire density range during the low confidence trials during
navigation blocks. (C) Low confidence trials were also associated with increased values of global flow for each density threshold. Error bars represent 95%
confidence intervals.

hub at the global, inter-module, and local network level, and
whether change in these measures relate to the reorganization
of global brain networks while representations are formed. This
was done by calculating four node-based metrics that quantify
different aspects of hubness in a network using the navigation
blocks (mean path time = 82.7 s) from the encoding phase that
were binned by confidence rating, similar to the global graph
metrics. The first metric was betweenness centrality, a common
measure of global network centrality that quantifies the number
of shortest paths between nodes that pass through a given node.

This metric is calculated at the global network level, and indicates
the importance of a node (i.e., here, the HC) to information
flow in a global network by serving to connect any two nodes
in a network. Table 2 and Figure 3A summarizes these results.
Here, we found no statistically significant differences at the
different density thresholds during navigation blocks for the right
[summary statistic: t(55) = −0.38, p = 0.7], or left HC [summary
statistic: t(55) =−1.12, p = 0.27]. The lack of statistical differences
here suggests that when considering the brain as a single, global
network, there are no differences in HC centrality. However,

TABLE 2 | Statistical results across density thresholds for the node flexibility hypothesis.

Hypothesis Graph metric Hemisphere Density (k) t-statistic p-value

Node flexibility

Betweenness centrality Right 0.1 0.32 0.75

0.15 0.5 0.63

0.2 0.07 0.95

0.25 0.25 0.81

Left 0.1 0.07 0.95

0.15 1.13 0.28

0.2 0.66 0.52

0.25 0.85 0.41

Flow coefficient Right 0.1 3.08 0.009

0.15 3.15 0.008

0.2 3.26 0.006

0.25 3.07 0.009

Left 0.1 2.44 0.03

0.15 3.05 0.009

0.2 3.42 0.005

0.25 3.09 0.009

Participation coefficient Right 0.1 1.97 0.07

0.15 2.79 0.015

0.2 2.92 0.01

0.25 1.45 0.17

Left 0.1 0.77 0.46

0.15 1.65 0.12

0.2 1.9 0.08

0.25 1.31 0.21
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FIGURE 3 | Centrality measures for hippocampal nodes during representation encoding. Graph metrics evaluating the node flexibility and state transition
hypotheses. (A) No differences were observed across the density thresholds for the betweenness centrality of the left and right HC during navigation blocks. The
summary statistic (betweenness centrality values averaged across density thresholds) was significantly increased during high confidence trials for the left HC during
memory reinstatement. (B) Increased values of the flow coefficient were observed for both the left and right HC in low confidence trials during navigation blocks.
(C) Across the majority of density thresholds (0.15–0.25) there were increased participation coefficient values during low confidence trials for the right HC during
navigation blocks, but only for the summary statistic in the left HC. (D) Across all density thresholds in the right HC and for the majority (0.15–0.25) for the left HC,
there were increased local efficiency values for the hippocampal sub-network during high confidence navigation blocks. Error bars in all graphs represent 95%
confidence intervals.

as demonstrated in the previous section, the brain displays a
modular structure during this task and therefore changes in HC
centrality may only occur within and between modules.

To expand on this, we calculated the flow coefficient (Honey
et al., 2007), a graph theoretical measure that quantifies the
centrality of a node within a local network. High values of the
flow coefficient indicate that a particular node (here, the HC) is
involved in connecting any other two nodes in a local network,
and therefore acts as hub for information flow. Table 2 and
Figure 3B shows the results. We found statistically significant
differences across all density thresholds for the right [summary
statistic: t(55) = 6.45, p < 0.001] and left HC [summary statistic:
t(55) = 6.45, p < 0.001].

