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A B S T R A C T   

High Pathogenicity Avian Influenza (HPAI) H5N1 outbreaks continue to wreak havoc on the global poultry 
industry and threaten the health of wild bird populations, with sporadic spillover in humans and other mammals, 
resulting in widespread calls to vaccinate poultry. Bangladesh has been vaccinating poultry since 2012, pre-
senting a prime opportunity to study the effects of vaccination on HPAI H5N1circulation in both poultry and wild 
birds. We investigated the efficacy of vaccinating commercial poultry against HPAI H5N1 along with climatic 
and socio-economic factors considered potential drivers of HPAI H5N1 outbreak risk in Bangladesh. Using a 
multivariate modeling approach, we estimated that the rate of outbreaks was 18 times higher before compared to 
after vaccination, with winter months having a three times higher chance of outbreaks than summer months. 
Variables resulting in small but significant increases in outbreak rate were relatively low ambient temperatures 
for the time of year, literacy rate, chicken and duck density, crop density, and presence of highways; this may be 
attributable to low temperatures supporting viral survival outside the host, higher literacy driving reporting rate, 
density of the host reservoir, and spread of the virus through increased connectivity. Despite the substantial 
impact of vaccination on outbreaks, we note that HPAI H5N1 is still enzootic in Bangladesh; vaccinated poultry 
flocks have high rates of H5N1 prevalence, and spillover to wild birds has increased. Vaccination in Bangladesh 
thus bears the risk of supporting “silent spread,” where the vaccine only provides protection against disease and 
not also infection. Our findings underscore that poultry vaccination can be part of holistic HPAI mitigation 
strategies when accompanied by monitoring to avoid silent spread.   

1. Introduction 

Until 1995, the avian influenza virus (AIV) mostly occurred in a low 
pathogenic form with only occasional emergences of high pathogenicity 
avian influenza (HPAI) [1]. From 1996 to the present, we have wit-
nessed a progressively more rapid and wider spreading of HPAI caused 
by virus from the H5N1 A/goose/Guangdong/1996 lineage evolving 
into several distinct and diverse clades [2,3]. Notably, viruses belonging 
to H5Nx Clade 2 have caused significant socio-economic damage and 
health concerns for livestock, wildlife, and humans. Since October 2021, 
viruses belonging to Clade 2.3.4.4b have caused a panzootic of un-
precedented magnitude, spreading to all continents except Australia and 
Antarctica, thus far leading to the loss of more than half a billion poultry 

and high mortality across a great variety of species of wild birds [4–6]. 
Furthermore, HPAI H5N1, including the present panzootic clade 
2.3.4.4b H5N1 viruses, have demonstrated the ability to cross the bar-
rier between birds and mammals, resulting in infections in humans and 
other mammalian species [6–8], including a range of marine mammal 
species (such as south American sea lions, harbor seals, porpoises and 
dolphins) [9,10]. Since its emergence, the virus has led to at least 878 
laboratory-confirmed human cases in 23 different countries [8,11]. This 
event has increased calls to implement poultry vaccination against HPAI 
more widely [5,12]. While vaccination against some HPAI lineages has 
proven successful in significantly reducing casualties amongst poultry 
[13,14], vaccination alone has thus far not resulted in eradication of 
those lineages [15]. 
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Moreover, when vaccination merely reduces disease symptoms and 
does not adequately prevent infection, as is currently the case, it may 
result in “silent spread” and promote further virus evolution [16]. 
Therefore, improved vaccination practices alone may not be sufficient to 
contain the current panzootic, and it is of crucial importance to learn 
about additional factors that may drive the spread of HPAI, including 
climatic, socio-economic, ecological, and biosecurity factors. In 
Bangladesh, vaccination of the national poultry stock against HPAI 
H5N1 commenced in 2012 [17,18]. Detailed accounts of Bangladesh’s 
outbreak history, specifically preceding and following this intervention 
from 2007 to 2018, offer a valuable opportunity to identify factors that 
influence outbreaks in poultry in both the presence and the absence of a 
large-scale vaccination program. Such analysis is an opportunity to yield 
insights that may be crucial in developing adequate mitigation strategies 
for current and future epizootics. 

