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Abstract
Background: Microfluidic clotting assays permit drug action studies for hemophilia 
therapeutics under flow. However, limited availability of patient samples and Inter-
donor variability limit the application of such assays, especially with many patients 
on prophylaxis.
Objective: To develop approaches to phenocopy hemophilia using modified healthy 
blood in microfluidic assays.
Methods: Corn trypsin inhibitor (4 µg/mL)-treated healthy blood was dosed with 
either anti–factor VIII (FVIII; hemophilia A model) or a recombinant factor IX (FIX) 
missense variant (FIX-V181T; hemophilia B model). Treated blood was perfused at 
100 s−1 wall shear rate over collagen/tissue factor (TF) or collagen/factor XIa (FXIa).
Results: Anti-FVIII partially blocked fibrin production on collagen/TF, but completely 
blocked fibrin production on collagen/FXIa, a phenotype reversed with 1 µmol/L 
bispecific antibody (emicizumab), which binds FIXa and factor X. As expected, emi-
cizumab had no significant effect on healthy blood (no anti-FVIII present) perfused 
over collagen/FXIa. The efficacy of emicizumab in anti-FVIII-treated healthy blood 
phenocopied the action of emicizumab in the blood of a patient with hemophilia A 
perfused over collagen/FXIa. Interestingly, a patient-derived FVIII-neutralizing an-
tibody reduced fibrin production when added to healthy blood perfused over col-
lagen/FXIa. For low TF surfaces, reFIX-V181T (50 µg/mL) fully blocked platelet and 
fibrin deposition, a phenotype fully reversed with anti-TFPI.
Conclusion: Two new microfluidic hemophilia A and B models demonstrate the po-
tency of anti-TF pathway inhibitor, emicizumab, and a patient-derived inhibitory an-
tibody. Using collagen/FXIa-coated surfaces resulted in reliable and highly sensitive 
hemophilia models.
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1  | INTRODUC TION

Congenital hemophilia is a genetic disorder that increases bleeding risk 
in affected individuals. The 2 major types of the bleeding disorder are 
hemophilia A, with a deficiency in coagulation factor VIII (FVIII), and 
hemophilia B, with a deficiency in factor IX (FIX).1 In healthy subjects, 
FVIIIa (activated FVIII) acts as a cofactor for FIXa, serving to increase 
the affinity of FIXa for factor X (FX) by 10 000-fold. FIXa then con-
verts FX to FXa. Both FVIII and FIX are parts of the intrinsic pathway 
of coagulation, which is impaired in patients with hemophilia. Based 
on the residual factor levels, the bleeding disorder can be categorized 
into severe (<1% residual factor activity), moderate (1%-5%), and mild 
(5%-40%). However, while residual FVIII/FIX activity is useful for the 
stratification of patients, the bleeding risk among these groups can 
vary considerably and is influenced by multiple factors such as genetic 
mutation types or von Willebrand factor levels.2‒5 Individuals with he-
mophilia A or hemophilia B are more likely to have bleeding in the joints 
where tissue factor (TF) expression is considered low and weight/im-
pact-induced biomechanical perturbation of the joint is high.

Conventional treatment for patients with hemophilia is the admin-
istration of intravenous factor replacements to restore their residual 
factor levels, and this can be done prophylactically or on demand. 
One third of patients with severe hemophilia A develop neutralizing 
antibodies against FVIII and 1.5% to 3% of patients with hemophilia 
B develop FIX-neutralizing antibodies. These “inhibitor” patients are 
treated with bypassing agents such as activated prothrombin com-
plex concentrates or recombinant FVIIa (rFVIIa).6,7 rFVIIa enhances 
FX activation through TF-dependent, cellular surface–dependent, 
and endothelial protein C receptor–dependent pathways.8 A recent 
advance is the development of a bispecific antibody (emicizumab), 
which mimics FVIIIa function9,10 by transiently binding FIXa and its 
substrate FX to mediate FXa generation. Emicizumab is advanta-
geous, as it can be subcutaneously administered, has a long half-life 
(4 weeks), and no immunoglobulin G (IgG)-based immune responses 
have been reported so far. More importantly, the bispecific antibody 
can be used in patients with and without FVIII inhibitors. In addition 
to the traditional bypassing agents and FVIIIa-mimicking bispecific 
antibodies, several other novel agents are being investigated. For 
example, 3 monoclonal antibodies against tissue factor pathway 
inhibitor (TFPI) are currently in different phases of development.11

