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Allergic disease is very common and carries substantial public health burdens. We 

conducted a meta-analysis of genome-wide association with self-reported cat, dust-mite, and 

pollen allergy in 53,862 individuals. We used generalized estimating equations to model 

shared and allergy-specific genetic effects. We identified 16 shared susceptibility loci with 

P<5×10−8, including 8 loci previously associated with asthma, as well as 4p14 near TLR1, 

TLR6, and TLR10 (rs2101521: P=5.3×−21); 6p21.33 near HLA-C and MICA (rs9266772: 

P=3.2×10−12); 5p13.1 near PTGER4 (rs7720838: P=8.2×10−11); 2q33.1 in PLCL1 

(rs10497813: P=6.1×10−10); 3q28 in LPP (rs9860547: P=1.2×10−9); 20q13.2 in NFATC2 

(rs6021270: P=6.9×10−9); 4q27 in ADAD1 (rs17388568: P=3.9×10−8); and 14q21.1 near 

FOXA1 and TTC6 (rs1998359: P=4.8×10−8). We identified one locus with substantial 

evidence for differences in effects across allergies, at 6p21.32 in the class II HLA region 

(rs17533090: P=1.7×10−12), strongly associated with cat allergy. Our study sheds new light 

on the shared etiology of immune and autoimmune disease.
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Allergies and allergic asthma are among the most common diseases in the industrialized 

world. In the United States, a nationwide survey showed that over half the population tested 

positive for sensitization to at least one common allergen, a considerable increase over 

results collected approximately ten years earlier1. The cause of this apparent increase in 

prevalence is unknown, but the rapidity with which it has occurred implicates an 

environmental component2. Still, estimates of the heritability of allergy are high3,4, 

suggesting that understanding the genetic liability underlying these conditions is key to 

understanding the disease.

A number of genes implicated in allergy and asthma through association and functional 

studies belong to pathways involved in immune and inflammatory processes, such as innate 

immunity, adaptive immunity, and allergic inflammation5. These genes belong to a range of 

gene families that encode toll-like receptors, interleukins, chemokines, and various other 

signaling molecules and transcription factors. Published genome-wide association studies 

(GWAS) on allergic conditions have focused on asthma and atopic dermatitis, resulting in a 

substantial number of loci associated with asthma (HLA-DQ, IL33, IL18R1, SMAD3, 

GSDMA, IL2RB, RORA, GSDMB, IL13, SLC22A5, DENND1B, PDE4D, ORMDL3, IL6R, 

5q22.1, 11q13.5)6–11 and a smaller number with atopic dermatitis (FLG, OVOL1, ACTL9, 

5q22.1, 11q13.5, 20q13.33)12–14. Studies using other measures of atopy have been less 

definitive, likely due to limited sample sizes15–17; the largest, of allergic rhinitis and IgE 

sensitization to grass pollen, identified three regions with genome-wide significance (class II 

HLA, 5q22.1, 11q13.5).

We selected three common self-reported allergy phenotypes -- pollen allergy, dust mite 

allergy, and cat allergy -- for which comparable data were available in the 23andMe 

participant cohort18 and in a cohort of mothers from the Avon Longitudinal Study of Parents 

and Children (ALSPAC)19 (Table 1). We used generalized estimating equations (GEE) to 

jointly model genetic effects across all three phenotypes. The GEE approach accounts for 

the correlations between the phenotypes, and enables us to estimate both shared and allergy-

specific effects. We first performed a genome-wide meta-analysis of GEE tests for shared 

effects. Then, for a set of 3725 markers with nominal evidence of association with at least 

one allergy, we performed GEE tests for allergy-specific effects (Supplementary Table 1).

In the GEE meta-analysis for shared effects across allergies, we identified 16 genome-wide-

significant loci with P<5×10−8 (Table 2, Fig. 1, Supplementary Fig. 1). Of these, 8 had 

P<5×10−8 in the 23andMe cohort and P<0.05 in the ALSPAC cohort (Supplementary 

Tables 2 and 3). We identified 6 loci with suggestive evidence for association (5×10−8 < P < 

1×10−6) (Supplementary Note). Many of these loci have previously been associated with 

other immunity related phenotypes, and 8 have been associated with asthma in previous 

GWAS (Supplementary Note). While we describe loci by their proximal genes, in most 

cases we have no functional evidence for a specific target, and these variants may affect 

regulation of more distant genes.

