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Biceps brachii muscle illness is one of the common physical disabilities that requires rehabilitation exercises in order to build
up the strength of the muscle after surgery. It is also important to monitor the condition of the muscle during the
rehabilitation exercise through electromyography (EMG) signals. The purpose of this study was to analyse and investigate
the selection of the best mother wavelet (MWT) function and depth of the decomposition level in the wavelet denoising
EMG signals through the discrete wavelet transform (DWT) method at each decomposition level. In this experimental
work, six healthy subjects comprised of males and females (26± 3.0 years and BMI of 22± 2.0) were selected as a reference
for persons with the illness. The experiment was conducted for three sets of resistance band loads, namely, 5 kg, 9 kg, and
16 kg, as a force during the biceps brachii muscle contraction. Each subject was required to perform three levels of the
arm angle positions (30°, 90°, and 150°) for each set of resistance band load. The experimental results showed that the
Daubechies5 (db5) was the most appropriate DWT method together with a 6-level decomposition with a soft heursure
threshold for the biceps brachii EMG signal analysis.

1. Introduction

The National Institutes of Health (NIH), through the
National Centre for Medical Rehabilitation Research
(NCMRR) located in the United States, published a rehabili-
tation research plan in 1993 due to the increase in the range
of disabilities among Americans affecting daily activities,
work, and communication [1]. The rehabilitation research
was aimed at improving, restoring, and developing the dis-
abilities of the body or functions of the body system. This
can help workers to recover physically and vocationally
and, finally, return to the work area. In the rehabilitation
method, the first assessment is necessary to identify the

current condition of the patient’s disability and his/her ability
before the illness. It also includes a biopsychosocial model
that emphasizes the physical functionality factor, the level
of mobilization, and the physiological and environmental
conditions, as well as identifies the needs of the patient on
returning to work.

Biceps brachii muscle illness is a common physical dis-
ability that requires rehabilitation exercises in order to
launch the movement and strengthen the weak biceps brachii
muscle. The biceps brachii muscle condition can be mea-
sured by electromyography (EMG) [2], which helps to ana-
lyse the muscle activity signal produced by the desired
muscle. The muscle activity signal is generated by an
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electrical signal that originates from the activation of the
muscle fibres by a motor unit. It can be detected and mea-
sured by using EMG electrodes.

The EMG electrodes are of two types. The surface EMG
(sEMG), which is commonly used in biomedical techniques,
is known as a noninvasive method, while the needle EMG is
an invasive method. The sEMGmethod is a convenient EMG
measurement method as it can be easily implemented with-
out any medical certificate, where the sEMG electrodes that
are used can be placed on the desired skin surface to record
the activity of the muscle [3]. However, the detection of
the EMG signals is a complex process that is easily
affected by a combination of numerous noise signals, the
motion artefact, and the internal structure of the human
body, such as the skin formation, velocity of the blood flow,
and thickness of the fatty tissue [4]. It shows the recorded
EMG signals, called the raw EMG signals, that contain infor-
mation about the muscle and several noises during the EMG
measurement. In order to obtain useful information from the
EMG signals, several approaches in terms of feature extrac-
tion must be considered when analysing the performance of
the EMG signal.

Feature extraction is the main part in signal processing
in order to eliminate the affected noise or undesired part
and to obtain the useful information in the EMG signals.
Feature extraction can be categorized into three methods,
namely, for the extraction of time domain (TD), frequency
domain (TF), and time-frequency domain (TFD) features.
Previous studies have mentioned that a stationary sEMG
signal depends on many factors such as the contraction of
the muscle under the application of a constant force, where
the sEMG signal would be considered as stationary, which
is a TD feature [5]. In the meantime, the sEMG signal is
also considered as nonstationary because it is contained in
various frequency components [6]. Thus, wavelet trans-
form, as a TFD feature, is the best feature extraction tech-
nique for analysing the sEMG in both the time and
frequency domains.

Several authors have described the EMG signal analysis
performance and their validation of the biceps brachii muscle
with different ranges of age, protocols, and electrode place-
ments on the desired muscle. For example, the monitoring
of an athlete’s performance in muscle strength exercises
focuses on the use of a dumbbell as a resistance to muscle
contraction [7] in order to increase the strength of the biceps
brachii muscle. A previous study discussed and compared the
effect of electromyography on the biceps brachii muscles of
male and female subjects. The comparisons were based on
the root mean square and mean values [8]. Many studies
have attempted to analyse the contraction signals of the
biceps brachii muscle in three different age groups, namely,
adolescents (younger age), vicenarians (middle age), and tri-
cenarians (elderly age). In their research, the comparison of
the electromyographic biceps brachii muscle activity was
based on differences in the root mean square (RMS) and
mean absolute value (MAV), which are the most commonly
accepted features that are used to define the amplitude of
electromyography signals [9, 10]. Some researchers discussed
the placement of the electrodes on the biceps brachii muscle

during the EMG measurement. The best location for the
EMG electrodes is in the area between the innervation zone
(IZ) and the tendon to obtain high-quality and stable sEMG
signals [11, 12].

