# Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma

**Stephanie Talamantes**,<sup>1,†</sup> **Michela Lisjak**,<sup>1,†</sup> Eduardo H. Gilglioni,<sup>1</sup> Camilo J. Llamoza-Torres,<sup>2,3</sup> Bruno Ramos-Molina,<sup>3</sup> Esteban N. Gurzov<sup>1,3,4,\*</sup>

## Summarv

Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

# Introduction

Liver cancer is an aggressive and treatmentresistant pathology that represents the third most common cause of cancer-related death.<sup>1</sup> Primary liver cancer includes hepatocellular carcinoma (HCC, comprising 75%-85% of cases) intrahepatic cholangiocarcinoma (comprising 10%-15% of cases), and other rare types. The highest HCC incidence and mortality are observed in Asia and Africa, but incidence and mortality are also increasing worldwide, especially in Europe and the US.<sup>2</sup>

Non-alcoholic fatty liver disease (NAFLD) is a risk factor that contributes to HCC development. NAFLD can progress to non-alcoholic steatohepatitis (NASH) in 20-30% of cases, and approximately 20-25% of NASH cases progress to cirrhosis,<sup>3</sup> which is the strongest risk factor for HCC development. NAFLD is the leading cause of chronic liver disease worldwide.<sup>4,5</sup> There is an unmet need to accurately identify metabolic risk factors that can better predict advanced stages of the disease and related complications.<sup>6</sup>

Diabetes is a metabolic disorder characterised by impaired regulation of glucose and insulin levels. The prevalence is exceptionally high, with an estimated 463 million affected patients in 2019, accounting for 9.3% of the adult human population.<sup>7</sup> There are three major forms: autoimmune type 1 diabetes, insulin resistance-associated type 2 diabetes (T2D), and monogenic forms of diabetes. However, this classification is currently under reevaluation.<sup>8</sup> T2D is considered a metabolic risk factor for the development of NAFLD, advanced



two well-characterized cohorts that T2D is an independent risk factor for HCC development.<sup>6</sup> T2D is significantly associated with severe liver disease,<sup>9</sup> furthermore patients with advanced NAFLD (NASH with severe fibrosis) have a higher incidence of T2D.4,10 It is unclear whether NAFLD drives T2D, or if hyperglycaemia/hyperinsulinemia pushes NAFLD towards an advanced stage, indicating that the pathological processes are most likely intertwined. Therefore, the underlying mechanisms by which NAFLD/T2D can promote HCC development are not completely understood.

In this review, we discuss the pathogenic pathways activated by nutrient overload and the intracellular mechanisms that lead to aberrant signalling and hepatocyte reprogramming. We also review the involvement of inflammation in the transition from NAFLD/T2D to HCC. Finally, we will discuss current and new therapeutics for treating HCC and emerging technologies that will accelerate the translational process.

# **Risk factors involved in HCC progression** in NAFLD and T2D

#### Genetics

To date, no genome-wide association studies have defined the genetic variations associated with NAFLD-HCC risk, in either the presence or absence of cirrhosis. However, single-nucleotide polymorphisms (SNPs) in genes that promote fat accumulation in hepatocytes have been identified as genetic risk factors in NAFLD, T2D, and HCC.<sup>11–13</sup> fibrosis, and HCC.<sup>4,6</sup> Simon *et al.* demonstrated in For example, the rs738409 polymorphism in



Received 25 November 2022; received in revised form 1 May 2023; accepted 8 May 2023; available online 9 June 2023

<sup>1</sup>Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools Université Libre de Bruxelles, Route de Lennik 808, Brussels 1070, Belgium; <sup>2</sup>Department of Hepatology, Virgen de la Arrixaca University Hospital, Murcia 30120, Spain; <sup>3</sup>Obesity and Metabolism Laboratory. Biomedical Research Institute of Murcia (IMIB), Murcia 30120, Spain; <sup>4</sup>WELBIO Department, WEL Research Institute Avenue Pasteur 6 Wavre 1300, Belgium <sup>†</sup>Both authors contributed equally to this work.

· Corresponding author. Address: Signal Transduction and Metabolism Laboratory, Route de Lennik 808. Brussels, B1070, Belgium; Tel.: +32 2 555 8908. E-mail address: esteban. gurzov@ulb.be (E.N. Gurzov).





phospholipase domain-containing 3 (*PNPLA3*) and the rs58542926 polymorphism in transmembrane 6 superfamily member 2 (*TM6SF2*) have been strongly associated with early steatosis and more advanced NAFLD and NASH.<sup>14</sup> *PNPLA3* rs738409 was also found at a higher frequency in a cohort of patients with HCC and T2D.<sup>15</sup> Furthermore, the *TM6SF2* rs58542926 polymorphism was associated with fatty liver and higher T2D risk in a genome-wide association study of >300,000 participants.<sup>16</sup> However, in other studies, the *PNPLA3* polymorphism was linked to an increase in liver fat, but it was not found to be associated with insulin resistance.<sup>17</sup>

More recently, a polygenic risk score has been developed to predict HCC in patients with obesity-related metabolic disorders and to improve HCC risk stratification.<sup>18</sup> This polygenic risk score combines SNPs in *PNPLA3* and *TM6SF2*, with other SNPs in *MBOAT7* (membrane bound O-acyltransferase domain containing 7), *GCKR* (glucokinase regulator) and *HSD17B13* (17β-hydrox-ysteroid dehydrogenase type 13).<sup>18</sup>