To ensure that the results were not confounded by age or differences between genotyping 

platforms, we tested the index SNPs for platform effects and for interactions with age within 

the 23andMe cohort, but no tests yielded strong evidence for interaction after adjusting for 

Hinds et al. Page 2

Nat Genet. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multiple comparisons (Supplementary Table 4). We also tested for pairwise interactions 

among the 22 loci, but none were significant after adjustment for multiple comparisons 

(Supplementary Table 5).

We assessed whether these associations were supported in a companion study of allergic 

sensitization20 (Table 3, Supplementary Table 6). All 22 loci had effects in the same 

direction, and 10 of our 16 genome-wide-significant loci were supported with P<0.05 in the 

sensitization study. We also annotated our findings based on linkage disequilibrium (LD) 

with results from published GWAS, coding variation, monocyte expression quantitative trait 

loci (eQTL)21, and putative regulatory regions identified by the ENCODE project (Table 3; 

Supplementary Tables 7, 8, 9, and 10).

We examined evidence for association in our meta-analysis at other loci previously 

associated with either asthma or atopic dermatitis (Supplementary Tables 11 and 12). We 

have nominal support (P < 0.05, consistent risk allele) for 7 additional asthma loci (IL6R, 

GAB1, RAD50, IL13, IKZF4, RORA, and IL2RB), with a false discovery rate (FDR) of 0.04 

across these variants. For atopic dermatitis, we have nominal support at 5 additional loci 

(IL13, KIF3A, CARD11, MIR1208, and NCF4), with an FDR of 0.07 for this group. These 

results indicate substantial overlap among these phenotypes beyond the loci meeting our 

criteria for significant and suggestive associations.

To test for allergy-specific genetic effects, we included interaction terms for specific 

allergies in our GEE models (Supplementary Table 1). We found one locus with strong 

evidence of allergy-specific effects, on chromosome 6 in the MHC region spanning the 

HLA-DRA, -DRB, -DQA1, and -DQB2 genes (Fig. 2, Supplementary Fig. 2). Index SNP 

rs17533090 had a combined P=1.7×10−12 for interaction with allergy type. Effects for the 

three allergies were consistent across cohorts, and indicated that this locus was specifically 

associated with cat allergy (Fig. 3). Among SNPs in Table 2, only rs2101521 showed 

evidence for an allergy-specific effect (unadjusted P=0.0011), which was weak compared to 

the evidence for a shared effect (P=5.3×10− 21).

We performed an exploratory analysis to assess associations of allergy loci with symptoms 

of allergic rhinitis, allergic contact dermatitis, and allergic asthma in the 23andMe cohort. 

We reclassified cases based on reported symptoms, and used the GEE approach to jointly 

model genetic effects across symptoms (Supplementary Tables 13 and 14). All effects were 

in the same direction at all index SNPs. At most loci, we did not see evidence for differential 

effects (P>0.05 for interaction). The exception was at GSDMB rs9303280, which was most 

strongly associated with asthma (P=0.000035 for interaction). Effect sizes for contact 

dermatitis symptoms tended to be smaller than for asthma (20/23, P=0.0004) or rhinitis 

(18/23, P=0.007). Effect sizes for asthma tended to be larger than for rhinitis, but not 

significantly so (14/23, P=0.30). However, association tests for rhinitis were more 

significant than for asthma at most loci (18/23, P=0.007), often by several orders of 

magnitude. Thus, while asthma may be a slightly more specific atopy phenotype, rhinitis 

appears to be more powerful for discovery of atopy loci in cohort studies, because it is more 

sensitive and captures more individuals who report allergies.
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Genes implicated in our GWAS highlight key pathways in the etiology of common allergy. 

In the 4p14 region near rs2101521, TLR1 (Toll-Like Receptor 1) and TLR6 (Toll-Like 

Receptor 6) encode pattern-recognition receptors whose role in recognizing external 

pathogens and activating appropriate immune responses lies at the interface between innate 

immunity and immunoregulation. Candidate gene studies have identified associations 

between TLRs and asthma22–24, and with grass sensitization and rhinitis17. However, this 

region has not been reported as significant in a genome-wide analysis.

We see substantial overlap between loci associated with allergy and loci previously linked to 

autoimmune disease. In the 5p13.1 region, index SNP rs7720838 is upstream of PTGER4, or 

Prostaglandin E receptor 4, previously implicated as a candidate asthma locus25. This SNP 

is close to a reported association with ankylosing spondylitis (rs10440635, r2=0.94)26. 