This shows that previous researches into electromyogra-
phy concentrated more on the performance of the biceps bra-
chii muscle with regard to several factors based specifically
on age and gender. Others clarified the role of the biceps bra-
chii muscle in shoulder elevation and elbow flexion and
extension movements [13, 14]. These were examined based
on several variable factors such as the type of external load,
contraction, and elbow joint angles.

Thus, this research was inspired to focus on analysing
the electromyography signals from the biceps brachii mus-
cle for resistance band rehabilitation exercises. The EMG
measurement was made during the isometric muscle con-
traction for three angles at the arm level. This study was
to investigate the difference in the sEMG signals on the
muscles of vicenarians during the resistance band rehabil-
itation exercises in terms of gender and types of loads
during muscle contraction at three angles at the arm level.
A fixed sampling rate of 1000Hz and a wireless EMG pre-
amplifier were used.

2. Materials and Method

2.1. Subjects. Six healthy subjects, who were right-hand dom-
inant, participated in this study. The six healthy subjects were
categorized based on gender into three healthy male subjects
and three healthy female subjects. All the subjects were vice-
narians between the ages of 23 to 27 years. According to
investigations in previous works, vicenarian subjects are
within the best range of age as references for the human body
in EMGmeasurements, where the muscles of those in middle
age have grown gradually and a higher amplitude of EMG
signals can be obtained during the EMG measurement pro-
cess [15]. The normal body mass index (BMI) was one of
the preferred physical characteristics of the subjects that
was considered in this study. Table 1 shows the physical char-
acteristics of all the subjects.

2.2. Experimental Setup and Protocols. A wireless Z03 EMG
preamplifier with surface recording of the ground by Motion
Lab Systems Inc. (Baton Rouge, LA, USA) was used for the
EMG signal recording. The EMG preamplifier is a compact
device with 12mm disks with an interelectrode distance of
18mm and one reference contact (12× 3mm) bar separating
the sensors. Medical-grade stainless steel was used as the

Table 1: Physical characteristics of subjects.

Gender Age (years) Weight (kg) Height (cm) BMI (kg/cm)

Male

24 70 172 23.5

25 68 169 23.8

27 69 170 23.9

Female

23 55 157 22.3

25 58 160 22.7

26 54 159 21.4
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contact material for the electrodes in this experiment. The
EMG preamplifier had a gain at 1 kHz× 300± 1%,
CMRR> 100 dB at 65Hz, input protection from radio fre-
quency interference (RFI) filters, and electrostatic discharge
(ESD), while the power supply range of this device was
between ±5 Volts and ±15 Volts.

Some protocols had to be considered before the start of
the experiment. First, the subjects had to be free of any
muscular disease and avoid strenuous exercise on the
biceps brachii muscle for two days prior to the EMG mea-
surement. Second, the subjects needed to perform 5
minutes of warm-up stretching exercises with the lifting
and lowering of weights, with an interval of at least 2
minutes between muscle contractions to avoid the possibil-
ity of muscle fatigue. The third protocol was the clarifica-
tion about the procedure for the placement of the
electrodes and the skin preparation. It was necessary to
prepare the skin by cleaning the desired skin area using
70% isopropyl alcohol and shaving the hair, if necessary,
in order to reduce the electrode-skin impedance [16].
The preferred placement of the EMG electrodes on the
biceps brachii muscle, as suggested in previous works, is
in the middle of the biceps brachii muscle, known as the
belly muscle, as it shows a significantly higher amplitude
[17]. All the protocols were designed to minimize the
motion artefact, crosstalk, and internal noise during the
EMG measurement.