It is well known that meteorological factors may affect disease 
emergence, including cross-species viral spillover risk [19,20], and that 
an improved understanding of climate implications on viral ecology is 
crucial in developing mitigation strategies to reduce adverse health 
impacts on humans and animals [21]. For instance, in humans, weather 
conditions such as low temperature, high relative humidity, and high 
frequency of rainfall were found to contribute to the transmission of 
Influenza A [22–24]. Low temperatures and high wind speed were also 
associated with seasonal influenza A outbreaks in China [25]. Table 1 
summarizes the effects of weather and climate on both HPAI and low 
pathogenicity avian influenza (LPAI) prevalence and outbreaks globally. 

Socio-economic factors may also significantly influence avian influ-
enza outbreaks [26,27]. Sufficiently large populations of poultry farms 
may become maintenance reservoirs for HPAI [28]. Previous studies 
have also demonstrated that higher human population density increased 
the risks of avian influenza outbreaks in Hong Kong and Thailand 
[29,30]. Other socioeconomic components, such as literacy and poverty 
rates, were also related to avian influenza outbreak risk [31]. Addi-
tionally, several studies have identified a number of ecological factors, 
such as the presence of migratory bird staging areas and wetland habi-
tats for key reservoir species such as waterfowl and shorebirds [32], that 
may significantly increase the likelihood of HPAI-H5N1 outbreaks in 
poultry [33,34]. Thus, we further collated socio-economic and ecolog-
ical variables from the literature for inclusion in Table 1, as well as the 
suggested pathways through which they might act. Many of the vari-
ables associated with AIV outbreaks and prevalence vary seasonally. 
This is true for a number of the meteorological and ecological variables 
highlighted in Table 1, e.g., wildlife host abundance, like waterfowl. 
Likewise, many influenza studies, be it in humans [35,36], poultry 
[37,38], or wild birds [32,39], have found clear seasonality in AIV 
prevalence/outbreaks. Thus, when analyzing time series of outbreaks, 
seasonality must be accounted for to isolate the true effects of other 
explanatory variables. 

Bangladesh is a low-income developing country with one of the 
highest population densities worldwide, estimated at 1115 humans/km2 

[40]. Since 2007, Bangladesh has been badly impacted by HPAI H5N1 
outbreaks in commercial poultry, specifically those belonging to clade 
2.2 and descendant lineages commercial poultry [41]. The poultry in-
dustry is an important part of the economy of Bangladesh, generating 
4.12 billion USD annually (1.17% of the GDP) and creating employment 
for >6.0 million people, primarily females and young people [42,43]. As 
a result, HPAI has been a source of significant economic losses for the 
industry and, in turn, the country. In the 2008 HPAI H5N1 wave of 
outbreaks, about 50% of poultry farms were closed, and >1.8 million 
chickens were culled at an economic cost of around 40 million USD, with 
2.5 million people made jobless [44,45]. In response, in 2012, two 
vaccines against H5 were authorized for importation from China and 
USA for use in Bangladesh [46]. Here, we provide a detailed analysis of 
how this vaccination campaign has impacted the rate of HPAI H5N1 
outbreaks in Bangladesh, in combination with a range of climatic, socio- 
economic, and ecological factors hypothesized to be of importance in 

driving AIV outbreak risk, to inform future mitigation strategies against 
the ongoing HPAI threat. 

2. Methodology 

2.1. HPAI H5N1 outbreak data 

We used all HPAI H5N1 outbreaks in Bangladesh collated in the 
Global Animal Disease Information System (EMPRES-i) database 

Table 1 
Factors observed to have an effect on HPAI H5N1 outbreaks in poultry and the 
suggested underlying mechanisms.  

Category Variables Observed 
effect on 
HPAI 
H5N1 
outbreaks 

Suggested 
mechanism 

Supporting 
literature 

Meteorological Relative 
humidity (%) 

+ Virus survival 
outside host 

Lowen, 
Mubareka 
[47], Peci, 
Winter [48] 

Maximum 
temperature 
(◦C) 

– Virus survival 
outside host 

Lowen, 
Mubareka 
[47], Peci, 
Winter [48] 

Minimum 
temperature 
(◦C) 

– Virus survival 
outside host 

Lowen, 
Mubareka 
[47], Peci, 
Winter [48] 

Wind speed 
(knots) 