Variants affecting PTGER4 expression have also been associated with Crohn’s disease27, 

and mouse studies point to a role in initiating skin immune responses28,29. In the 2q33.1 

region, our eQTL analysis suggests that index SNP rs10497813 is associated with 

expression of PLCL1, or phospholipase C-like 1, involved in inositol 1,4,5-triphosphate 

intracellular signaling30. Variation in PLCL1 (rs6738825, r2=0.97) has also been associated 

with Crohn’s disease31.

Several novel allergy loci are in or near genes involved in T helper cell differentiation. Index 

SNP rs9860547 in the 3q28 region falls in the LPP gene (lipoma-preferred partner). A 

nearby variant in LPP (rs1464510, r2=0.70) has been associated with celiac disease32,33 and 

vitiligo34. Our eQTL analysis suggests that our association may be mediated by an effect on 

expression of BCL6 (B-cell lymphoma 6), a transcription factor that represses STAT6-

mediated response to IL-4 and IL-13, and IgE class switching35, and inhibits type 2 T helper 

(Th2) cell differentiation in a mouse model36. In the 20q13.2 region, index SNP rs6021270 

is in the NFATC2 gene, encoding a component of the NFAT (nuclear factor of activated T 

cells) transcription complex, which plays an important role in regulating Th cell 

differentiation37. Variation in NFATC2 has not been linked to any allergic or autoimmune 

phenotype, however, mice lacking NFATc2 show increased lung inflammation in 

experimentally induced allergic asthma38,39. In the 4q27 region, index SNP rs17388568 falls 

in the ADAD1 gene but evidence for association spans the nearby IL2 and IL21 genes. This 

same SNP has been associated with type I diabetes autoantibodies40 and ulcerative colitis41, 

and a nearby SNP in strong LD (rs2069772, r2=0.91) has been suggestively associated with 

allergic rhinitis17. IL-2 and IL-21 cytokines are involved in regulation of multiple Th cell 

types; IL-21 is up-regulated in Th2 and Th17 cells and inhibits IL-2, while IL-2 is required 

for Th1 differentiation and inhibits differentiation of Th17 cells42.

In the 14q21.1 region, index SNP rs1998359 is upstream of FOXA1, a member of the 

forkhead box transcription factor family. The closely related FOXA2 and FOXA3 

transcription factors have roles in regulation of Th2 mediated inflammation and mucus 

production in allergic airway disease43; while a similar role of FOXA1 has not been 

established, FOXA1 and FOXA2 are known to have overlapping patterns of expression in 

respiratory epithelium44.
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In the 6p21.33 region, HLA-B and HLA-C are major histocompatibility complex (MHC) 

class I molecules expressed on most cell types, responsible for the display of intracellular 

peptides to T cells. MICA belongs to a family of non-classical MHC molecules that 

resemble the class I molecules and are thought to be involved in innate antitumor and 

antiviral surveillance45. Alleles of HLA-B are associated with severe allergic reactions such 

as abacavir hypersensitivity and Stevens-Johnsons syndrome46,47. SNPs in these three genes 

have been associated with a number of immune-system-related phenotypes such as psoriasis 

and HIV-1 control48,49.

Previous studies have suggested associations between specific allergen sensitivities and 

HLA class II alleles50. However, these studies have been small and have reported 

inconsistent results51. Our finding of a specific association with cat allergy is the first 

demonstration of allergen specificity in a GWAS context.

We assessed directionality of effects in cases where our index SNPs are in strong LD (r2 > 

0.5) with SNPs previously associated with autoimmune disease (Supplementary Table 15). 

At some loci (LRRC32, PTGER4, PLCL1, SMAD3, ADAD1, CLEC16A), autoimmune 

disease and allergy are associated with the same risk alleles. At others (GSDMB, LPP), the 

risk allele for autoimmune disease appears to be protective for allergy. Many autoimmune 

diseases are associated with increased activation of type 1 T helper (Th1) responses, while 

allergy has been associated with Th2 activity52. Our results may help to identify elements 

that influence the balance of Th1 versus Th2 activity, versus elements that contribute to both 

responses.

Self reported allergy status can be unreliable53, and the surveys we used were not 

standardized or validated. In the 23andMe cohort, the high proportion of allergy cases likely 

reflects responder bias in completing the allergy survey. The ALSPAC cohort was assessed 

during pregnancy, which can alter allergic disease status54. These limitations should not 

compromise the validity of our genetic associations, but they make functional interpretation 

more challenging.