This experiment consisted of three sets of resistance
band loads of 5 kg, 9 kg, and 16 kg that were used as a
force during the biceps brachii muscle contractions. Each
subject was required to stand up straight and perform
three levels of arm angle positions (30°, 90°, and 150°)
for each set of resistance band loads. The arm angle
position was measured using a Medigauge electronic dig-
ital goniometer. The subjects had to hold the resistance
band for 10 seconds and then take a break for a time
interval of 2 minutes for each movement of the arm
level. The procedure was repeated 10 times per set of
resistance band loads. This is illustrated in Figure 1,
which shows the subject holding the resistance band for
10 seconds when the angle at the arm level was at 90°.
The resistance band is one of the preferred tools in biceps
brachii rehabilitation exercises, where it is currently being
used in rehabilitation centres to train patients to build up
the strength of their biceps brachii muscle after surgery
or injury.

2.3. EMG Signal Processing. In the experimental setup, a
compact wireless EMG preamplifier device was used to sup-
ply the input signal to an NI USB-6009 data acquisition
(DAQ) device fromNational Instruments, where the raw sig-
nal was recorded at a sampling rate of 1000Hz. The signal
acquired from the DAQ device acted as a signal source for
the LabVIEW 2016 model. Subsequently, the recorded
EMG signal was processed by filtering and extracting the use-
ful signals with the LabVIEWWADetrend VI and LabVIEW
Wavelet Denoise Signal. The discrete wavelet transform
(DWT) approach was implemented in the EMG signal
analysis. Based on the previously mentioned work, the DWT

was better than the continuous wavelet transform (CWT)
approach, which did not yield a redundant analysis [16].

The DWT algorithm uses a filtering technique that con-
sists of a shifted and scaled version of a certain function
called a mother wavelet transform (MWT) function, ψ t
[18]. The MWT is shifted by time b and scaled by a factor
a , as in

DWTa, b f =
1
a

f t ψ
t − b
a

dt 1

In this method, the DWT will decompose a signal into
different frequency bands by passing it through two filters,
namely, a low-pass filter h and a high-pass filter g at each
decomposition level. Both filters are associated with the scal-
ing function, φ, and the MWT function, ψ, where the scaling
function is related to the low-pass filter and the MWT func-
tion is related to the high-pass filter [19], which can be shown
through the following equations:

φ = 2 〠
N−1

n=0
h n φ 2t − n ,

ψ = 2 〠
N−1

n=0
g n ψ 2t − n

2

These equations will be followed by downsampling by
the factor of 2 in order to obtain the successive DWT fil-
tering of the time domain signal. The output of the down-
sampled low-pass filter produces an approximation
coefficient, cAi, whereas the downsampled high-pass filter
produces the detailed coefficient, cDi, of the depth decom-
position level, i. The equations for the filters can be
expressed by

cAi k = 〠
n=0

cAi−1 n h 2k − n ,

cDi k = 〠
n=0

cAi−1 n g 2k − n
3

2.4. Mother Wavelet and Decomposition Level Selection. In
the denoising signal, several common MWT functions,
such as Daubechies, Coiflet, and Symlet, are used. The
selection of the best wavelet function and depth of

Figure 1: EMG data being recorded when angle at the arm level
is at 90°.
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decomposition is required to produce a perfect reconstruc-
tion and better signal analysis [17]. The best MWT func-
tion and decomposition level were determined by
calculating the signal to noise ratio (SNR) and root mean
square error (RMSE), as given below [19].

SNR dB = 10 log10
〠N

n=1x n 2

〠N

n=1 x̂ n − x n 2
,

RMSE =
1
N
〠
N

n=1
x̂ n − x n 2,

4

where x[n] is the noise-free EMG signal and x̂ n is known as
the denoised signal, while N is the number of signal samples.
In this study, the value of N was 10000.

The SNR is defined as the ratio of the variance of the
noise-free signal to the mean square error between the
noise-free signal and the denoised signal, and it is the mea-
surement of the signal strength relative to the background
noise. It is measured in decibels (dB). The RMSE indicates
the absolute measure of fit, which evaluates the closer of the
observed data points to the predicted values.

2.5. Statistical Analysis. In this study, a statistical analysis
was applied to the EMG signals and was executed using
the MATLAB software. All the filtered EMG signals were
analysed in terms of the average (Avg), standard devia-
tion (SD), and root mean square (RMS). The Avg, SD,
and RMS were obtained by using the statistical equations
as follows:

average Avg x̂ =
1
N
〠
N

i=1
xi,

standard deviation SD σ =
1
N
〠
N

i=1
xi − x 2,

rootmean square RMS =
1
N
〠
N

i=1
xi

2,

5

where xi is the noise-free signal collected andN is the number
of signal samples.