+ Promoting 
virus 
dispersal 
while outside 
host 

Ssematimba, 
Hagenaars 
[49], Lau, 
Wang [50] 

Cloud cover 
(octa) 

+ Virus survival 
outside host 

Guo, Xue [51], 
Biswas, Islam 
[52] 

Socio- 
economic 
and 
ecological 

Adult literacy 
rate (%) 

+ Reporting 
bias 

Mahendri, 
Saptati [53], 
Roy, Singh 
[54] 

Chicken 
density 
(number km 
2) 

+ Host reservoir 
size and 
increased 
connectivity 
promoting 
dispersal 

Gilbert, 
Chaitaweesub 
[55], Henning, 
Pfeiffer [56] 

Domestic 
duck density 
(number km 
2) 

+ Host reservoir 
size and 
increased 
connectivity 
promoting 
dispersal 

Gilbert, 
Chaitaweesub 
[55], Gilbert, 
Newman [57] 

Crop density 
(acres per 
km2) 

+ Driver of host 
reservoir size 

Loth, Gilbert 
[41], Paul, 
Tavornpanich 
[58] 

Number of 
markets 
(number per 
district 

+ Increased 
connectivity 
promoting 
dispersal 

Indriani, 
Samaan [59] 

Presence of 
wetland (no/ 
yes) 

+ Driver of host 
reservoir size 

Yupiana, de 
Vlas [60], 
Martin, Pfeiffer 
[61] 

Presence of 
national 
highway (no/ 
yes) 

+ Increased 
connectivity 
promoting 
dispersal 

Loth, Gilbert 
[41], Paul, 
Tavornpanich 
[58] 

Presence of 
migratory 
birds staging 
areas (no/ 
yes) 

+ Driver of host 
reservoir size 

Ward, Maftei 
[62], Ward, 
Maftei [63]  
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available at the Food and Agriculture Organization between January 
2007 and December 2018 [64]. For a total of 585 outbreaks, we 
extracted information on the date of the outbreak, the species affected, 
and the latitude and longitude of the outbreak epicenter. With these 
data, we compiled one data set containing the monthly outbreak counts 
for the country and another data set containing the total outbreak counts 
from March 2007 to December 2018 for each of the 64 districts in 
Bangladesh. The national data set containing the monthly counts was 
used to investigate the role of vaccination and climatic factors. The 
district data set containing the overall outbreak counts between 2007 
and 2018 was used to investigate the role of socio-economic and 
ecological factors as drivers of HPAI outbreaks. 

2.2. Meteorological data 

We accessed meteorological data from the Bangladesh Meteorolog-
ical Department (BMD) (https://www.bmd.gov.bd/) [65]. BMD keeps 
daily records of maximum temperature (◦C), minimum temperature 
(◦C), relative humidity (%), wind speed (knot), and cloud cover (octa) at 
35 meteorological observatories across the nation. Any occasional 
missing data points were linearly interpolated. We calculated the 
monthly mean of each meteorological variable for each station and then 
took the average across all 35 stations to obtain a national monthly 
average for that variable. Lastly, we calculated the monthly anomaly for 
each variable (i.e., the difference between the monthly average and the 
mean of the monthly average across all years) for inclusion in our 
analyses. 

2.3. Socio-economic and ecological data 

We used district-level adult literacy rate (%) from the Bangladesh 
Population and Housing Census 2011 [66]. We extracted chicken den-
sity (number km− 2), duck density (number km− 2), and crop density 
(acres km− 2) for each district from the Bangladesh Agriculture Census 
2008 conducted by the Bangladesh Bureau of Statistics [67]. We also 
collected data on migratory bird staging areas that were classified as of 
“international importance” in the literature [31,68], as well as data on 
the presence of wetlands in that district from the FAO GeoNetwork [69]. 
For each district, we recorded the presence of national highways facil-
itating connectivity and the number of live bird markets from the Local 
Government Engineering Department Bangladesh [70]. 