Our results demonstrate that self reported allergy can be used to identify disease 

susceptibility loci, with results consistent with studies of more narrowly defined allergy 

manifestations and allergic sensitization. Self-directed web-based data collection in the 

23andMe cohort yielded results largely consistent with traditional survey methods used in 

the ALSPAC cohort. Our findings reinforce and extend evidence for a shared genetic 

etiology of allergic and autoimmune disease, with novel allergy susceptibility loci near LPP/

BCL6, HLA-C/MICA, PTGER4, and PLCL1, all previously associated with autoimmune 

disease. Our findings also highlight the role of the Th2 cell lineage in pathogenesis of 

allergy, with associations in or near key Th2 genes including ID2, BCL6, GATA3, IL13, 

IL33, TSLP, and IL1RL1. An important next step will be to more carefully characterize the 

extent to which individual associations lead to a global predisposition to allergy, versus 

effects on specific targets such as skin, lung, or mucosa.
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Methods

23andMe Cohort

Participants in the 23andMe cohort were customers of 23andMe, Inc., a personal genetics 

company, who had been genotyped as part of the 23andMe Personal Genome Service®. 

Individuals included in the analysis were selected for having >97% European ancestry, as 

determined through an analysis of local ancestry via comparison to the three HapMap 2 

populations55. A maximal set of unrelated individuals was chosen for the analysis using a 

segmental identity-by-descent (IBD) estimation algorithm56. Individuals were defined as 

related if they shared more than 700 cM IBD, including regions where the two individuals 

share either one or both genomic segments identical-by-descent. This level of relatedness 

(roughly 20% of the genome) corresponds approximately to the minimal expected sharing 

between first cousins in an outbred population. The study protocol and consent form were 

approved by the external AAHRPP-accredited Institutional Review Board, Ethical & 

Independent Review Services (E&I Review). For a small number of participants (167) under 

the age of 18, consent was provided by a parent, guardian, or legally authorized adult.

DNA extraction and genotyping were performed on saliva samples by National Genetics 

Institute (NGI), a CLIA-certified clinical laboratory and subsidiary of Laboratory 

Corporation of America. Samples were genotyped on one of two platforms. About 35% of 

the participants were genotyped on the Illumina HumanHap550+ BeadChip platform, which 

included SNPs from the standard HumanHap550 panel augmented with a custom set of 

approximately 25,000 SNPs selected by 23andMe. Two slightly different versions of this 

platform were used, as previously described18. The remaining 65% of participants were 

genotyped on the Illumina HumanOmniExpress+ Bead Chip. This platform has a base set of 

730,000 SNPs. This was augmented with approximately 250,000 SNPs to obtain a superset 

of the HumanHap550+ content, as well as a custom set of about 30,000 SNPs. Every sample 

that failed to reach a 98.5% call rate for SNPs on the standard platforms was re-analyzed. 

Individuals whose analyses failed repeatedly were re-contacted by 23andMe customer 

service to provide additional samples, as is done for all 23andMe customers.

Participant genotype data were imputed against the August 2010 release of 1000 Genomes 

reference haplotypes57. First, we used Beagle58 (version 3.3.1) to phase batches of 8000–

9000 individuals across chromosomal segments of no more than 10,000 genotyped SNPs, 

with overlaps of 200 SNPs. We excluded SNPs with minor allele frequency < 0.001, Hardy-

Weinberg equilibrium P<10−20, call rate < 95%, or with large allele frequency discrepancies 

compared to the 1000 Genomes reference data. We then assembled full phased 

chromosomes by matching the phase of haplotypes across the overlapping segments. We 

imputed each batch against the European subset of 1000 Genomes haplotypes using 

Minimac59 (2011-10-27), using 5 rounds and 200 states for parameter estimation. Analyses 

were limited to 7.4 million SNPs with imputed r2 > 0.5 averaged across all batches, and r2 > 

0.3 in every batch.

23andMe participants were able to fill out web-based questionnaires whenever they logged 

into their 23andMe accounts. Allergy information was derived primarily from an “Allergies 

and Asthma” survey (Supplementary Note). The survey covers allergic reactions to 38 
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common allergens, including foods, plants, animals, molds, latex, dust mites, medicines, and 

vaccines. Cases were defined as those who reported a positive allergy test, difficulty 

swallowing or speaking, hives, itchy mouth, itchy eyes, itchy nose, or asthma in response to 

that allergen. Controls were defined as individuals who did not meet these criteria. For 

pollen allergy, we aggregated reports of allergies to grasses, trees, or weeds. At the time of 

the analysis, 30% of 171,274 23andMe research participants had taken this allergy survey. 