Nuclear receptor coactivator 5 (*NCOA5*), also known as coactivator independent of AF2, is a coregulator of oestrogen receptor  $\alpha$ -mediated transcription. Reduced NCOA5 expression has been associated with HCC in patients with T2D.<sup>19</sup> Remarkably, heterozygous deletion of the *Ncoa5* gene in mice led to HCC through its effects on hepatic interleukin (IL)-6 expression.<sup>19,20</sup>

# Carbohydrates, diabetes development and progression to HCC

An excessive intake of simple carbohydrates is associated with obesity and metabolic syndrome.<sup>21</sup> It was estimated that a 20% reduction in added sugar intake by 2035 will reduce the prevalence of obesity, T2D, coronary heart disease as well as liver complications such as hepatic steatosis, NASH, cirrhosis and HCC in the US.<sup>22</sup>

Fructose is a simple sugar whose intake has dramatically increased, owing to the consumption of sweetened beverages as part of western diets. Wali *et al.* showed that lipogenesis was strongly induced in mice fed a 50:50 mixture of fructose and glucose.<sup>23</sup> Similarly, in healthy individuals, co-ingestion of fructose and glucose led to an increase in lipogenesis.<sup>23</sup> In addition, improved cardiometabolic health was observed when mice were fed low-protein diets containing resistant starch, instead of native starch.<sup>23</sup> These findings indicated that the type of carbohydrate and protein availability in the diet are important (Fig. 1).

Softic *et al.* demonstrated that mice fed a high-fat diet (HFD) supplemented with fructose developed a more severe metabolic phenotype, compared to mice on a HFD supplemented with glucose.<sup>24</sup> Fructose supplementation led to obesity, glucose intolerance and impaired insulin signalling. Sterol regulatory element binding protein-1c (SREBP1c), a master lipogenic regulator, gene expression and downstream lipogenesis genes were also activated.<sup>24</sup> Fructose is metabolised by fructokinase (keto-hexokinase), the first enzyme in fructose metabolism. In hepatocytes, fructokinase stimulation induces lipogenesis and fat accumulation.<sup>25</sup> Mice on a high-fructose diet exhibited increased lipogenesis and developed NASH and HCC.<sup>25</sup> Accordingly, loss of fructose metabolism has been observed in HCC patient samples, and ketohexokinase overexpression in liver cancer cells leads to decreased fructose flux through glycolysis.<sup>26</sup>

# Ketogenic diet, protein intake and liver dysfunction

A ketogenic diet limits carbohydrate intake, which results in low glucose levels, thus reducing lipogenesis.<sup>27</sup> Ketogenesis leads to ketone body production, which represents an energy source in a

## **Key points**

- NAFLD and T2D are among the fastest growing aetiologies in HCC development.
- In NAFLD and T2D, hyperinsulinemia, dysregulated glucose homeostasis and increased lipid accumulation can activate pathways that promote hepatic tumour development.
- Hepatic inflammation, oxidative stress and insulin resistance are important hallmarks of NAFLD/T2D-related HCC.
- Antidiabetic drugs, like metformin and thiazolidinediones, reduce HCC risk, yet their therapeutic effect can be contradictory in advanced stages.
- The stratification of patients with HCC in clinical trials should consider the presence of diabetes, due to its impact on incidence and prognosis.

state of nutrient deprivation, such as prolonged fasting and starvation. Clinical trials have shown the benefits of the ketogenic diet for weight loss; however, its use remains controversial due to reports showing a worsened metabolic outcome.<sup>28</sup> Caloric restriction can slow down the ageing process by activating reprogramming of liver metabolism. Mice subjected to high energy intake, or high caloric intake, showed an increase in proteins involved in nutrient metabolism, including glycolysis, gluconeogenesis, tricarboxylic acid cycle, lipogenesis, β-oxidation, amino acid metabolism and ketogenesis.<sup>29</sup> Low energy intake was instead associated with RNA metabolism and upregulation of splicing. Metformin, rapamycin and resveratrol, known for prolonging lifespan in animal models, play a role in reverting changes induced by high energy and macronutrient intake. Through mTOR inhibition, these agents lead to a reduction in proteins and downstream splicing pathways.<sup>29</sup> Interestingly, mice fed a low-protein diet showed improved metabolic health with increased mitochondrial activity.<sup>30</sup> Conversely, excessive protein intake increases mitochondrial function and is also associated with oxidative stress,<sup>29</sup> which accelerates the ageing process and contributes to HCC development.<sup>31</sup> The "right" balance between protein, carbohydrate and fat intake in health and disease is still controversial. Evaluation in the obese population and in patients with T2D under treatment will help to clarify the real incidence in HCC.