3. Results and Discussion

In this experiment, the biceps brachii EMG signals of the
subjects were obtained at a six-level decomposition coeffi-
cient through the DWT method. Seven subbands were
involved, namely, cD1, cD2, cD3, cD4, cD5, cD6, and cA6,
which represented the frequency range from the band limit
of the EMG signal. The selection of a suitable decomposition
level was necessary to extract the useful information and
analyse the EMG signal by using the DWT method. Other
than that, the threshold function and limit were also the
main factors in ensuring that the useful information of
the EMG signal would be able to be extracted using the

WT denoising technique. Based on that, the heursure thresh-
old, with a soft thresholding method, was proposed to ana-
lyse the EMG signal. Table 2 presents the SNR and RMSE
results with respect to the decomposition level by using the
Daubechies5 (db5) and heursure thresholding method. The
results for both the SNR and RMSE values showed the best
performance at the 6-level decomposition through the
DWT method at each level, where the highest SNR value
and lowest RMSE value were obtained. The highest SNR
value showed the strength of the EMG signal that was
acquired. The lowest value of the RMSE illustrated a better
fit of the signal data.

Consequently, the best SNR and RMSE values were
required to determine the suitable MWT function at the 6-
level decomposition of the EMG signal analysis. The MWT
functions that were investigated in previous studies, such as
Daubechies, Coiflet, and Symlet, have their own suitability
that depends on the types of signals in the biomedical field
that need to be analysed, where the Daubechies2 (db2) is
more appropriate for the electroencephalography (EEG)
smoothing signal, the Daubechies4 (db4), Coiflet3 (coif3),
Coiflet4 (coif4), and Coiflet5 (coif5) are able to improve
the electrocardiography (ECG) detection signal in their
applications, and the Daubechies5 (db5) is convenient
for use in the removal of noise from the EMG signal
[20–24]. This can be further strengthened with the SNR
and RMSE results for the db5 as the optimal MWT in
Table 3, where it is shown that the db5 with a 6-level
decomposition and soft heursure threshold through the
DWT method is suitable for the biceps brachii EMG
signal analysis.

The EMG denoising technique, using the DWT method
with the appropriate MWT function (db5) and depth of
the decomposition level (6-level), was implemented in the
rehabilitation application focusing on biceps brachii illness.
The efficacy of the EMG denoising technique used was deter-
mined by calculating the SD values for the subjects in
every given task. The results of the EMG signal analysis

Table 2: SNR and RMSE results with respect to the decomposition
level.

Decomposition level SNR (dB) RMSE (∗10−3)

1 57.056 2.80

2 56.946 2.83

3 56.945 2.83

4 56.946 2.80

5 56.960 2.80

6 56.992 2.80

7 56.919 2.83

8 56.901 2.87

9 56.872 2.90

10 56.901 2.87

11 56.901 2.87

12 56.906 2.87

13 56.901 2.87
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were classified according to the gender. It consisted of
three types of resistance band loads, namely, 5 kg, 9 kg, and
16 kg. Each set of resistance band loads contained three
different angles of the arm level. Tables 4, 5, and 6 show the
results for the male subjects, whereas the results of the statis-
tical values for the female subjects are presented in Tables 7,
8, and 9.

The tables above show that the SD values had a
smaller range, where the SD range for the male subjects
was from 0.006 to 0.0695 and the SD range for the female
subjects was from 0.005 to 0.0624. This indicated the clus-
tered data of the EMG signals produced during the reha-
bilitation exercise. The lowest SD in the statistical data in
this experiment showed that the data had a good perfor-
mance. The good performance of the statistical data in this
experiment was shown in the regression performance for
both genders. Figures 2, 3, and 4 present the regression
results of the male subjects, while Figures 5, 6, and 7 show

Table 3: SNR and RMSE results with respect to wavelet types.

Wavelet types SNR (dB) RMSE (∗10−3)

Daubechies2 (db2) 54.1161 3.93

Daubechies3 (db3) 56.1163 3.13

Daubechies4 (db4) 56.7373 2.93

Daubechies5 (db5) 56.9924 2.80

Coiflet2 (coif2) 56.8161 2.90

Coiflet3 (coif3) 57.0431 2.80

Coiflet4 (coif4) 56.9870 2.83

Coiflet5 (coif5) 57.0415 2.83

Symlet2 (sym2) 56.8161 2.90

Symlet3 (sym3) 56.1163 3.13

Symlet4 (sym4) 56.6773 2.93

Symlet5 (sym5) 57.0152 2.80

Table 4: Results of three male subjects for 5 kg.