Various in vitro models/assays have been used to study the ef-
fect of coagulation factor modulation on fibrin formation under flow 
conditions.12‒18 Sakurai et al17 demonstrated that FVIII inhibition re-
duced fibrin accumulation, similar to the response observed in he-
mophilia A blood. Onasoga-Jarvis et al15 reported that adding rFVIIa 

to FVIII-deficient blood could restore fibrin generation and poten-
tially lead to a prothrombotic state. Swieringa et al12 demonstrated 
that perfusion of FIX-deficient blood (5% FIX) over collagen/TF mi-
croposts led to impaired fibrin formation. Thomassen et al14 showed 
that TFPI-α antagonism was able to increase fibrin formation in 
blood from both healthy donors and patients with hemophilia. 

The determination of residual FVIII/FIX activity is assessed in 
the clinic using a static assay that uses plasma rather than whole 
blood. Microfluidic assays allow the phenotyping of whole blood 
from patients with hemophilia and provide a platform to assess the 
efficacy of various therapeutics under flow in a high-throughput 
fashion.15,19‒24 In such assays, whole blood is perfused over pro-
thrombotic surfaces such as collagen or collagen/TF, and clot growth 
is measured. Blood from patients with severe hemophilia displays a 
defect in both platelet deposition and fibrin formation under flow. 
In contrast, blood from patients with moderate and mild hemophilia 
displays relatively normal platelet deposition with deficits in fibrin 
formation. Patient recruitment, variability in their clinical presenta-
tion, and interference from prophylactic products all pose significant 
challenges to the development of whole blood microfluidic assays 
to study drug potency or mechanism of action on a background of 
hemophilia. As more patients switch to novel therapeutics like emi-
cizumab with a longer half-life (4 weeks as opposed to 1 week for 
the traditional FVIII products), drug testing in patient blood with-
out interference from prophylactics may become increasingly dif-
ficult. Therefore, it would be useful to recapitulate the hemophilic 
phenotypes ex vivo using treated blood from healthy donors. Such 
hemophilia models allow significantly greater throughput and stan-
dardization compared to using blood from patients with hemophilia. 
Donated blood from healthy donors is more readily available and 
excludes the potential interference of other drugs. We present 2 he-
mophilia microfluidic assays using healthy adult blood to study the 
effect of bypassing agents. The use of highly diluted TF or FXIa in the 
triggering surface allowed the dose-response testing of anti-TFPI, 
emicizumab, and a patient-derived FVIII-neutralizing antibody.

2  | METHODS

2.1 | Blood collection

Whole blood (1 mL) was collected into a syringe containing corn trypsin 
inhibitor (CTI, 4 µg/mL) to lightly suppress contact pathway activation 
of FXIIa during sample collection and handling. Whole blood was sub-
jected to microfluidic assay within 10 minutes of collection.

Essentials

• Limited availability of patient samples is a major challenge for hemophilia drug action studies.
• Microfluidic assays using blood from healthy donors were developed to phenocopy hemophilia.
• A hemophilia A assay demonstrated the potency of emicizumab on collagen/FXIa-coated surfaces.
• A hemophilia B assay demonstrated potency of anti-TFPI on collagen/TF-coated surfaces.
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2.2 | Reagents

Reagents were obtained as follows: Alexa Fluor 488 conjugated 
anti-human CD61 (Bio-Rad), AF647 conjugated human fibrino-
gen (ThermoFisher Scientific), type I fibrillar collagen (Chrono-
log), Dade Innovin lipidated tissue factor (TF, Siemens), CTI and 
FXIa (Haematologic Technologies), 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid (HEPES; Fisher Scientific), Sigmacote (Sigma), 
Anti-FVIII (4A4) and anti-FIX (BC2; Green Mountain Antibodies), 
Anti-TFPI (gA200 hIgG1, Bayer, Whippany), bispecific antibody (emi-
cizumab), reFIX-V181T variant,25 and a recombinant rIgG4 contain-
ing complementarity-determining regions originally derived from a 
patient (NB41, as described in van den Brink26).