# Insulin resistance and lipid metabolism

The liver is a key regulator of glucose and lipid metabolism. Excessive hepatic lipid accumulation and increased glucose production characterise NAFLD and T2D.<sup>32</sup> In several epidemiological studies, both NAFLD and T2D have been identified as significant risk factors for the development of HCC.<sup>33,34</sup> Hepatic insulin resistance significantly contributes to T2D through fatinduced dysfunctional signalling of the insulin receptor (IR). Dysregulated IR signalling leads to aberrant downstream activation of phosphatidylinositol 3-kinase (PI3K)/AKT, which prevents insulin from inhibiting gluconeogenesis in the liver (Fig. 1). Insulin resistance induces elevated circulating insulin levels, which stimulate increased insulin-like growth factor-1 production, consequently upregulating proliferation and preventing apoptosis in hepatocytes, and thereby contributing to HCC.<sup>3</sup> Hyperinsulinemia also activates insulin receptor substrate-1 which is associated with HCC development.<sup>36</sup>

Daily lipid overload with inadequate mitochondrial function contributes to the increased production of diacylglycerols (DAGs) and ceramides, which promote insulin resistance, NAFLD and eventual HCC development.<sup>17,37,38</sup> The degradation of ceramides



**Fig. 1. Obesity and overnutrition expose the liver to an overload of energetic fuels (lipids, carbohydrates and proteins) that can affect hepatic energy metabolism with pathological consequences.** Several transcription factors are known to act as sensors of nutrients, such as PPAR-γ, which is activated by lipophilic ligands such as PUFAs; SREBP1c, which is activated by LXR in response to insulin, PUFAs and oxysterols; ChREBP, which is activated by glucose-6-phosphate; or mTORC1, which is activated in response to amino acids. These and other transcription factors regulate the expression of enzymes and signal-ling proteins required to execute and coordinate major metabolic pathways. The consequence of chronic aberrant activation of these transcription factors, associated with hyperinsulinemia during T2D predispose the liver to steatosis, inflammation, fibrosis, oxidative stress and mitochondrial dysfunction. These factors facilitate oncogenic transformation and HCC development. Selective insulin resistance confers liver resistance to the inhibitory action of insulin on gluconeogenesis, while the sensitivity of the liver to the stimulatory effect of insulin over lipogenesis remains. Different types of nutrients provided by the diet can accelerate metabolic dysfunction, including nutrients that are abundant in industrialised highly palatable and caloric foods such as saturated fat, cholesterol, sucrose and fructose. ChREB, carbohydrate-responsive element-binding protein; HCC, hepatocellular carcinoma; LXR, liver X receptor; mTORC1, mechanistic target of rapamycin complex 1; NAFLD, non-alcoholic fatty liver disease; PUFA, polyunsaturated fatty acid; T2D, type 2 diabetes; PPAR-γ, peroxisome proliferator-activated receptor gamma; SREBP1c, sterol regulatory element-binding protein 1c.

is associated with improved insulin sensitivity and decreased inflammation.<sup>39</sup> Several studies have found that DAG accumulation can lead to hepatic insulin resistance via activation of protein kinase C (PKC). Phosphorylation of the insulin receptor by PKC was found to impair insulin signalling.<sup>40</sup> Additionally, increased hepatic DAG content in humans was linked to hepatic insulin resistance, which was also associated with PKC activation.<sup>41</sup> This DAG-PKC axis was found to be the strongest predictor of insulin resistance in obese patients. Dysfunctional insulin signalling can, in turn, increase lipid accumulation through a mechanism known as selective insulin resistance.<sup>42</sup> Dysfunctional insulin signalling contributes to *de novo* lipogenesis (DNL) and increased hepatic fat accumulation promotes insulin resistance, leading to a vicious cycle linked to the progression of T2D and advanced NAFLD.

Hepatic steatosis occurs when fatty acid uptake and DNL are elevated over fatty acid oxidation and secretion. DNL was found to be positively associated with hepatic saturated fatty acid (SFA) content; both DNL and SFA levels are elevated in patients with NAFLD and T2D.<sup>43</sup> In addition, SFA content was negatively correlated with hepatic insulin sensitivity<sup>43</sup> and dysregulation of lipid metabolism correlates with the progression of liver disease to HCC.<sup>44</sup> Thus, lipid metabolism can be drastically reprogrammed in malignant hepatic cells.

Several lipogenic enzymes, such as ACLY (ATP-citrate lyase) and ACACA (acetyl-CoA carboxylase alpha), are upregulated in liver cancer.<sup>45</sup> Specifically, fatty acid synthase (FASN), a key

enzyme in lipogenesis, is upregulated in patients with HCC and may be an important driver of cancer development.<sup>46,47</sup> Indeed, in an HCC mouse model, deletion of *Fasn* prevented hepatocarcinogenesis in mice with oncogenic overexpression of c-Met/AKT and AKT alone.<sup>47</sup> Additionally, FASN inhibition was found to suppress HCC formation in c-Myc-overexpressing tumours.<sup>48</sup> However, FASN was also found to be dispensable in a murine HCC model, with c-Met and  $\beta$ -catenin overexpression.<sup>49</sup> These studies highlight that the role of FASN and DNL in hepatocarcinogenesis is oncogene dependent, which has important implications for the design of targeted treatment options.

Peroxisome proliferator-activated receptor (PPAR)- $\gamma$  is a nuclear receptor protein that plays a key role in the regulation of lipid metabolism. In the liver, PPAR- $\gamma$  is an early contributor to NAFLD development (Fig. 1), where it increases steatosis by upregulating DNL and free fatty acid uptake.<sup>50</sup> PPAR- $\gamma$  was found to be elevated in the livers of obese patients with NAFLD.<sup>51,52</sup> Paradoxically, PPAR- $\gamma$  has also been found to suppress tumorigenesis, inducing PI3K/AKT-mediated apoptosis and cell cycle arrest in HCC.<sup>53</sup> Thus, PPAR- $\gamma$  agonists have been investigated in clinical trials as potential therapeutic agents for HCC, <sup>54,55</sup> but their use remains controversial given their adverse metabolic effects.