2.4. Statistical analyses 

Using the national level monthly outbreak data, we investigated the 
effect of season, weather, and vaccination on monthly outbreak numbers 
using generalized linear models in R version 4.2.0 within Rstudio 
version 2022.02.2. We calculated the Pearson’s correlation coefficients 
between all-weather anomalies to assess multicollinearity (Figure SM1), 
after which we decided to remove the monthly anomalies for cloud 
cover and minimum temperature, yielding a maximum absolute corre-
lation coefficient of 0.543 between any of the weather anomalies 
retained. To test the effect of season, we included month as a categorical 
variable. Vaccination was entered as a binary variable and set to “no” 
prior to 2012 and “yes” thereafter. The anomalies for maximum tem-
perature, relative humidity, and windspeed were included as covariates 
to estimate the effects of weather conditions adjusted for the season. 

Using the district data set with the overall outbreak counts, we 
investigated the effects of literacy rate, chicken density, duck density, 
crop density, number of live bird markets, presence of highways (yes/ 
no), presence of migratory bird staging areas (yes/no), and presence of 
wetlands (yes/no) through generalized linear models. One of the 64 
districts, Mymensingh, contained extreme outliers, notably an extraor-
dinarily high number of live-bird markets (829), and was omitted from 
analyses. In the reduced data set, Pearson’s correlation coefficients and 
Cramer Vs were used to examine relationships between the explanatory 

variables prior to analysis. We identified a very high correlation between 
chicken and duck density of 0.804 (Fig. SM2); therefore, duck density 
was removed from the data set. 

We fitted generalized linear models (GLM) to the monthly number of 
outbreaks that assumed Poisson, negative binomial, zero-inflated Pois-
son, zero-inflated Poisson with regression zero-inflation correction, 
zero-inflated negative binomial, zero-inflated negative-binomial with 
regression zero-inflation correction and a quasi-Poisson distribution. 
The best-fitted model was determined to be the negative binomial model 
based on the dispersion statistic and Akaike information criteria (AIC), 
aiming for a dispersion statistic value as close to 1 as possible [71,72]. 
All models were run twice: once with all continuous explanatory vari-
ables untransformed and once with all continuous explanatory variables 
scaled. The latter was done to allow a better comparison of effect sizes 
across explanatory variables. For month, the only categorical variable in 
the analyses with more than two levels, we conducted post-hoc pairwise 
comparisons using the emmeans package [73]. 

3. Results 

HPAI H5N1 outbreaks were recorded exclusively in commercial and 
backyard chickens and wild, free-roaming house crows (Corvus splen-
dens). The number of outbreaks in Bangladesh between March 2007 and 
December 2018 showed considerable temporal variation with peaks in 
early 2008 and 2011 (Fig. 1A). There was a distinct decline in poultry 
outbreaks after the national vaccination campaign began in 2012, with 
only occasional outbreaks reported afterward. Conversely, there was an 
increase in outbreaks detected in house crows post-vaccination. The 
total number of outbreaks detected from 2007 to 2018 was non- 
uniformly distributed across the 64 districts, with some strong spatial 
clustering in the center of the country (Fig. 1B). 

As expected, the meteorological parameters represented in the study 
demonstrated a distinct seasonality, be it with a low amplitude (Fig. 2). 
Maximum and minimum monthly average temperature, relative hu-
midity, cloud cover, and wind speed all follow a unimodal distribution, 
with high values prevailing in summer and low values prevailing in 
winter. 

When modeling the number of monthly HPAI H5N1 outbreaks across 
Bangladesh, we found that the incidence was significantly lower be-
tween the months of May-November, after vaccination and during 
relatively high maximum temperatures. (Fig. 3, Table Supplementary 
(SM1). 

To illustrate these effects in more detail, marginal means for these 
three explanatory variables are plotted in Fig. 4. Of the significant 
variables, vaccination had the strongest effect on monthly outbreak 
incidence, where the estimated incident rate of outbreaks for unvacci-
nated months (prior to national vaccination) was 18 times the rate of 
outbreaks for vaccinated months (post vaccination) (IRR = 0.055; 
Fig. 3). On average, the warmer months of the year, notably May–No-
vember, had a lower rate of outbreaks compared to the colder months, 
specifically January–March (Fig. 3, Fig. 4A; pairwise post-hoc testing 
identified significant, differences in outbreak frequency between 
February and July, and March and May through to November). The 
maximum temperature anomaly had a slightly negative, yet significant, 
effect on the rate of outbreaks (Fig. 3, Fig. 4 C), further illustrating the 
effect of temperate on outbreak incidence. 