2.3 | Microfluidic clotting assay

Whole blood was perfused over a patterned prothrombotic sur-
face to trigger clot formation in microfluidic devices at 1 µL/min 
per channel. A single 250-µm-wide channel polydimethylsiloxane 
(PDMS) patterning device was vacuum-sealed to a Sigmacote-
treated glass slide, as previously described.27,28 A total of 5 µL of 
fibrillar collagen was perfused through the channel to pattern a 
stripe of aligned collagen fibers. For TF-dependent assays, this step 
was followed by TF perfusion (20 nmol/L or 1 nmol/L, 5 µL) and 
incubated under static conditions for 30 minutes to allow binding 
to collagen. For intrinsic pathway–dependent assays, FXIa (4.9 µg/
mL, 5 µL) was used instead of TF. The channel was then rinsed with 
20 µL of 1% bovine serum albumin. The patterning device was then 
replaced by an 8-channel PDMS device positioned perpendicularly 
to the surface pattern stripe to form 8 uniformly distributed pro-
thrombotic patches (250 µm × 250 µm) (Figure S1A). Anti-FVIII 
(4A4) and patient-derived NB41 were used to inhibit FVIII activity 
in healthy blood to recapitulate hemophilia A clotting defect. Anti-
FIX (BC2) and reFIX-V181T variant were used to inhibit FIX activity 
in healthy blood to recapitulate hemophilia B clotting defect.

2.4 | Imaging

Platelet and fibrin were detected by an epifluorescence microscopy 
(IX81; Olympus America Inc.) and a charge-coupled device camera 
(Hamamatsu, Bridgewater, NJ, USA). A 10X objective/0.30NA was 
used in all of the experiments. ImageJ (NIH, Bethesda, MD, USA) 
was used to analyze acquired images. The mean fluorescent inten-
sity was measured over the central 75% of the channel to eliminate 

side-wall effects. The fluorescence values were background-cor-
rected by subtracting the signals at the first time point.

2.5 | Statistical analysis

Differences between control and treated groups were analyzed with 
2-way analysis of variance (with Bonferroni posttest) or Student t-
test. The difference was considered significant at P < 0.05. The num-
ber of donors (N) and number of clots (n) are shown in the figures or 
figure legends.

3  | RESULTS

3.1 | Hemophilia A model

A commercially available murine FVIII-neutralizing antibody (anti-
FVIII) was added to healthy blood to recapitulate the hemophilia 
A phenotype in our device (Figure 1A). We have previously shown 
that whole blood perfused over collagen/TF (Figure 1B) could be 
used to study TF-dependent therapeutics.19 FVIII inhibition did not 
result in marked decreases in platelet accumulation (Figure 1D), but 
all 3 doses of anti-FVIII significantly reduced fibrin generation. In 
the presence of TF, the effect of FVIII inhibition only started to 
manifest at later time points. We have previously used collagen or 
collagen/kaolin to activate the contact pathway24; however, fac-
tors such as device surface treatment and incubation time could 
influence the onset and the extent of contact activation. Here, we 
present a modified assay using collagen/FXIa as the surface trigger 
(Figure 1C) to activate the intrinsic pathway (Figure S5). On colla-
gen/FXIa surfaces, FVIII inhibition resulted in a slight reduction in 
platelet deposition (Figure 1F) after 7 minutes. More importantly, 
anti-FVIII at concentrations ≥ 25 µg/mL abolished fibrin generation 
(Figure 1G). Platelet deposition in FVIII-inhibited blood (Figure 1F) 
began to deviate from the control shortly after onset of fibrin po-
lymerization (Figure 1G). We also treated healthy blood with a neu-
tralizing FVIII-binding antibody (15 µg/mL) derived from patients 
with hemophilia A (Figure 1H,I), and similar results were observed.

3.2 | The effect of an FVIIIa-mimetic bispecific 
antibody in hemophilia A assay

A humanized bispecific antibody (emicizumab) mimics FVIIIa func-
tion and restores hemostasis by bringing FIXa and FX together to 