Obesity and T2D have also been linked to expression of the lipogenic regulator SREBP1.<sup>56</sup> Mammalian target of rapamycin complex (mTORC)1 and mTORC2 increase SREBP1 transcription and are major upstream regulators of lipogenesis. By activating

SREBP1, mTORC1 is responsible for lipid synthesis during insulin resistance, and thereby contributes to hepatic steatosis.<sup>56</sup> SREBP1 is elevated in liver tumour tissue<sup>57</sup> and its inhibition has also been proposed as a therapeutic strategy for HCC.<sup>58,59</sup>

Free fatty acid synthesis is increased in tumoral cells for membrane support and energy production, promoting cancer growth and metastasis.<sup>45</sup> In a study investigating the lipidomic profile of patients with NAFLD-associated HCC, a decrease in unsaturated fatty acids and acylcarnitines was found in the blood, with an increase in fatty acid transporters in tumours.<sup>60</sup> Patients with HCC had decreased levels of free carnitines and increased levels of long-chain acylcarnitines. Notably, low serum levels of acetylcarnitine were identified as a strong candidate biomarker for HCC development.<sup>61</sup> In a proteomic and lipidomic study of mice and humans, lipid-modifying enzymes were found to convert SFAs to monounsaturated fatty acids in HCC, and an increased ratio of long-chain n6 to n3 polyunsaturated fatty acids is associated with higher HCC risk in patients with NASH.<sup>62</sup>

Overall, these findings highlight the important role of altered insulin resistance and lipid metabolism in liver disease and indicate that they may be crucial drivers in the progression from NAFLD and T2D to HCC and early disease diagnosis.

# Hepatic inflammation, a key component of NAFLD/ T2D-related HCC development

## Inflammatory pathways

The liver is well known for its role in metabolism and detoxification, yet it also plays an essential role in the body's immune response. Almost all subsets of leukocytes and phagocytes can be present in the liver, while the largest population of hepatic immune cells are Kupffer cells (liver-resident macrophages).<sup>63</sup> Hepatic cells must maintain a balance of tolerance to immune cells during normal physiological function, while also remaining protected against foreign pathogens and tissue damage. Consequently, the hepatic immune cell population can be significantly altered in NAFLD, T2D and HCC<sup>64</sup> (Fig. 2).

NAFLD and T2D are characterised by chronic low-grade inflammation, which has been linked to HCC development (Fig. 2). In patients with HCC, pro-inflammatory cytokines such as IL-6, tumour necrosis factor- $\alpha$  (TNF- $\alpha$ ), and C-reactive protein levels are elevated, suggesting enhanced inflammation and insulin resistance.<sup>65,66</sup> Chemokines have also been linked to NAFLD and HCC progression. Patients with NAFLD-associated HCC were found to have higher plasma levels of IL-8, IL-13, CCL-3, CCL-4, and CCL-5, which was correlated with activated circulating monocytes, compared to those with NAFLD without HCC.<sup>67</sup>

Cytokines can promote both immune tolerance and inflammation in the liver microenvironment. In hepatocytes, IL-6 and TNF- $\alpha$  can activate several signalling pathways linked to inflammation, steatosis and oncogenesis. In a mouse model of obesity, elevated expression of IL-6 and TNF- $\alpha$  promoted liver fat accumulation and inflammation.<sup>68</sup> Furthermore, this inflammatory response and steatosis induced oncogenic STAT3 activation and promoted HCC development.<sup>68</sup>

# NF-ĸB

NF-κB signalling is linked to increased insulin resistance in obesity and T2D models, where it is induced by low-grade inflammation.<sup>69,70</sup> Patients with HCC were found to have elevated NF-kB activity.<sup>70</sup> When the NF-kB-activating kinase

IKKβ (inhibitor of NF-kB kinase subunit beta) was constitutively activated in hepatocytes, mice exhibited hyperglycaemia as well as hepatic and systemic insulin resistance.<sup>69</sup> An increase in proinflammatory cytokines and inflammatory signalling was also found in IKKβ-activated mice. Thus, NF-κB activation in hepatocytes can lead to a diabetic phenotype. Interestingly, the hepatocytic IKK:NF-κB axis also regulates lipogenesis and cholesterol synthesis, independent of its central role in inflammation.<sup>71</sup>

Induction of NF- $\kappa$ B by obesity-associated inflammation can also lead to insulin resistance via a phosphotyrosine signallingmediated mechanism. Activated NF- $\kappa$ B led to overexpression of hepatic tyrosine phosphatase PTPR- $\gamma$  in obesity/T2D mouse models.<sup>72</sup> This elevated PTPR- $\gamma$  activity was linked to significant inflammation and insulin resistance in mice and humans. Upon PTPR- $\gamma$  loss in mouse models, glucose production was decreased and hepatic insulin signalling was enhanced.<sup>72</sup> Thus, the NF- $\kappa$ B/ PTPR- $\gamma$  axis affects hepatic metabolism, which is dysregulated by obesity-associated inflammation and can contribute to HCC.