The two analyses so far suggest that the HC displays increased
centrality during navigation when encoding demands are high
within a local neighborhood composed of regions that share
a functional connection with the HC, but not when treating
the brain as a global network. Given that there were observed
shifts in modularity associated with encoding demands, it is
plausible that the HC is acting as a connector hub integrating
information across these modules rather than as a hub across a
singular whole brain network. To investigate this, we calculated
the participation coefficient (Guimerà and Amaral, 2005). The
participation coefficient quantifies the amount of inter-module
connections of a node compared to the amount of intra-module

connections, and is representative of the degree to which a
node participates in and integrates across different subnetworks.
These results are summarized in Table 2 and Figure 3C. The
participation coefficient increased when encoding demands were
high across most of the density thresholds and the summary
statistic for the right HC [t(55) = 4.54, p < 0.001], but only with
the summary statistic for the left [t(55) = 2.85, p = 0.006].

Global to Local State Transitions
Lastly, the local efficiency for hippocampal subnetworks was
calculated to test the state transition hypothesis. Local efficiency
(Latora and Marchiori, 2001) is conceptually similar to global
efficiency, in that it quantifies the degree to which any two nodes
in a network are connected, but is calculated on a local network
defined as nodes sharing a direct connection with the HC.
High values of local efficiency represent an increased capacity to
integrate information across nodes in a local network (Rubinov
and Sporns, 2010). As outlined previously, the prediction was
that as participants form representations during encoding, there
should be reconfiguration of network topology during navigation
from a state supportive of global integration to one based on
local network processing. Again, we used the navigation blocks
from the encoding phase (mean path time = 82.7 s) binned
by confidence rating. We found support for this prediction
(Table 3 and Figure 3D) with increased local efficiency in high
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TABLE 3 | Statistical results across density thresholds for the state transition hypothesis.

Hypothesis Graph metric Hemisphere Density (k) t-statistic p-value

State transition

Local efficiency Right 0.1 −3.76 0.002

0.15 −3.15 0.008

0.2 −3.25 0.006

0.25 −3.08 0.009

Left 0.1 −1.04 0.32

0.15 −2.58 0.022

0.2 −3.36 0.005

0.25 −3.04 0.01

confidence navigation blocks for the right [summary statistic:
t(55) = −6.76, p < 0.001] and across the majority of density
thresholds for the left HC [summary statistic: t(55) = −4.21,
p < 0.001].

Hippocampal–Cortical Interactions
During Prospective Mental Simulation
Retrieval and integration of environmental features from
memory into the spatiotemporal context for prospective mental
simulation is believed to operate through the reinstatement
of regional activity in sensory and associative areas of the
cortex, coordinated primarily through pattern completion and
separation mechanisms in the HC (Norman and O’Reilly, 2003;
Stokes et al., 2014; Horner et al., 2015). Based on this perspective,
we formulated the feature reinstatement hypothesis and predicted
that there would be increased functional coupling between the
HC and areas of visual cortex during simulations with high visual
and spatial fidelity. To test this, we binned the 15-s simulation
blocks based on how participants rated the simulation vividness
and spatial coherence in the post-simulation questionnaire (PS-
Q; Table 4). This binning strategy was done on the simulation
phase data that was collected at the completion of the encoding
phase. The binned simulation blocks were then used to construct
gPPI models (McLaren et al., 2012) by multiplying the time
course of BOLD signal in the left and right HC with GLMs
denoting trials with low (PS-Q rating value of 1) and high
(PS-Q rating value of 4) vividness and spatial coherence. All
gPPI analyses were conducted across the whole brain and
were data driven (Biswal et al., 2010), as opposed to using
a prior ROIs, due to the novelty of research into the neural
mechanisms supporting mental simulations which putatively
involve interactions across a wide set of brain regions (Brown
et al., 2016).

During highly vivid simulation blocks, we found evidence
for increased functional connectivity between the right HC
and the superior portion of the left lateral occipital cortex
[t(13) = 4.81, p < 0.001; 128 voxels; peak MNI coordinates:
−46, −64, 46] (Table 5 and Figure 4a). For spatial coherence,
high ratings for spatial coherence during simulations were
associated with increased functional connectivity between
the left HC and areas within the left angular gyrus and
the superior division of the left lateral occipital cortex
[t(13) = 4.34, p < 0.001; 118 voxels; peak MNI coordinates:

TABLE 4 | Post simulation questionnaire (PS-Q) items listed by feature integration
process.