The GLM for the total number of outbreaks by district from 2007 to 
2018 showed that adult literacy rate, chicken density, crop density, and 
the presence of national highways significantly increased the rate of 
HPAI H5N1 outbreaks (Fig. 5, Table SM2). To illustrate these effects in 
more detail, marginal means for these three significant explanatory 
variables are also plotted in Fig. 6. The presence of highways had the 
strongest effect of the three explanatory variables, resulting in a 3-fold 
increase in the number of outbreaks (Fig. 5, Fig. 6D). Following high-
way presence, an increase in adult literacy is expected to correspond to 
an increase in district outbreak incidence, such that a single unit 
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Fig. 1. Temporal (A) and spatial (B) patterns in HPAI H5N1 outbreaks in poultry and wild birds. In panel A, the monthly number of HPAIV outbreaks summed across 
all 64 districts in Bangladesh is depicted as a function of time, and the start of the national AIV vaccination campaign is indicated with an arrow. In panel B, the 
cumulative number of outbreaks per district over the period of 2007–2018 is depicted with a colour gradient corresponding to the number of outbreaks. 

Fig. 2. In panel A-E, boxplots of monthly maximum temperature, minimum temperature, relative humidity, cloud cover, and wind speed averaged across 35 stations 
across Bangladesh recorded between March 2007 and December 2018 are plotted as a function of the month. The original data for each boxplot are also plotted 
(grey dots). 
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increase in literacy (1%) at the district level is expected to increase the 
outbreak rate ratio by a factor of 1.53 (Fig. 5, Fig. 6A). 

While more limited than the previous effects, increases in chicken 
and crop densities are expected to result in an increase in outbreak 
incidence at the district level (Fig. 5, Fig. 6B, Fig. 6C)). Given the effect 
of chicken density, it should be noted that domestic duck density, which 
was not used as an explanatory variable in the analysis, was strongly 
correlated with chicken density (r = 0.799). 

4. Discussion 

4.1. The impact of vaccination 

We conducted a comprehensive study on the role of vaccination, 
climatic, socio-economic, and ecological factors on H5N1 outbreaks in 

poultry and wild birds using a 12-year dataset representing all 64 dis-
tricts in Bangladesh. We demonstrated that poultry vaccination resulted 
in a substantial reduction in the rate of H5N1 outbreaks, by a factor of 
18, which was higher than any other variables included in our study. 
While poultry vaccination against some HPAI lineages has proven suc-
cessful in reducing morbidity and mortality amongst poultry [13,14], 
there are, to the best of our knowledge, no studies that have quantified 
this effect, let alone in combination with other environmental factors. 
Furthermore, adult literacy rate, chicken density, crop density, and 
presence of national highways were all associated with small but sig-
nificant increases in outbreak incidence. 

Our study, in addition to others, has demonstrated the significant 
protective effect of poultry vaccination against HPAI H5N1 outbreaks 
[14,74–76]. Although the vaccination campaign in Bangladesh has 
successfully reduced the recorded number of outbreaks, it has not 

Fig. 3. Incidence Rate Ratios (± 95% confidence interval) of HPAI H5N1 outbreaks as a function of the month (m [1]-m [12]), vaccination (Vax), and the (scaled) 
anomalies of relative humidity (dRelHum), maximum temperature (dTmax) and wind speed (dWind). January (i.e. m [1]), no vaccination and zero anomalies form 
the reference (red vertical line), indicating that vaccination, the months May–November, and relatively high maximum temperatures were significantly associated 
with (* P < 0.05, **P < 0.01, ***P < 0.001) lower numbers of monthly outbreaks. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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sufficiently controlled the circulation of H5N1, considering that year- 
round detection of the virus is still observed in both poultry and wild 
birds around the country [77,78]. Even in farms with adequate bio-
security practices, vaccinated commercial poultry are still frequently 
shown to be shedding HPAI H5N1 virus [77]. Similar circumstances 
have been observed in Egypt and Mexico, where the H5N1 virus has 
developed into multiple antigenically distinct subclades and has become 
enzootic following the rollout of vaccination against HPAI H5N1 

[79,80]. These unintended effects of vaccination are due to the vaccine 
providing inadequate protection against infection, in such cases when 
the vaccination leads to a reduction in disease symptoms only. This 
phenomenon may result in “silent spread” and promote further virus 
evolution [16]. Unvaccinated birds, notably wild birds, may become the 
victims of such a process, which may explain the observed increase in 
outbreaks amongst house crows in Bangladesh after 2012 (Fig. 1A) 
[81,82]. 