NF-KB has pro-tumorigenic properties, with its activation promoting HCC cell proliferation, survival, and invasion. NF-кB can also activate stromal and immune cells, enhancing inflammation and fibrosis.<sup>70</sup> Paradoxically, loss of NF-κB has also been found to significantly promote HCC development.<sup>70,73,74</sup> NF-kBactivating kinase IKK<sup>β</sup> can prevent liver tumorigenesis by suppressing hepatocyte cell death and proliferation. In a late-stage HCC mouse model, Ikkb-knockout mice showed a significant increase in tumour number and size.<sup>75</sup> IKKβ was identified as a negative regulator of HCC development through reactive oxygen species (ROS)-mediated signal transducer and activator of transcription (STAT)3 signalling.<sup>75</sup> It is not uncommon for both the hyperactivation and inactivation of pathways to result in similar outcomes in biology, albeit through different mechanisms. As a key mediator in inflammation and survival, understanding the context-dependent role of NF-kB in liver disease requires further investigation.

# JAK-STAT

The Janus kinase (JAK)-STAT pathway is a key regulator in inflammation, insulin resistance, T2D, and HCC. Cytokines and growth factors activate JAK-STAT signalling, which leads to the expression of downstream gene targets involved in cell proliferation, survival, stress and immune responses.<sup>76</sup>

As previously described, STAT3 has been found to be constitutively activated in HCC tumours and induced by proinflammatory IL-6.<sup>77,78</sup> This transcription factor is involved in tumour initiation and promotion; furthermore, phosphorylated STAT3 was found in 60% of human HCC cases and is associated with more aggressive tumours.<sup>79</sup>

# JNK

In obesity, the c-Jun N-terminal kinase (JNK) family acts as a critical regulator in insulin resistance and NASH. Elevated c-Jun-JNK activity has been identified in the livers of obese patients, and was subsequently linked to hepatic insulin resistance and steatosis. JNK1 and JNK2 were found to negatively regulate insulin sensitivity and glucose uptake in HFD-fed mice.<sup>80</sup> We found that hepatic fat accumulation activated JNK signalling, which leads to an increase in the expression of the BCL-2 (B-cell lymphoma 2) family member BIM (Bcl-2 interacting mediator of cell death).<sup>81</sup> In a liver-specific *Bim* knockout mouse model, insulin



**Fig. 2. NAFLD and T2D are characterised by increased hepatic inflammation and oxidative stress, contributing to HCC development.** The population of resident and recruited immune cells in the liver is dynamic during the progression of NASH. Different cell types can participate in the inflammatory response. Proinflammatory cytokines such as IL-6 and TNF- $\alpha$ , are released by different tissue sources and drive an inflammatory response, including oncogenic STAT3 activation. An excess of dietary fats and simple carbohydrates favour body and hepatic fat accumulation and alters specific immune cell populations in the liver. Tumour suppressive CD4<sup>+</sup> T cells are depleted by nutrient overload and ROS-dependent mechanisms. Hepatic resident KCs are also depleted in NAFLD and replaced by two subsets of pro-inflammatory recruited macrophages: monocyte-derived KCs and hepatic lipid-associated macrophages. These macrophages colocalize with fibrotic liver regions with activated hepatic stellate cells. In association with hepatic steatosis and inflammation, continuously high ROS levels lead to oxidative stress and liver damage that is strongly associated with HCC development. CD4, cluster of differentiation 4; HCC, hepatocellular carcinoma; IL-6, interleukin-6; KCs, Kupffer cells; NAFLD, non-alcoholic fatty liver disease; ROS, reactive oxygen species; STAT-3, signal transducer and activator of transcription 3; TNF- $\alpha$ , tumor necrosis factor alpha; T2D, type 2 diabetes.

sensitivity was improved while hepatic steatosis was reduced.<sup>81</sup> BCL-2 proteins are important modulators of cell survival and are often dysregulated in cancer, including HCC.<sup>82</sup>

In addition to its role in liver steatosis, JNK signalling can promote tumour initiation in HCC. The activation of oncogenic c-Myc by JNK led to the downregulation of tumour suppressor p21 in hepatocytes.<sup>83</sup> However, the pro-tumorigenic role of JNK seems to depend on its ability to induce expression of the proinflammatory cytokines IL-6 and TNF- $\alpha$  by non-parenchymal cells.<sup>84</sup> This association between activated JNK signalling, inflammation and HCC development has been identified as an attractive therapeutic target.

#### **Kupffer cells**

Hepatic-resident Kupffer cells are considered pro-inflammatory drivers in the development of T2D/NAFLD-related HCC. However, it was recently revealed that resident Kupffer cells were depleted in NAFLD and were instead replaced by two subsets of pro-inflammatory recruited and activated macrophages: monocyte-derived Kupffer cells and hepatic lipid-associated macrophages.<sup>64</sup> The latter subset was activated in obesity and able to metabolise lipids (Fig. 2). Lipid-associated macrophages were also found to be frequently accumulated in liver regions with increased pro-fibrotic Desmin, produced by hepatic stellate cells.<sup>64</sup> Interestingly, another study demonstrated that when the insulin signalling pathway was inhibited, macrophages showed an anti-inflammatory phenotype, with lower expression of IL-6, IL-1 $\beta$ , and TNF- $\alpha$ .<sup>85</sup> This altered macrophage heterogeneity highlights that Kupffer cell lineage and activation is important in NAFLD and HCC. Subsets of recruited and activated macrophages may be responsible for increased inflammation and fibrosis in the progression of NAFLD to HCC.