F I G U R E  1   Hemophilia A assay. In a microfluidic device (A), whole blood was perfused over collagen/TF surfaces (B) and collagen/
FXIa surfaces (C) to form thrombi. Murine anti-FVIII (4A4) caused no change in platelet deposition (D) and a reduction in fibrin generation 
(E) on collagen/TF. The same concentrations of the FVIII inhibitory antibody slightly reduced platelet deposition (F) and abolished fibrin 
accumulation (G) on collagen/FXIa, similar to results obtained with a patient-derived anti-FVIII (H, I). Differences between control and 
treated groups were analyzed with 2-way analysis of variance with Bonferroni posttest. *P < 0.05. Shaded areas represent standard 
deviation. CTI, corn trypsin inhibitor; FI, fluorescence intensity; FVIII, factor VIII; FXIa, factor XIa; TF, tissue factor; WB, whole blood
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support FX activation. Adding the bispecific antibody to healthy 
blood (no anti-FVIII) did not increase platelet accumulation 
(Figure 2A), but it slightly shortened the lag time preceding fibrin 
polymerization (Figure 2B) in a dose-dependent manner. The rate 
of fibrin polymerization following the onset appeared to be un-
changed since the fibrin generation curves obtained at different 
doses can be superimposed by horizontal shifts along the time 
axis. Similar to the platelet response in healthy blood, emicizumab 
did not alter platelet accumulation (Figure 2C) in our hemophilia 
A model. In contrast, emicizumab dose-dependently reduced fi-
brin generation lag time and increased fibrin polymerization rate 
(Figure 2D).

The results at the time of control clot occlusion are shown in 
Figure S1 and plotted in bar graphs (Figure 3). Neither emicizumab 
nor the anti-FVIII antibody caused any significant changes in plate-
let fluorescence (Figure 3A). All 3 doses of emicizumab (0.01, 0.1, 
1 µmol/L) significantly increased fibrin polymerization (P < .05, 
Figure 3B) in whole blood treated with anti-FVIII, with a modest 
dose-dependent effect on untreated whole blood. The highest 
dose (1 µmol/L) of the bispecific antibody largely restored fibrin 
polymerization compared to the healthy adult control level. We 
also tested emicizumab in blood obtained from a patient with mild 
hemophilia. In Figure 3B (N = 3 donors, n > 5 clots) at occlusion, 
the coefficient of variation was < 15% for high bispecific antibody 

F I G U R E  2   Testing emicizumab in hemophilia A assay. The effect of the bispecific antibody on platelet and fibrin deposition were 
investigated in healthy blood (A, B) and hemophilia A mimetic blood (C, D). Emicizumab dose-dependently restored coagulation in the 
hemophilia model (D), but it only slightly increased fibrin generation in blood from healthy donor (B). Differences between control and 
treated groups were analyzed with 2-way analysis of variance with Bonferroni post-test. *P < 0.05. Shaded areas represent standard 
deviation. Ab, antibody; FI, fluorescence intensity; FVIII, factor VIII; FXIa, factor XIa; WB, whole blood
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in unmodified healthy blood. Similarly, the acquired hemophilia A 
model generated essentially no fibrin and high levels of bispecific 
antibody absolutely rescued fibrin production (P = 1.77*10-5) over 3 
donors. Similar to the results in our hemophilia A assay, platelet ac-
cumulation (Figure 4A) was insensitive to emicizumab, whereas the 
drug dose-dependently rescued fibrin polymerization (Figure 4B) in 
the blood of the patient with hemophilia A (7% of normal FVIII). This 
was a single hemophilia patient experiment (2 clots per condition) 
that demonstrated a striking 554.5% increase in fibrin with drug. In 

addition to emicizumab, Advate also restored fibrin generation in 
blood of the patient with hemophilia A (Figures S2 and S3).

3.3 | Hemophilia B model

To recreate the phenotype of hemophilia B, we tested the effect of 
a murine FIX-neutralizing antibody (anti-FIX) on healthy blood clot-
ting. Because anti-FIX only partially inhibited fibrin polymerization 

F I G U R E  3   Emicizumab restored fibrin generation in hemophilia A assay. At the occlusion time (11 min), the bispecific antibody had no 
effect on platelet deposition (A), but it increased fibrin polymerization (B) in both healthy and hemophilia A blood. Differences between 
control and treated groups were analyzed with Student t-test. *P < 0.05. Shaded areas represent standard deviation. Ab, antibody; FVIII, 
factor VIII; n.s., nonsignificant
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on collagen/TF (Figure S4), we used a recombinant FIX variant (reFIX-
V181T) in our hemophilia B model to achieve FIX inhibition. It has been 
shown that certain mutations at position 181 (legacy numbering) lead 
to moderate to severe hemophilia B.29,30 FIX-V181T has significantly 
reduced activity causing prolonged clotting time in activated partial 
thromboplastin time assays.25 When added to healthy blood, low-
activity variants like reFIX-V181T can compete with endogenous FIX 
to impair FXa generation. CTI-treated whole blood (±50 μg/mL FIX-
V181T) was perfused over collagen/TF surfaces at an initial venous 
shear rate of 100 s-1. Recombinant FIX-V181T reduced both platelet 
deposition (Figure 5A) and fibrin generation (Figure 5B). The FIX variant 
also reduced platelet accumulation (Figure 5C) and fibrin polymerization 

(Figure 5D) on collagen surfaces with diluted TF (20-fold TF dilution fac-
tor). Although less fibrin was made at low TF in comparison to the high 
TF condition, the 95% inhibition by reFIX-V181T was more pronounced 
on low TF surfaces providing a larger dynamic range for the assay.