Despite the risk of silent spread, vaccination of poultry can still be a 
very important component of comprehensive HPAI mitigation strate-
gies, provided it is accompanied by monitoring to verify that vaccination 
results in sufficient protection against infection and not only protection 
against disease. In case flocks are found infected, the virus should be 
stamped out to stop the spread. This means that vaccination should also 
be accompanied by improved farm and LBM biosecurity practices to 
reduce the chance of infection, even in vaccinated populations [8,83]. 
Additionally, vaccination against H5N1 in Bangladesh is currently 
focused on commercial chicken farms, while 9.7% of HPAI outbreaks are 
reported in backyard chickens [8]. Furthermore, domestic ducks appear 
to be an important host reservoir and may play a central role in the 
maintenance, amplification, and spread of HPAI viruses in Bangladesh 
[84,85]. Extending the vaccination campaign to domestic ducks and 
backyard chickens may therefore be essential for controlling AIV in 
Bangladesh. 

Spillover from poultry into wild mammals, which has been observed 
in the current H5N1 clade 2.3.4.4b outbreaks in the United States, is of 
particular concern as it may facilitate viral adaptation to mammalian 
hosts – a necessary step towards causing a human epidemic [86,87]. 
Although the urgency for action to fight the current HPAI panzootic and 
limit the risks of spillovers into humans is high, the associated risk of 
silent spread explains why vaccination of chickens against HPAI H5N1 is 
the subject of global controversy. This is also one of the key reasons why 
the EU, while increasingly being open to adequate and safe vaccination 
of poultry as a complementary intervention by its member states, is only 
allowing for doing so in combination with biosecurity measures and 

Fig. 4. Marginal means for explanatory variables that significantly explain variation in the number of monthly HPAI H5N1 outbreaks across Bangladesh. In panels A 
and B, the average marginal means (black dots) and their 95% confidence intervals (black bars) are plotted for month and vaccination, respectively, with the original 
data corrected for all other effects plotted for reference (pink dots). In panel C, the regression line (in black) and its 95% confidence interval (grey shading) are 
plotted for the anomaly of the maximum temperature (bottom axis in ◦C and scaled top axis). The original data corrected for all other effects are plotted for reference 
(grey dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Incidence Rate Ratios (± 95% CI) of HPAI H5N1 outbreaks as a function 
of four scaled co-variates (literacy rate, chicken density, crop density number of 
markets) and three binary, categorical explanatory variables (presence of 
highway, presence of migratory bird staging area and presence of significant 
wetland). The reference for the estimated probabilities is formed by the absence 
of the last three features and the averages of the four covariates (i.e., red ver-
tical line). Literacy rate, chicken density, crop density, and the presence of 
highways are significantly associated with an increase in outbreaks at the dis-
trict level (* < 0.05, ** < 0.01, *** < 0.001). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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appropriate monitoring of the vaccinated poultry flocks [88], which will 
avoid silent spread. 

4.2. Meteorological and seasonal effects 

Of the environmental factors investigated, the season had the 
strongest significant effect on outbreak risk, with the summer months 
(May–November) having a lower rate of outbreaks than most winter 
months. This may be partly explained by the purported role of tem-
perature in influenza transmission. Although studies on environmental 
drivers of HPAI outbreak risk have been conducted in Bangladesh pre-
viously, these were limited in longitudinal scope, representing two to 
five years of data, and were conducted prior to the start of the vacci-
nation campaign [31,52]. Consistent with findings from the literature 
[89,90], we detected a protective effect of temperature on outbreak risk, 
where a higher maximum temperature anomaly was associated with a 
reduction in outbreak incidence. We identified a distinct yearly seasonal 
trend, with a single peak of H5N1 occurring from November to March. 
Similar annual peaks in HPAI outbreaks have been observed in other 
tropical and subtropical regions of Asia, like Indonesia, Egypt, and 

Vietnam [38,91]. However, biannual influenza prevalence peaks have 
also been reported in countries such as India [92] and Thailand [23]. 
Our finding of summer months having a 2–3 times lower incidence rate 
than most winter months supports the finding that spillover of HPAI 
H5N1 into humans is more than three times higher during the winter 
and spring months than during the autumn and summer months [93]. 