# T cells

Adaptive immunity has also been shown to play a role in HCC development. In diet-induced mouse models, there was a liver-specific loss of CD4<sup>+</sup> T cells but not CD8<sup>+</sup> T cells.<sup>86</sup> Excessive lipid accumulation in hepatocytes led to linoleic acid secretion and induced ROS-mediated CD4<sup>+</sup> T-cell death. This hepatic depletion of CD4<sup>+</sup> lymphocytes was strongly associated with increased tumorigenesis.<sup>86</sup> However, IR knockout in T cells led to reduced production of pro-inflammatory cytokines upon activation and diminished cytotoxicity.<sup>87</sup>

The role of T cells has also been explored in NASH, with a specific subset of auto-aggressive CXCR6<sup>+</sup> CD8 T cells identified in preclinical models and patients with NASH.<sup>88</sup> These liverresident T cells were reprogrammed and activated by metabolic stimuli, mediating liver damage.<sup>88</sup> NASH-HCC has been reported to be associated with worse outcomes in patients treated with PD-L1/PD-1 immunotherapy due to expansion of activated CD8<sup>+</sup> killer T cells.<sup>89</sup> These findings highlight a potential role of activated CD8<sup>+</sup> T cells in HCC progression, which has implications for immunotherapy.<sup>89</sup> Leslie et al. showed in preclinical NASH-HCC models that antagonism of CXCR2, a chemokine receptor that is exclusively expressed on neutrophils in mice and humans, resulted in efficient tumour clearance and increased survival when combined with anti-PD-1 blockade.<sup>90</sup> This work demonstrated that sensitisation of NASH-HCC may be beneficial to improve the efficacy of systemic treatments.

# DNA methylation, oxidative stress and hepatocyte reprogramming

# DNA methylation

NAFLD and T2D are multifactorial diseases influenced by hereditary genetics and environmental factors, which can induce hepatic epigenetic alterations.<sup>91</sup> In patients with NAFLD, epigenetic changes are known to promote liver fibrosis.<sup>92</sup> Thus, DNA methylation can occur in tissues undergoing metabolic reprogramming, which involves pathways such as insulin signalling and secretion, adipocyte differentiation, mitochondrial function, lipid and glucose homeostasis, and inflammation.<sup>93</sup>

DNA methylation signatures have also been identified in patients with NASH.<sup>94</sup> NASH hepatic methylation can be reversible, as seen in liver biopsies of obese individuals who underwent bariatric surgery to lose weight.<sup>95</sup> Interestingly, a DNA methylation signature obtained from the peripheral blood of patients with NASH showed epigenetic age acceleration correlating with increased liver fibrosis.<sup>96</sup> Whether this DNA methylation profile is related to HCC development warrants further research.

In a large-scale, multi-omics study of patients with HCC, alterations by hypermethylation and mutation were observed in metabolic reprogramming genes.<sup>97</sup> Notably, carbamoylphosphate synthase 1 (*CPS1*), a urea cycle enzyme, was found to be hypermethylated in HCC, correlating with a reduction in *CPS1* mRNA levels.<sup>97</sup> *CPS1* deficiency induced excess ammonia and activated fatty acid oxidation, which provides ATP for proliferation in HCC cells.<sup>98</sup> The methylation profile was also analysed to identify differentially methylated genes in T2D and HCC, among which *CDKN1A* was found as a potential diagnostic and prognostic marker in HCC.<sup>99</sup> Additional studies in large patient cohorts are required to understand the potential role of epigenetic modifications related to NAFLD/T2D in the development of HCC.

## **Oxidative stress**

NAFLD and T2D are characterised by an increase in hepatic fat accumulation and chronic low-grade inflammation, leading to excessive ROS levels. This increase in ROS leads to oxidative stress and liver damage which has been strongly implicated in HCC (Fig. 2). The effect of oxidative stress in obesity and HCC was covered extensively in our recent review.<sup>31</sup>

Mitochondria are involved in ROS production through their activity in energy metabolism and oxidative phosphorylation. Thus, oxidative stress induced by dysfunctional mitochondrial activity in obesity has been identified as a driver of liver pathophysiology. Using high-resolution respirometry, mitochondrial respiration has been quantified in liver biopsies of obese, insulinresistant patients, with or without NAFLD/NASH, and compared to lean/healthy patients.<sup>100</sup> The hepatic mitochondrial respiration rate was shown to be higher in obese, insulin-resistant patients compared to lean controls.<sup>100</sup> However, among patients with obesity and insulin resistance, those with NASH were found to have a lower hepatic respiration rate than those without NASH. Furthermore, the patients with NASH had significantly increased hepatic insulin resistance, hepatic oxidative stress, and inflammation.<sup>100</sup> Loss of this increased hepatic mitochondrial respiration in patients with NASH results in elevated oxidative stress, driving disease progression to HCC.<sup>31</sup>