Post-simulation Questionnaire

Vividness

My memory for this route is (1: sketchy – 4: very detailed)
∗My memory for this route is (1: entirely in color – 4: black and white)

My memory for this route involves visual detail (1: little or none – 4: a lot)

Overall vividness of this route is (1: vague – 4: very vivid)

My memory for this route is (1: dim – 4: sharp/clear)

When imagining this route, it was so vivid I felt I was actually navigating it (1: not
at all – 4: a great deal)

Spatial Coherence
∗The relative spatial arrangements of buildings along the route is (1:
clear/distinct – 4: vague)

Temporal Coherence

The order of buildings along the route is (1: confusing – 4: comprehensible)

Fractionation

Simulating the route was like watching a movie in my mind’s eye (1: not at all –
4: very much)

The route was a collection of separate images (1: very much – 4: not at all)

Simulation Confidence

I have doubts about the accuracy of my memory for this route (1: a great deal –
4: no doubts)

Post Route Accuracy

My memory for this route matched my experience (1: not at all – 4: very well)

I was able to mentally simulate this route (1: not at all – 4: a lot)

Other

The route seems (1: long – 4: short)
∗My memory of the starting location for this route is (1: clear/distinct – 4: vague)

My memory for the destination location for this route is (1: vague – 4:
clear/distinct)

∗ Indicates response that was inverted prior to analysis.

−40,−56, 42] (Table 5 and Figure 4b). There were no statistically
significant increases in functional connectivity with the right
or left HC in low vividness or spatial coherence simulation
blocks. Considered together, these results support the feature
reinstatement hypothesis that increased hippocampal–cortical
functional coupling is associated with a high degree of simulation
fidelity, putatively through more effective feature integration
coordinated by the HC through selective functional coupling
with areas of the brain associated with higher-order visual
processing.

Frontiers in Human Neuroscience | www.frontiersin.org 12 July 2018 | Volume 12 | Article 292

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00292 July 18, 2018 Time: 16:14 # 13

Arnold et al. Dynamic Neural Mechanisms of Mnemonic Representations

TABLE 5 | List of brain regions showing increased functional connectivity related to simulation fidelity.

Analysis Peak MNI coordinates (mm)

Source Region Hemisphere X Y Z Cluster size Z-score change

Vividness Right hippocampus Superior lateral occipital cortex Left −46 −64 46 115 0.028

Angular gyrus Left 11

Simulation Left hippocampus Angular gyrus Left −40 −56 42 62 0.058

Superior lateral occipital cortex Left 36

Table shows results for differences in functional connectivity between a source region and a multi-regional cluster. Anatomical regions for each cluster are listed by voxel
size. All clusters were identified using a peak voxel threshold of p < 0.001 and a cluster correction threshold of pFWF < 0.05.

FIGURE 4 | Results from general psychophysiological interaction analyses on mental simulations. (a) Simulations with high visual vividness were found to have
increased functional connectivity between the right HC and a cluster located in the superior division of the left lateral occipital cortex. Graph on right shows Fisher
transformed z-scores for the low vividness and high vividness simulation periods. (b) Similarly, increased functional connectivity was observed between the left HC
and a cluster within both left angular gyrus and the superior division of the lateral occipital cortex. Fisher transformed z-scores for high and low spatial coherence
simulations are on the right. Table 5 lists regions and number of voxels per region for each cluster. Statistically significant clusters were identified using a voxel height
threshold of p < 0.001 and a cluster threshold of pFWE < 0.05. Error bars represent standard error of the mean.