In Bangladesh, the months between November and March coincide 
with the lowest ambient temperatures, relative humidity, cloud cover, 
and wind speed (Fig. 2). While all these factors have previously been 
considered to have an impact on HPAI prevalence (Table 1), only lower 
temperatures were thought to promote HPAI prevalence, while the in-
verse has been predicted for relative humidity, cloud cover, and wind 
speed. By demonstrating that the maximum temperature anomaly had a 
protective effect on HPAI H5N1 outbreak rate (i.e., relatively low tem-
peratures for the time of year had a positive effect on outbreak risk), our 
findings suggests that the seasonal effect on HPAI outbreaks in 
Bangladesh may indeed be causally linked to temperature. Many studies 
have similarly shown that lower temperatures increase the probability 
of outbreak occurrence [94–98]. The mechanisms behind this effect may 
include higher replication rates [99] and survival [35,99,100] of AIV at 

Fig. 6. Marginal means for explanatory variables that significantly explain variation in the number of HPAI H5N1 outbreaks in each of the districts across 
Bangladesh. In panels A, B, and C, the regression line (in black) and its 95% confidence interval (grey shading) are plotted for the literacy rate (bottom axis in % and 
scaled top axis), chicken density (bottom axis in km− 2 and scaled top axis) and crop density (bottom axis in km− 2 and scaled top axis). The original data corrected for 
all other effects are plotted for reference (grey dots). In panel D, the average marginal means (black dots) and their 95% confidence intervals (black bars) are plotted 
for the presence of highways, respectively, with the original data corrected for all other effects are plotted for reference (pink dots). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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lower ambient temperatures. The seasonal patterns that we detected in 
HPAI H5N1 outbreak risk did not correspond to the effects of relative 
humidity, cloud cover, and wind speed that we collated from the liter-
ature. The anomalies for relative humidity (which itself was highly 
correlated with cloud cover) and wind speed had no significant effect on 
outbreak risk (Fig. 3). The discrepancy between our findings and those 
in other studies that did find an effect of humidity [101,102] and wind 
speed [103] may be due to the strong effects of vaccination and tem-
perature within our data set. However, it should also be noted that 
previous studies occasionally found contrasting effects on AIV preva-
lence for both humidity [47,48] and wind speed [103], suggesting that 
these effects may either vary in interaction with other drivers or are due 
to spurious correlations (see for Fig. SM1 for examples of high correla-
tions between various weather factors). 

4.3. Socio-economic and ecological effects 

As many as four of the seven socio-economic and ecological factors 
tested for significantly explained the variation in HPAI H5N1 outbreak 
rate across the districts in Bangladesh. To our surprise, we noted that 
districts with a higher literacy rate had a significantly higher rate of 
outbreaks. The veterinary authority in Bangladesh primarily relies on 
farmers to report high morbidity and mortality in their flocks. What 
might serve as an explanation for this finding is that increased literacy 
may be associated with public awareness of the disease and facilitate the 
reporting of suspected outbreaks. 

Our study also revealed that an increase in chicken density was 
associated with an increase in the rate of HPAI H5N1 outbreaks at the 
district level, which aligns with findings in Vietnam [104]. However, we 
should note that we observed a high correlation (r = 0.799) between 
chicken and domestic duck densities across the districts (Fig. SM2), 
meaning that this effect may be due to either chicken density, duck 
density, or both. Given that domestic ducks may act as an important 
reservoir for HPAI H5N1 [105,106], it is conceivable that high duck 
densities are associated with an increased outbreak rate. As an alter-
native explanation for the effect of chicken density on outbreak risk, 
Table 1 indicates that greater densities of poultry increase the risk of 
contact with potentially infected poultry due to a more elaborate 
network of trading and other farming-related activities. In this, it should 
be considered that the spread of disease is not only due to the movement 
of sick birds but also contaminated chicken products and equipment 
[107]. It would be valuable to investigate these variables further to 
isolate the true relationship, considering that these two drivers would 
inform different control strategies. 