3.4 | The effect of anti-TFPI in hemophilia B assay

The use of reFIX-V181T to recreate hemophilia B phenotype al-
lowed us to test the effect of bypassing agents such as anti-TFPI. 
The control experiment in Figure 5 tested the effect of TF level on 
the clotting response and demonstrated low TF has better dynamic 

F I G U R E  5   Hemophilia B assay. Whole blood was perfused over collagen/TF surfaces to form clots. Recombinant FIX variant inhibited 
platelet deposition (A) and fibrin generation (B). The same concentration of reFIX-V181T abolished platelet (C) and fibrin accumulation 
(D) when TF was diluted by 20-fold. Differences between control and treated groups were analyzed with 2-way analysis of variance with 
Bonferroni posttest. Shaded areas represent standard deviation. CTI, corn trypsin inhibitor; DF, dilution factor; FI, fluorescence intensity; TF, 
tissue factor; WB, whole blood
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range for subsequent figures: Low TF was then used in Figure 6. 
Adding anti-TFPI did not significantly affect platelet accumulation 
(Figure 6A) in healthy adult blood (no reFIX-V181T present) on low 
TF surfaces likely because collagen alone was a potent platelet ago-
nist. However, all 3 doses of anti-TFPI significantly enhanced fibrin 
polymerization (Figure 6B) to the same level. Also, the control chan-
nels occluded by 8 minutes. When healthy blood was dosed with 
50 µg/mL of reFIX-V181T, anti-TFPI (≤12 µg/mL) dose-dependently 
restored platelet deposition (Figure 6C) and increased fibrin polym-
erization (Figure 6D). This was in agreement with results of conci-
zumab from a previous clinical trial.31

4  | DISCUSSION

Here, we report ex vivo hemophilia models that allow the assess-
ment of novel FVIII/FIX replacements and bypassing agents. In 
the past, we have used blood inhibited with low levels of CTI to 
investigate hemophilia A phenotypes on collagen/±TF surfaces. 
Consistent with the previous observation that high levels of TF 
can partially compensate for the FVIII deficiency,19 adding the 
anti-FVIII inhibitory antibody to the whole blood from healthy in-
dividuals reduced but did not abolish platelet and fibrin deposition. 
Platelet accumulation was unaffected possibly due to the strong 

F I G U R E  6   Testing anti-TFPI in hemophilia B assay. The effect of anti-TFPI on platelet and fibrin deposition were investigated in healthy 
blood (A, B) and hemophilia B mimetic blood (C, D). Anti-TFPI not only restored coagulation in hemophilia A model (D), but it also has a 
procoagulant effect in blood with normal FIX activity (B). This is in agreement with results of another anti-TFPI (concizumab) from a previous 
clinical trial.34 Differences between control and treated groups were analyzed with 2-way analysis of variance with Bonferroni posttest. 
*P < 0.05. Shaded areas represent standard deviation. CTI, corn trypsin inhibitor; FI, fluorescence intensity; n.s., nonsignificant; TF, tissue 
factor; TFPI, tissue factor pathway inhibitor; WB, whole blood
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activation by the collagen trigger and ADP/thromboxane A2 re-
lease. While the TF-dependent pathway alone was able to generate 
enough thrombin for fibrin polymerization, all 3 doses of anti-FVIII 
reduced fibrin generation after 5 minutes due to the defect in the 
FXI-thrombin feedback loop.32 This reduction in the late-stage fi-
brin generation was similar to the previously reported results for 
FXI-inhibited clot formation.33