Network Topology and Simulation
Fidelity
In the next analysis, we sought to extend the findings on
changes in hippocampal–cortical functional coupling relating to
simulation fidelity by testing the feature integration hypothesis.
This hypothesis predicts that high simulation fidelity would be
associated with hippocampal-based network states conducive
to information integration. While bivariate techniques such as
gPPI can elucidate the functional coupling between a seed
region and a cluster of voxels sharing similar BOLD response

patterns, multivariate techniques such as graph theory allow
for the assessment of more complex patterns of information
communication and integration by considering the functional
interactions between more than two sets of regions in the brain
(Sporns et al., 2007; Rubinov and Sporns, 2010; Bassett et al.,
2012). Of importance here, graph theoretical measures allow
for assessment of network dynamics in local neighborhoods
(i.e., sub-networks characterized by shared patterns of functional
interactions), and how a particular region (e.g., the HC)
coordinates the information flow between multiple sets of
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regions. To assess how hippocampal network topology relates to
simulation fidelity, we calculated node-based graph theoretical
measures of betweenness centrality, flow coefficient, and local
efficiency for the right and left hippocampal nodes. These
measures quantify the centrality of the HC at the global and local
network level, and assess the communication efficiency of local
HC networks, respectively. Similar to the gPPI analysis, these
measures were calculated by using the 15-s simulation blocks
binned by either vividness or spatial coherence.

The first measure calculated was the betweenness centrality
of the right and left HC. Comparing high and low vividness
simulations (Table 6 and Figure 5A), there were no statistically
significant differences between betweenness centrality values
across the density thresholds in the right [summary statistic:
t(55) = 0.9, p = 0.37] or left HC [summary statistic: t(55) = 1.7,
p = 0.09]. Similarly, comparing high and low spatial coherence
simulations, there were no statistically significant differences
across the density thresholds in the right [summary statistic:
t(55) = 1.27, p = 0.21] or left HC [summary statistic:
t(55) =−0.02, p = 0.99]. As with the confidence judgment analysis
on the encoding phase data, there appears to be no differences
in HC centrality when considering the brain as a single global
network. However, given the modular structure of networks
during the task, it is plausible that there are dynamic alterations
in how the HC interacts between modules and within its local
neighborhood.

Next, we calculated the flow coefficient for the left and
right hippocampal nodes (Figure 5B). In this analysis, the
flow coefficient represents how central information flow vis-
à-vis the HC is within its local network. Here, we found
statistically significant increases in flow coefficients during high
vividness simulations at the higher density thresholds (Table 6
and Figure 5B) for the right [summary statistic: t(55) = −5.22,
p < 0.001] and left HC [summary statistic: t(55) = −5.38,
p < 0.001]. Comparing high and low spatial coherence trials,
we found no statistical differences at the individual density
thresholds (Table 6 and Figure 5B). The summary statistic was
statistically significant for the left [t(55) = −2.52, p = 0.01] but
not the right HC [t(55) =−1.73, p = 0.09].

Thus far, the data show that there are no differences between
the centrality of the HC at the global network level in mental
simulations with high vs. low vividness and spatial coherence.
However, there was evidence for increased hippocampal
centrality within its local neighborhood during mental
simulations with high vividness. Next, we sought to further
evaluate information flow within hippocampal neighborhoods.
As previously outlined, the HC is theorized to coordinate the
selective reactivation of sensory and associative areas of the
cortex using a neural index to reinstate environmental features
from memory and integrate them into a representation used
during mental simulation. A plausible prediction from this is that
in trials with low hippocampal centrality (i.e., trials which tended
to be correlated with low-vividness ratings), the coordination
of feature reinstatement and integration is compensated by
increases in functional interactions between other regions of
the memory system supporting mental simulations (Fornito
et al., 2012). To evaluate this, we calculated the local efficiency

of hippocampal networks. Local efficiency represents the
efficiency of information flow in a subnetwork composed only of
immediate neighbors of a specific node (i.e., a neighborhood).
Comparing simulations of high and low vividness (Table 6
and Figure 5C), there were statistically significant decreases in
local efficiency values for high vividness simulations in the right
hippocampal neighborhood [summary statistic: t(55) = 5.17,
p < 0.001], and across higher density thresholds in the left
hippocampal neighborhood [summary statistic: t(55) = 5.22,
p < 0.001]. We also investigated differences in local efficiency
values of hippocampal networks between simulations with high
and low spatial coherence. For the individual density thresholds,
there were no statistically significant differences for the right
or left hippocampal neighborhoods (Table 6). The summary
statistic was significant for the left hippocampal neighborhood
[t(55) = 2.6, p = 0.011], but not the right [t(55) = 1.6, p = 0.11].
Importantly, comparing the increased flow coefficient and
decreased local efficiency of the right HC network during highly
vivid simulations and the left HC for spatial coherence indicates
that information flow vis-à-vis the HC, rather than increased
information flow between all nodes in the HC network, is vital
for highly vivid simulations.