Protein tyrosine phosphatases (PTPs) are a protein family that has been identified as a key regulator in oxidative stress and insulin resistance. PTPs contain a catalytic cysteine in their phosphatase domain that is highly susceptible to oxidation by ROS. We demonstrated that a HFD induced oxidative stress in obesity, which led to prominent PTP oxidation in the liver.<sup>42</sup> PTPN2 (TCPTP) was inactivated, leading to an increase in lipogenesis and insulin-STAT5 signalling. This enhanced expression of STAT5 promoted insulin-like growth factor-1 production in the liver, increasing insulin resistance and the progression to T2D.<sup>42</sup> Moreover, PTPN2 inactivation in the liver contributes to NASH and HCC development through STAT1 and STAT3dependent mechanisms, respectively.<sup>78</sup>

Oxygen availability, oxidative stress, inflammation, and various nutrients can differentially affect hepatocyte signalling between the portal and central vein. Importantly, liver zonation can affect metabolic reprogramming in various hepatic regions.<sup>32</sup> Although oxidative stress promotes cancer development, tumour cells can also utilise antioxidant systems for survival. Thioredoxin reductase-1 (TrxR1), an antioxidant protein, was found to be significantly overexpressed in human HCC samples.<sup>101</sup> NRF-2, a key transcription factor in oxidative stress regulation, was shown to upregulate TrxR1 expression in HCC cell lines.<sup>101</sup> Treatment with a TrxR1 inhibitor in vitro and in vivo exhibited potent anti-tumour effects and increased sensitivity to sorafenib treatment. Taken together, these studies highlight the potential oncogenic role of antioxidant systems in HCC, which may guide better treatment options for patients with a high antioxidant profile.



**Fig. 3. Hepatocyte transformation in NAFLD/T2D.** Normal hepatocytes prefer β-oxidation of fatty acids as a source of energy, as well as relatively low glucose uptake and oxidation. This is especially true during fasting conditions and this preference is influenced by hepatic zonation. Transformed hepatocytes exhibit high glucose uptake and rely on aerobic glycolysis as a source of energy. Pyruvate is preferentially converted into lactate, instead of being oxidised in the mitochondria. High fat intake rewires hepatocyte energy metabolism to favour glucose uptake and its utilisation as a source of energy through aerobic glycolysis and lactate production. Glucose can be used as a carbon source for biosynthetic reactions in rapidly growing tissues, as well as in cell signalling and maintenance of the redox state. High glucose uptake also sustains the substrate requirement for the pentose phosphate pathway. This is important for ribulose-5-phosphate synthesis, which is required for nucleotide biosynthesis and nucleic acid replication. Pyruvate carboxylase is induced by high-fat intake, favouring the entrance of pyruvate into the TCA cycle as oxaloacetate to maintain anaplerotic reactions required for amino acid biosynthesis. Acetyl-CoA is converted into fatty acids through lipogenesis. The pool of intracellular fatty acids (from lipogenesis and extrahepatic tissues) is used for phospholipid biosynthesis to build biological membranes. Hyperinsulinemia associated with T2D, in combination with the action of the hepatokine IGF-1, can lead to dysfunctional signalling pathways involved in cell survival, apoptosis, and stress responses. Together, these cellular and metabolic changes can represent advantages for cancer cells, allowing them to sustain rapid growth and proliferation. Bad, Bcl-2-associated agonist of cell death; Bcl-2, B-cell lymphoma 2; HCC, hepatocellular carcinoma; IGF-1, insulin-like growth factor 1; IRS1-4, insulin receptor substrate 1-4; mTOR, mammalian target of rapamycin; NAFLD, non-alcoholic fatty l

# Metabolic-driven hepatocyte reprogramming

An increase in insulinemia, hepatic gluconeogenesis, and lipogenesis, with excessive lipid accumulation, represent the hallmarks of NAFLD and T2D, and have been found to alter hepatocyte function (Fig. 3). In obesity, fasting insulin concentration and insulin secretion are increased in response to meals .<sup>102</sup> The hyperinsulinemia associated with obesity has been shown to increase cancer-related mortality, including HCCrelated mortality.<sup>103</sup> Insulin signalling modulates proliferation, survival and differentiation through RAS, AKT and PI3K, which are frequently mutated genes in HCC and are considered therapeutic targets.<sup>104</sup> Moreover, PTEN, a well-known HCC tumour suppressor, negatively regulates insulin signalling and is also frequently mutated in liver cancers.<sup>105</sup>

In a streptozotocin-induced diabetic rodent model, transplanted pancreatic islets of Langerhans induced hepatocellular neoplasms.<sup>106</sup> This method for treating type 1 diabetes involved transplanting functional islets into the liver via the portal vein. However, the rats developed liver tumours which may have been a consequence of increased insulin secretion and subsequent growth stimulation from the transplanted islets.<sup>106</sup>