We incorporated 7635 additional controls who reported having neither seasonal nor 

environmental allergies in a medical history survey, or who reported not currently having 

allergies in an asthma survey. The final analysis included 46,646 participants.

ALSPAC Cohort

The Avon Longitudinal Study of Parents and Children19 is a large birth cohort that has 

recruited 14,541 pregnant women resident in Avon, UK with expected dates of delivery 1st 

April 1991 to 31st December 1992. Mothers enrolled in the study, filled out a questionnaire 

at the end of the third month of pregnancy, which included questions on allergies. Mothers 

were asked if they were allergic to cat, pollen or dust with the option each time of indicating 

yes or no. The questions did not specify current or past allergy.

Centre National de Génotypage (CNG) carried out DNA genotyping on the Illumina 

human660W-quad array and genotypes were called with Illumina GenomeStudio. PLINK60 

(v1.07) was used to carry out quality control measures on an initial set of 10,015 subjects 

and 557,124 directly genotyped SNPs. SNPs were removed if they displayed more than 5% 

missingness or a Hardy-Weinberg equilibrium P<10−6. Additionally SNPs with a minor 

allele frequency of less than 1% were removed. Samples were excluded if they displayed 

more than 5% missingness, had indeterminate X chromosome heterozygosity or extreme 

autosomal heterozygosity. We restricted the analysis to individuals with European ancestry; 

samples showing evidence of population stratification were identified by multidimensional 

scaling of genome-wide identity-by-state pairwise distances using the four HapMap 

populations as a reference, and then excluded. Cryptic relatedness was assessed using a Pi 

hat of more than 0.125 which is expected to correspond to roughly 12.5% alleles shared IBD 

or a relatedness at the first cousin level.

A total of 8,340 subjects and 526,688 SNPs passed these quality control filters. We imputed 

autosomal SNPs against the HapMap61 CEU population (release 22) using MaCH62 

(v1.0.16, Li 2010). A combination of MaCH and Minimac59 (v4.4.3, 2010-12-13) was used 

to impute X chromosome genotypes against the HapMap CEU population (release 21). 

Analyses were limited to 2.5 million SNPs with imputed r2 > 0.3. Out of 8,340 subjects with 

genotype data, 7,216 had allergy phenotype data and were used in the GWAS.

Ethical approval for the study was obtained from the ALSPAC Law and Ethics Committee 

and the Local Research Ethics Committees.

Single Phenotype GWAS

We performed traditional genome-wide tests for association with each of the three allergy 

phenotypes, using logistic regression, assuming an additive model for genetic effects. The 
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23andMe analyses were adjusted for age, gender, and the top 5 principal components of the 

genotype data matrix. The ALSPAC analyses were not adjusted for covariates. ALSPAC 

GWAS results were remapped to NCBI Build 37 using the liftOver tool63. For each allergy 

phenotype, we used METAL64 to perform an inverse-variance-weighted fixed-effects meta-

analysis across 2.4 million SNPs in the intersection of the 23andMe and ALSPAC results. 

We applied genomic control corrections to the individual GWAS result sets (23andMe: 

λ=1.06 to 1.08; ALSPAC: λ=1.00 to 1.02). The meta-analysis results showed no inflation 

(λ=1.001 to 1.004).

Multiple Phenotype GWAS

We jointly modeled association across the three allergens using generalized estimating 

equations (GEE)65. We used an unstructured correlation matrix for the three outcomes. In 

each cohort, we first fit GEE models with the same covariates used in the single phenotype 

GWAS, with additional terms for interactions between each covariate and allergen, and a 

single shared genotype effect, using a fast approximate method66. Results were adjusted for 

genomic control (23andMe: λ=1.07; ALSPAC: λ=1.02). We performed an inverse-variance-

weighted fixed-effects meta-analysis of the shared effects across the 23andMe and ALSPAC 

cohorts. Then, for a subset of 3725 SNPs with either a single-phenotype P<10−4 with any 

allergy, or P<10−4 in the approximate GEE meta-analysis, we refit GEE models using the R 

package geepack67. In addition to refitting the shared effects, we incorporated interactions 

between genotype and allergy type, and used analysis of deviance to assess significance of 

the interactions. We used Fisher’s method68 to compute combined P values from the 

23andMe and ALSPAC interaction tests. This test combines evidence for an interaction in 

each cohort but does not assess directional consistency of the interactions.