Gender Angles
Statistical values

Avg SD RMS

Male 1

30° 2.0001 0.0312 2.0003

90° 2.0001 0.0511 2.0008

150° 2.0006 0.0549 2.0013

Male 2

30° 2.0000 0.0060 2.0000

90° 2.0000 0.0142 2.0001

150° 2.0000 0.0093 2.0000

Male 3

30° 2.0000 0.0123 2.0001

90° 2.0000 0.0214 2.0001

150° 2.0001 0.0347 2.0004

Table 5: Results of three male subjects for 9 kg.

Gender Angles
Statistical values

Avg SD RMS

Male 1

30° 2.0001 0.0299 2.0003

90° 2.0001 0.0480 2.0007

150° 2.0001 0.0664 2.0013

Male 2

30° 2.0000 0.0077 2.0000

90° 2.0000 0.0111 2.0000

150° 2.0000 0.0105 2.0000

Male 3

30° 2.0000 0.0188 2.0001

90° 2.0001 0.0299 2.0003

150° 1.9999 0.0357 2.0002

Table 6: Results of the three male subjects for 16 kg.

Gender Angles
Statistical values

Avg SD RMS

Male 1

30° 1.9995 0.0686 2.0007

90° 2.0000 0.0509 2.0006

150° 1.9999 0.0695 2.0011

Male 2

30° 2.0000 0.0078 2.0000

90° 2.0000 0.0121 2.0000

150° 2.0000 0.0102 2.0000

Male 3

30° 2.0000 0.0326 2.0003

90° 2.0000 0.0371 2.0004

150° 2.0000 0.0670 2.0011

Table 7: Results of three female subjects for 5 kg.

Gender Angles
Statistical values

Avg SD RMS

Male 1

30° 2.0000 0.0097 2.0001

90° 2.0000 0.0135 2.0000

150° 2.0000 0.0207 2.0001

Male 2

30° 2.0000 0.0177 2.0002

90° 1.9999 0.0256 2.0000

150° 2.0000 0.0306 2.0003

Male 3

30° 2.0000 0.0057 2.0000

90° 2.0000 0.0088 2.0000

150° 2.0000 0.0089 2.0000

Table 8: Results of three female subjects for 9 kg.

Gender Angles
Statistical values

Avg SD RMS

Male 1

30° 2.0000 0.0111 2.0000

90° 2.0000 0.0192 2.0001

150° 1.9999 0.0366 2.0002

Male 2

30° 2.0000 0.0248 2.0002

90° 2.0000 0.0187 2.0001

150° 2.0000 0.0199 2.0000

Male 3

30° 2.0000 0.0063 2.0000

90° 2.0000 0.0143 2.0001

150° 2.0000 0.0129 2.0000

5Journal of Healthcare Engineering



the regression results for the female subjects for three dif-
ferent load resistance bands when the arm angle was at
30°. The regression, R, in each load resistance band for
both genders was above 0.92. The regression plots dis-
played the perfect fit of the data, where the data fell along
a 45° line, thereby indicating that the data obtained were
equal to the targets. This indicated a good accuracy perfor-
mance of the data obtained by using the appropriate db5
as a MWT function and a 6-level decomposition through
the DWT method in the EMG denoising. The best perfor-
mance of the denoising EMG signals acquired helped to
obtain a better feature extraction and classification of the
EMG signals. Consequently, it helped to classify the
EMG patterns of the three different angles of the arm level
in this rehabilitation application.

4. Conclusion

In this study, the compatibility of the three common MWT
functions, namely, Daubechies, Coiflet, and Symlet, were
selected for analysis to determine an optimal MWT function
in order to obtain the best performance for the denoising of

Table 9: Results of three female subjects for 16 kg.

Gender Angles
Statistical values

Avg SD RMS

Male 1

30° 2.0000 0.0276 2.0002

90° 2.0000 0.0425 2.0004

150° 1.9999 0.0568 2.0007

Male 2

30° 2.0001 0.0369 2.0004

90° 2.0003 0.0624 2.0012

150° 2.0001 0.0326 2.0003

Male 3

30° 1.9999 0.0176 2.0000

90° 2.0001 0.0225 2.0002

150° 2.0000 0.0228 2.0001
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the EMG signals. This experiment was able to successfully
select the optimal MWT function and depth of the decompo-
sition level with the best performance of the EMG signal
denoising with the EMG datasets of the six subjects. Based
on the analysis in this study, it was concluded that the
“db5” with a “6-level decomposition” is more appropriate

for denoising the EMG signal of the biceps brachii muscle
in order to obtain a better performance on the feature extrac-
tion and classification technique of the EMG signal in the
rehabilitation application.
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