Traditionally, kaolin is used to study TF-independent clotting in 
healthy/hemophilic blood assays. Here, we developed a new method 
using collagen/FXIa surfaces to potently and locally activate the in-
trinsic pathway. The use of FXIa bypasses the need for FXII activa-
tion; therefore, blood can be collected in high levels of CTI (40 µg/
mL), which alleviates the need to start the assay right after the blood 
collection. In Figure 4, all 3 concentrations of the murine FVIII-
neutralizing antibody (4A4) abolished fibrin generation on collagen/
FXIa within the experimental time frame. This was also true for the 
recombinant IgG4 NM41, which was derived from an inhibitor pa-
tient.26 Because collagen alone was potent enough to drive platelet 
aggregation to full occlusion, it was difficult to capture the effect 
of anti-FVIII on platelets. In contrast, the sensitivity and the large 
dynamic range of fibrin polymerization makes the system a good 
platform to study novel therapeutics such as FVIII-mimetics like 
bispecific antibodies in a low-TF environment. Using this collagen/
FXIa-based assay, we demonstrated that Advate and emicizumab 
were able to restore coagulation in hemophilia A blood, therefore 
recapitulating the situation in vivo.

We also quantitatively validated our microfluidic hemophilia A 
model by measuring the restoration of fibrin polymerization in he-
mophilia A-mimetic blood by emicizumab. These experiments high-
light the advantage of being able to run a paired control alongside 
the treatment sample in our hemophilia assay. Because the time of 
blood collection from patients can be unpredictable, it has previ-
ously been difficult to coordinate a side-by-side comparison like this 
between healthy and hemophilic patient blood without having an 
on-demand healthy donor available. Using healthy blood not only 
generates standard curves of normal clot growth but also provides 
insights into potential thrombotic risks. For example, emicizumab 
caused a small dose-dependent shift toward earlier time points for 
fibrin generation in blood with normal FVIII activities. This is likely 
due to the strong activation of FIX by the concentrated FXIa on the 
surface.

The use of a FIX missense variant allowed us to recreate a he-
mophilia B phenotype. The surface trigger concentration is tunable 
and can be adjusted to represent different levels of TF expression 
in different sites in the body. By reducing the surface TF concen-
tration, we were able to increase the dynamic range for platelet 
and fibrin deposition. Adding anti-TFPI to blood in the presence of 
reFIX-V181T dose-dependently rescued platelet deposition and fi-
brin formation. In contrast, adding anti-TFPI to healthy adult blood 
did not alter the platelet response but it did enhance fibrin polym-
erization at all 3 doses. This indicates that anti-TFPI is potentially 
effective at restoring hemostatic activity in patients with severe 
hemophilia.

For anti-FVIII > 25 µg/mL, fibrin polymerization was abolished 
on collagen + FXIa. Similarly, FIX-V181T > 50 µg/mL caused a very 
substantial reduction of fibrin generation on collagen + low TF. This 
extent of coagulation defect was equivalent to observations of fibrin 
formation previously reported for severe FVIII- and FIX-deficient 
patients,19,24 where residual activities of FVIII or FIX were <1% of 
normal.

In conclusion, we have developed 2 hemophilia assays that mimic 
hemophilia A and hemophilia B phenotypes through dosing readily 
accessible healthy blood with a FVIII-neutralizing antibody and a 
recombinant FIX variant, respectively. The surface trigger concen-
tration is adjustable and either collagen/TF or collagen/FXIa can be 
used depending on the pathway of interest. While factor inhibition 
is what enables us to phenocopy hemophilia clotting profile, the 2 
highly sensitive models allow for high-throughput evaluation of drug 
responses. A limitation of the models is that they cannot be used to 
test traditional factor replacement therapeutics because the FVIII-
neutralizing antibody and the recombinant FIX variant will interfere 
with the activity of the exogenous factors. Nonetheless, the hemo-
philia assays could enable rapid screening/evaluation of novel hemo-
philic agents in whole blood under flow in a high-throughput fashion, 
which helps narrow the therapeutic candidates before testing them 
in hemophilic patient blood. The hemophilia assays also have the 
added advantage of allowing side-by-side comparisons to clotting 
at healthy factor levels. Future work is needed to recapitulate dif-
ferent hemophilia severities/residual factor levels using different 
anti-FVIII/reFIX doses. The platelet agonist on the prothrombotic 
surface can be optimized to increase the dynamic range for platelet 
deposition by reducing thrombin-independent platelet activation/
aggregation. Alternatively, as fibrin generation is more sensitive to 
factor level changes, the TF trigger alone may be used to initiate co-
agulation.34 In addition, patient-derived neutralizing antibodies and 
factor variants can be explored to predict the effect of therapeutics 
in patients with hemophilia with the specific inhibitors/mutations.
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