Heterogeneity Assessment

In the 23andMe cohort, we assessed genotyping platform effects by logistic regression of 

platform against 5 principal components and the imputed allele dosage, and performed a 

likelihood ratio test to assess significance of the allele dosage term. We assessed the index 

SNPs for age effects in the 23andMe cohort by fitting a GEE model with an age by dosage 

interaction, and testing significance with a Wald test on the interaction term. We tested 

index SNPs for heterogeneity across cohorts using Cochran’s Q statistic, and used I2 to 

measure the extent of heterogeneity69. We determined confidence intervals for I2 using the 

non-central χ2 method (Supplementary Table 4). While several SNPs have large I2, 

confidence intervals are very wide and remain consistent with the null hypothesis of no 

heterogeneity.

Assessment of SNP Interactions

In the 23andMe cohort, we fit GEE models assuming shared effects across allergy types 

with allele dosages and interactions for all pairwise combinations of the 22 shared-effect 

index SNPs and rs17533090 (Supplementary Table 5). We used Wald tests to assess 

significance of the interaction terms. Given a conditioning SNP1 and tested SNP2, we also 

computed a joint test of both the main effect of SNP2 and the interaction SNP1×SNP2 being 

equal to zero.
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Functional Annotation

We used publicly available bioinformatic resources to annotate putative associations. 

Generally, we required that an annotated variant be within 500 kb of our index SNP, with 

r2>0.5 based on the European subset of 1000 Genomes haplotypes. We used the NCBI Gap 

Plus resource to identify nearby GWAS findings (Supplementary Table 7). We used tables 

from the UCSC Genome Browser to identify nearby coding SNPs (Supplementary Table 8). 

We identified nearby expression quantitative trait loci (eQTL) from a study of monocytes21 

(Supplementary Table 9). We also used HaploReg70 to identify nearby annotations from the 

ENCODE project71 (Supplementary Table 10). Finally, we took all reported associations 

with asthma or atopic dermatitis from the NHGRI GWAS Catalog72, and looked up our 

corresponding meta-analysis results (Supplementary Tables 11 and 12).

Assessment of SNP Effects on Allergy Symptoms

In the 23andMe cohort, we reclassified cases based on self report of allergic symptoms 

representing allergic rhinitis, allergic asthma, and/or allergic contact dermatitis 

(Supplementary Methods). We performed a GEE analysis across these multiple outcomes, 

including the same controls used in the GWAS (Supplementary Tables 13 and 14). The 

model included the same covariates used in the GWAS (age, gender, 5 principal 

components), as well as interactions between these covariates and symptom type.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of meta-analysis results for shared effects. The plotted values represent the 

most-significant scores from the meta-analyses of cat, pollen, and dust mite allergy, with all 

results with P<10 −4 recomputed using generalized estimating equations to assess effects 

shared across allergens. Results with P<5×10−8 are shown in red. Gene labels are provided 

for cross referencing with other results and are not intended to suggest that we have 

established a causal basis for the observed associations.
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Figure 2. 
Manhattan plot of meta-analysis results for interactions with allergen. Results with 

P<5×10−8 are shown in red. Interaction tests were performed for markers with P<1e-4 for 

association with at least one of cat, pollen, or dust mite allergy.
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Figure 3. 
Marginal effect sizes and 95% confidence intervals for rs17533090 for cat, pollen, and dust 

mite allergy, in the 23andMe and ALSPAC cohorts. Effects are odds ratios for the high risk 

G allele of rs17533090.

Hinds et al. Page 15

Nat Genet. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hinds et al. Page 16

Table 1

Demographic characteristics of cohorts.

23andMe ALSPAC

N % N %

Total 46646 100.0 7216 100.0

Gender

 Male 26344 56.5 0 0.0

 Female 20302 43.5 7216 100.0

Age

 age <= 30 4300 14.6 4829 67.0

 30 < age <= 45 8088 31.1 2382 33.0

 45 < age <= 60 6282 25.6 0 0.0

 60 < age 6428 28.7 0 0.0

Allergy status

 cat allergy 10509 22.5 704 9.8

 dust mite allergy 9815 21.0 964 13.4

 pollen allergy 16133 34.6 1201 16.6

Number of allergies

 three allergies 4947 10.6 328 4.6

 any two allergies 6228 13.3 536 7.4

 any one allergy 9160 19.6 813 11.3

 no allergies 26311 56.4 5539 76.8
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