Road infrastructure may also promote the spread of HPAI H5N1 by 
facilitating the movement of infected birds or contaminated equipment 
and feed between farms within a district. We found that the presence of 
major highways was significantly associated with the rate of HPAI H5N1 
outbreaks at the district level. Importantly, these highways also promote 
traffic to distant farms (in other districts) and trading facilities, boosting 
the size of the network and increasing connectivity. Previous studies also 
confirmed the role that road infrastructure might play in HPAI H5N1 
dispersal, both in Bangladesh ([41] and elsewhere in Southeast Asia 
[58,62]. Connectivity, coupled with poor biosecurity and disease sur-
veillance, would plausibly account for within-district and between- 
district spread of H5N1. 

Finally, we found crop density to significantly correlate with HPAI 
H5N1 outbreak risk. The production of backyard poultry in rural areas, 
whether chicken or free-ranging ducks, is closely associated with rice 
cultivation in Bangladesh and other parts of Southeast Asia [31,108]. 
Crop density may thus be considered a proxy for densities of backyard 
poultry, which are typically not vaccinated. Previous studies in 
Thailand, Vietnam, and Taiwan [33,108,109] acknowledged the po-
tential significance of free-ranging ducks and rice agriculture in 
contributing to HPAI epidemiology. The number of live bird markets in a 
district and the presence/absence of wetlands and migratory bird 

staging areas all had a non-significant effect on the rate of outbreaks 
within districts. These findings are seemingly in contrast with the 
literature. For instance, it has been confirmed in many studies that live 
bird markets are of profound significance in the maintenance and spread 
of HPAI [110–112]. However, LBMs are omnipresent in all districts, and 
it is only the variation in the number of markets and not their presence/ 
absence that we investigated here. Similarly, in many previous studies, 
wild waterbirds, and migratory bird staging areas in particular, have 
been assigned an important role in the maintenance and dissemination 
of HPAI [63]. Our results do not necessarily refute that the proximity of 
wild bird habitats and the birds themselves play a role in the epidemi-
ology of HPAI. Rather, our results may suggest that if wild birds have a 
role, that role is likely relatively limited compared to the other factors 
we investigated. One of the limitations of this study is the dependence on 
passive surveillance in Bangladesh, wherein the identification of po-
tential outbreaks of HPAI H5N1 mostly relies on the reporting of chicken 
mortality by poultry farmers to the local veterinary hospital [113]. The 
potential for underreporting of clinical cases cannot be ruled out due to 
concerns regarding culling and the absence or insufficiency of 
compensating measures for poultry farmers. 

5. Conclusions 

Here we presented a comprehensive analysis of the role of vaccina-
tion and a set of meteorological, socio-economic, and ecological factors 
on the incidence of HPAI H5N1 outbreaks in Bangladesh. The study 
revealed significant and strong impacts of vaccination and season on 
outbreak incidence, with slightly lesser but still significant effects of 
temperature and a range of socioeconomic factors. These factors are 
important in developing and implementing HPAI mitigation strategies in 
Bangladesh and possibly other regional countries. For instance, our 
study highlights the importance of designing surveillance strategies for 
HPAI H5N1 outbreaks as a climate-sensitive disease and increasing 
biosecurity awareness during winter. The role of highway networks as a 
contributing factor to the spread of HPAI justifies the significance of 
tracking poultry transports and setting transportation limits to curb the 
spread, as earlier suggested by Rivas, Chowell [114]. Although not 
explicitly researched here, our findings suggest that supporting 
increased literacy, public education, and awareness campaigns aimed at 
farmers might also improve early detection and shorten response times 
to contain HPAI-H5N1 outbreaks. While vaccination resulted in a dra-
matic decrease in HPAI H5N1 outbreaks in poultry, we highlighted that 
the virus might continue to circulate in vaccinated flocks with few signs 
of sickness [115], resulting in further evolution, increased spillover risk 
into wild birds and mammals, and ultimately, endemicity [116]. This 
considerable threat as a result of inadequate vaccination warrants a 
reassessment of the vaccination policy in Bangladesh and calls for great 
scrutiny when planning on implementing it elsewhere in the world. It is 
imperative that any implementation of vaccination should, at a mini-
mum, be accompanied by careful monitoring to guarantee that vacci-
nation results in a decrease in infection rate and not (only) a decrease in 
disease symptoms. 
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