DISCUSSION

Theoretical and computational models of memory function posit
that mnemonic representations are generated by integrating
sensory features processed across the neocortex into neural
patterns within memory structures, and the retrieval of these
representations involves reinstatement of feature-specific activity
in the neocortex via pattern completion mechanisms in the
HC (Marr, 1971; Damasio, 1989; McClelland et al., 1995; Nadel
and Moscovitch, 1997; Norman and O’Reilly, 2003; Meyer and
Damasio, 2009). While there is increasing evidence for these
models during memory retrieval (Staresina et al., 2013; Watrous
et al., 2013; Gordon A.M. et al., 2014; Schedlbauer et al., 2014;
Horner et al., 2015; Backus et al., 2016), empirical evidence
for how brain networks interact dynamically during encoding
has been lacking. Here, using confidence ratings as a proxy
of processing demands within memory networks (Rutishauser
et al., 2015), we test a series of three hypotheses relating to
dynamic network processes and how mnemonic representations
are encoded and reinstated. The global integration hypothesis
predicts that brain networks are in state of increased integration
when encoding demands are highest. The state transition
hypothesis predicts that as encoding progresses, brain networks
transition from a state of global and inter-module integration
into one emphasizing local processing within hippocampal
networks. The third hypothesis, termed the node flexibility
hypothesis, predicts that the convergence zones such as the
HC flexibly alter functional connections with global and local
networks, increasing in centrality as a global network and inter-
module connector hub when encoding demands are high, and
transitioning to local network processing once representations
are formed. Collectively, the results from this study support
these hypotheses and demonstrate for the first time that the
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TABLE 6 | Statistical results across density thresholds for the global integration hypothesis.

Hypothesis Graph metric Fidelity metric Hemisphere Density (k) t-statistic p-value

Feature integration

Betweenness centrality Vividness Right 0.1 1.91 0.08

0.15 0.43 0.67

0.2 0.34 0.74

0.25 −0.32 0.76

Left 0.1 0.17 0.11

0.15 1.02 0.33

0.2 1.23 0.24

0.25 −0.17 0.87

Spatial coherence Right 0.1 0.7 0.5

0.15 0.37 0.71

0.2 1.58 0.14

0.25 0.11 0.91

Left 0.1 −0.1 0.92

0.15 0.39 0.71

0.2 0.22 0.83

0.25 1.02 0.33

Flow coefficien Vividness Right 0.1 −1.31 0.21

0.15 −3.21 0.007

0.2 −3.45 0.004

t 0.25 −3.34 0.005

Left 0.1 −1.51 0.16

0.15 −2.73 0.017

0.2 −3.12 0.008

0.25 −3.22 0.007

Spatial coherence Right 0.1 −0.77 0.46

0.15 −0.99 0.34

0.2 −0.74 0.47

0.25 −0.88 0.4

Left 0.1 −0.5 0.62

0.15 −1.06 0.31

0.2 −1.54 0.15

0.25 −1.88 0.08

Local efficienc Vividness Right 0.1 2.19 0.047

0.15 3.76 0.002

0.2 3.69 0.003

y 0.25 3.42 0.005

Left 0.1 1.42 0.18

0.15 2.66 0.02

0.2 3.07 0.009

0.25 3.21 0.007

Spatial coherence Right 0.1 0.73 0.48

0.15 0.86 0.41

0.2 0.69 0.5

0.25 0.87 0.4

Left 0.1 0.74 0.47

0.15 1.12 0.28

0.2 1.48 0.16

0.25 1.86 0.09

topological structure of brain networks reconfigures from a
state of global integration to localized processing based on
the degree of integration of environmental information into

a putative representation, and that the HC flexibly changes
its role as an inter- and intra-module connector hub in
response to these integrative demands. The subsequent use
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FIGURE 5 | Results from hippocampal network analyses on mental simulations. (A) No statistically significant differences were found in the betweenness centrality of
the left or right HC comparing either low and high vivid or spatially coherent mental simulations. (B) Increased flow coefficient values were found during highly vivid
simulations in the right and left HC across higher density thresholds. (C) Decreased local efficiency values were found during highly vivid mental simulations in the
right and across the higher density thresholds in the left HC. No statistical differences were observed between high and low spatial coherence mental simulations.
Density thresholds represent the percentage of strongest connections in each network. Error bars represent 95% confidence intervals.

of mnemonic representations during prospection was also
investigated using two hypotheses and shown to be associated
with dynamic changes in network topology. During highly vivid
and spatially coherent simulations, the HC was found to increase
functional interactions with areas of left occipital cortex and
angular gyrus that have previously been associated with object
recognition, manipulation of mental imagery, and awareness
of intended action sequences. Highly vivid simulations were
also found to increase hippocampal centrality in local memory
networks, indicating that the HC is critical for supporting multi-
regional integration of visual information during prospection.
Collectively, these results suggest that dynamic shifts in global
and local network topologies, coordinated in part by changes
to functional interactions with the HC, relate to the degree to
which environmental information is encoded in a mnemonic
representation.

Adaptability of complex networks is thought to operate
in part through the dynamic formation and interaction of
different network communities (Ghosh et al., 2008; Meunier
et al., 2010; Werner, 2010; Bassett et al., 2011), allowing the

network to optimize its output based on relevant environmental
demands. Using 335 ROIs distributed across the brain, we
found support for network adaptability during the encoding
and retrieval of mnemonic representations. During navigation
trials in which participants had low confidence in knowing
the target landmark location, we observed lower values of the
modularity index Q compared with trials in which they had
high confidence in knowing the landmark location. This suggests
that the brain displays an increasingly stable modular topology
as the need to integrate environmental features lessens and can
dynamically reconfigure its community organization based on
changing task demands. This result was extended at the global
and local network level, with low confidence navigation trials
associated with increased values of global efficiency and global
flow across the brain. This pattern of results supports the global
integration hypothesis and provides empirical support at the
network level for the long held but sparsely tested hypothesis
that encoding features into mnemonic representations increases
the integration of information processed in a distributed set
of systems across the brain (Marr, 1971; Damasio, 1989;
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Squire and Zola-Morgan, 1991; McClelland et al., 1995; Nadel
and Moscovitch, 1997; Meyer and Damasio, 2009). Building
on the perspective of Bassett et al. (2011), as well as research
on motor learning (Bassett et al., 2011) and working memory
(Stanley et al., 2014; Cohen and D’Esposito, 2016), we suggest
that adaptability in network topology underlies changes in
how domain-specific information is integrated into holistic
representations in a manner that allows the contents of a
specific representation to become more stable over time. Further,
decreases in global efficiency and increases in hippocampal
community local efficiency indicate that as a representation
is encoded, there is a decreased need to integrate across
sensory and associative systems in the brain and an increased
need to rapidly propagate information within the hippocampal
sub-network. Although more research is needed, particularly
in non-spatial memory paradigms, these findings provide a
tentative experimental framework for understanding the neural
basis of the dynamic formation of networked representations
(Eichenbaum, 2000).

The HC has long been thought to be a primary convergence
zone (Eichenbaum, 2000; Meyer and Damasio, 2009; Mišić et al.,
2014; Backus et al., 2016), receiving multisynaptic inputs from
both sensory cortices and associative systems in the perirhinal
and parahippocampal cortex. This allows for conjunctive coding
of high-level sensory and associative environmental features,
such as spatial information to specific locations (O’Keefe and
Nadel, 1978; Ekstrom et al., 2003) and the temporal sequence
of places and events that form the basis of episodic memories
(Eichenbaum, 2004, 2013; Davachi, 2006; MacDonald et al.,
2011). Although the results of the current study are consistent
with the role of the HC as a convergence zone, the current
findings extend past results and support the node flexibility
hypothesis by showing that the HC demonstrates flexibility
during representational encoding by altering the degree to
which it acts as a connector hub within local networks, as
well as between network modules. On low confidence trials
where encoding demands are highest, we observed increased
values of the flow coefficient, indicating that the centrality of
the HC within its local network is associated with the need to
integrate sensory and associative information. Importantly, we
also observed increased values of the participation coefficient
on low confidence trials in the right HC, supporting its role
as an inter-module hub, combining information processed
within different modules across the brain into a putative
mnemonic representation. Conversely, on high confidence
trials, we found evidence for the state transition hypothesis
local efficiency increased within a hippocampal sub-network.
Considered together, these results suggest that the convergence
of information into the HC is mediated in part by associative
demands during the encoding of a representation, and operates
dynamically by changing the functional interactions within and
between network modules. As representations are formed, the
centrality of the HC decreases while the efficiency of information
flow within hippocampal sub-networks increases. This finding
builds upon past work positing that the learned associations
of a mnemonic representation are related to the topological
composition of functional interactions between brain regions

(Buchel et al., 1999; Eichenbaum, 2000), putatively through the
reconfiguration of hippocampal interactions that initially allow
sensory and associative information to be bound into a holistic
representation that is subsequently coded by the functional
interactions between components of a hippocampal based sub-
network. Additionally, the dynamic nature of cognition during
navigation (Spiers and Maguire, 2008; Ekstrom et al., 2017)
may provide additional demands on network reconfiguration
by requiring that the brain rapidly apply different cognitive
operations that are critical to wayfinding. In the context of the
present study, this suggest that the navigation blocks during
the encoding phase contain instances of different cognitive
processes, such as periodic reinstatement periods, that cumulate
in observable navigation behavior. However, this is speculative
and future research using time sensitive imaging methods such
as multi-band MRI or magnetoencephalography may be able to
further detail how different components of navigation behavior
relate to alterations in network processing.

The reinstatement of mnemonic representations is not
a binary process. Rather, recapitulation of task-oriented
representations during prospection vary in how orderly and
vivid encoded information appears subjectively. Variability in
representation fidelity is theorized to be associated with how
effectively environmental features from previous experiences
can be recapitulated into a mnemonic representation underlying
prospection (Arnold et al., 2016). Based on this and other
outlined theoretical perspectives (Hassabis and Maguire, 2009;
Schacter et al., 2012), we formulated the feature reinstatement
hypothesis that the representational fidelity of a prospective
mental simulation would require increased coordination
between the HC and visual areas of the brain, as the neural
codes of the spatial context in the HC putatively coordinates
the recapitulation of environmental features needing to be
integrated in a task oriented manner. The results from the
current study provide support for this hypothesis by showing
that highly vivid and spatially coherent simulations involve
increased functional coupling between the HC and cortical areas
associated with object representation and the manipulation of
mental simulations. Comparing simulations with high and low
vividness ratings using gPPI models, we observed increased
functional connectivity during highly vivid simulations between
the right HC and the superior division of the left lateral occipital
cortex and the left angular gyrus. Similarly, we found increased
functional connectivity during simulations with high ratings
of spatial coherence between the left HC and the left angular
gyrus and the superior division of the left lateral occipital cortex,
similar to the area identified in the vividness analysis. Lateral
occipital cortex has previously been implicated in representing
high-level visual features of objects and how they are localized
in spatial contexts (Kourtzi and Kanwisher, 2001; Xu and Chun,
2006; Silk et al., 2010). Additionally, this area has been found
to uniquely increase activity during mental simulations that
involve self-referential processes in non-present timeframes (i.e.,
past, future, and imagined) (Nyberg et al., 2010). Angular gyrus
has more widespread functional roles, acting as a multi-modal
hub integrating multisensory information to allow for the
manipulation of mental representations (Seghier, 2013) and
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subjective awareness of intended action sequences and their
consequences in spatial contexts (Farrer et al., 2008; Arnold
et al., 2014b). Considered together, these functional interactions
suggest that the neural codes in the HC representing the spatial
context of a location interact with visual and associative areas of
the cortex to reinstate and organize environmental features from
memory. Critically, the degree of these functional interactions
relate to how effectively environmental features can be reinstated,
integrated, and manipulated during simulation of movement
within a spatial context. This suggests that the neural codes
underlying prospection involve changes in interactions between
the hippocampus and other cortical regions, particularly those
previously shown to integrate multisensory information and act
as a representational buffer for high level spatial information,
rather than resulting from neural processes located solely in the
hippocampus.

Prospection is theorized to rely on functional interactions
between a multi-regional network across the brain (Hassabis
et al., 2007; Schacter et al., 2012; Brown et al., 2016). To
characterize the topological structure of these networks and
how the HC is involved in coordinating information flow
between network components, we sought to complement
the gPPI analysis by investigating changes in hippocampal
network topology associated with representational fidelity.
Here, we tested the feature integration hypothesis that predicts
feature reinstatement and integration requires network states
allowing more efficient communication (Arnold et al., 2014b),
particularly with increased hippocampal involvement in
coordinating information flow. We did not find support
for this hypothesis at the global network level, with no
statistical differences in betweenness centrality values for
the HC when comparing mental simulations with high or
low vividness or spatial coherence ratings. However, within
hippocampal neighborhoods, the right HC had increased
centrality as measured by the flow coefficient during mental
simulations with high vividness ratings and the left HC
with spatial coherence, albeit only the summary statistic.
Additionally, we observed decreased local efficiency, a measure
of information flow between any two nodes in a neighborhood,
in simulations with high vividness ratings within the right
HC neighborhood, and those with high spatial coherence
within the left HC neighborhood. The presence of increased
hippocampal centrality and decreased local efficiency within
hippocampal neighborhoods suggests that coordination of
information flow vis-à-vis the HC within memory networks
during prospection is critical, facilitating the recapitulation and
integration of spatial features from memory into a goal-oriented
mnemonic representation. Conversely, in simulations with low
visual fidelity, the decreased role of the HC in coordinating
information flow appears to be compensated for by increased
functional interactions between other regions in the memory
network. This compensatory mechanism may allow for partial
recapitulation of environmental features from memory, albeit
at a lower visual resolution than simulations with increased
hippocampal coordination (Rosenbaum et al., 2009; Yonelinas,
2013).

CONCLUSION

The present study provides novel empirical support for
critical predictions by theoretical models on how mnemonic
representations are formed and subsequently used in a goal-
oriented manner. We show that on low confidence trials,
which we infer as having increased encoding demands, the
topological structure of the brain is organized to facilitate
global and local information flow. As representations are
encoded, the HC flexibly changes its functional interactions
across the brain, decreasing its role as connector hub within
its local sub-network and across network modules, while
the information flow within the hippocampal community
increases in efficiency. The ability to subsequently use mnemonic
representations for prospection was also related to dynamic
changes in network topology. As predicted, both aspects of
representational fidelity were related to increased functional
coupling between the HC and visual and associative areas
of the brain, putatively allowing for more effective feature
integration during mental simulation. Highly vivid and spatially
coherent simulations were also found to be associated with
both increased hippocampal centrality and decreased local
efficiency within a hippocampal sub-network, suggesting that
the visual basis of a mental simulation requires coordination
of information processing via the HC into high-resolution
mnemonic representations (Rosenbaum et al., 2009; Yonelinas,
2013). This provides a tentative theoretical framework to
understand the dynamic nature of representational encoding
and retrieval, through assessing changes in topological structure
across global and hippocampal based brain networks. Critically,
this study also provides the first direct empirical evidence that
the neural representations underlying prospection are generated
and manipulated through hippocampal–cortical functional
interactions rather than neural codes in the HC alone. Future
research will be able to use this framework to understand
how the pathology of cognitive and neurodegenerative disorders
impacts the topological structure of global and local brain
networks during memory encoding and retrieval, and how
neurostimulation methods enhance the ability to form accurate
mnemonic representations.
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