Mature hepatocytes maintain plasticity through Hedgehog, Hippo-YAP-TAZ and Notch, which are activated during obesity and hyperinsulinemia to cope with chronic insults.<sup>107,108</sup> Notchmediated signalling can reprogramme hepatocytes to cholangiocytes or progenitors in chronic liver injury.<sup>107</sup> Notch overexpression in mature mouse hepatocytes led to the expression of biliary markers SOX9 (SRY-box transcription factor 9) and osteoponin, which are normally absent in hepatocytes. Consistently, feeding mice a methionine- and choline-deficient diet (a NASH mouse model) resulted in SOX9 induction, steatohepatitis and biliary trans-differentiation.<sup>107</sup> Loss of hepatocyte identity plays a role in the transformation process into cancer cells and in dedifferentiation into precursor cells that can later develop into malignant cells. Proteomics data from mouse NASH livers revealed a downregulation in hepatocyte identity genes, suggesting their importance in disease progression.<sup>109</sup> ELF3 and GLIS2 were found to play a role in NASH.<sup>109</sup> These transcription factors regulate the activation of hepatokines, such as Spp1 (secreted phosphoprotein 1) and Ctgf (alias Ccn2), which regulate the crosstalk between hepatic cells to induce NASH progression. Spp1 and Ctgf likely contribute to the activation of hepatic stellate cells and fibrosis.<sup>109</sup> Stellate cells function as a signalling hub and secrete growth factors, cytokines, and chemokines named "stellakines". These secreted factors have been shown to be increased in NASH, indicating their potential contribution to disease progression and HCC development.<sup>32</sup>

Hyperglycaemia can provide additional "fuel" to cancer cells, enabling them to maintain rapid proliferation (Fig. 3). Glucose metabolism was investigated in non-transformed livers from mice on a short-term HFD,<sup>45</sup> which was shown to increase glucose uptake by 35%. Lactate production was increased in these mice, which recapitulated the high lactate phenotype in obese patients. The tricarboxylic acid cycle is central to energy metabolism (Fig. 3). Glycolysis-derived pyruvate can enter the tricarboxylic acid cycle after being converted into acetyl-CoA, or as oxaloacetate through pyruvate carboxylase (PC). Mice fed a HFD had increased levels of hepatic pyruvate, malate and citrate.<sup>45</sup> HFD increased the pentose phosphate pathway and serine biosynthesis, as well as PC activity, suggesting that a fat-rich diet could induce an increase in glucose uptake similar to the tumoral state.45 Indeed, HFD intake increased liver tumours in diethylnitrosamine-injected mice.45 Serine biosynthesis and mitochondrial PC activity were elevated in HCC tissue from diethylnitrosamine-injected mice compared to liver tissue from mice fed a control diet.45

In summary, obesity and T2D can increase cancer hallmarks in non-transformed livers, suggesting that hyperinsulinemia, dysregulated glucose homeostasis and an increase in lipids can activate pathways that promote hepatic tumour development.

# Novel disease models and therapeutic possibilities Stem cell differentiation and somatic cell reprogramming to mimic human pathology

Novel methods are required to understand the pathophysiological connection between NAFLD/T2D and HCC. Studies in liver disease have mainly relied on human tissue/biopsies from donors, animal models, *in vitro* cell lines, and cultured primary hepatocytes. However, all these models have major limitations.

One recent development in modelling human liver function is induced pluripotent stem cells (iPSCs).<sup>110–112</sup> iPSCs can be derived from somatic cells of individuals with different pathologies, including patients with HCC with or without diabetes. iPSCs are then differentiated into hepatocyte-like cells (HLCs), which can be expanded and maintained in culture.<sup>113</sup> They do not de-differentiate and maintain genomic and physiological similarities to human hepatocytes. Indeed, biobanking of patient iPSCs has aided in the acceleration of precision medicine. These patient-derived stem cell models can be used to predict a patient's response to drug treatments.

Several studies have developed methods to differentiate human iPSCs to a hepatic cell fate. This differentiation protocol requires various growth factors such as activin A, fibroblast growth factor 2, bone morphogenetic protein 4, hepatocyte growth factor, and oncostatin M, and specific culture conditions to generate mature hepatocytes.<sup>110</sup> Moreover, a hepatic-like phenotype can be achieved in somatic cells via the ectopic expression of native liver-enriched transcription, bypassing the intermediate pluripotent state.<sup>114</sup> These "artificial" hepatocytes are amenable to CRISPR/Cas gene editing and useful for large-scale high-throughput screening and toxicology studies.

# Organoids

While iPSC-derived HLCs have shown promise as an improved model of hepatocyte function, this method has been criticised due to the monolayer cell culture condition. Recent developments have demonstrated that 3D cell culture can more accurately simulate the cell's environment by allowing cell-cell, cell-extracellular matrix, and mechanical interactions.<sup>115</sup> Extracellular matrix components such as collagen, laminin, and fibronectin have been used in 3D culture to mimic the liver microenvironment. 3D culture methods have been developed using synthetic scaffolds or spontaneous hepatic organoids. Moreover, co-culture of HLCs with other cell types also allows for better modelling of liver physiology.

Steatosis can be induced in iPSC-derived human liver organoids with free fatty acid treatment.<sup>116</sup> Liver organoids treated with antidiabetic drugs, L-carnitine and metformin, showed reduced fat accumulation.<sup>116</sup> Organoids have also been generated from patient liver cancer cells to investigate their use as models in HCC.<sup>117</sup> Liver cancer organoids were found to reflect patientspecific histological architecture and gene expression; furthermore, they developed tumours when transplanted *in vivo*.<sup>117</sup>

The use of iPSCs and organoids has great potential to advance personalised medicine for NAFLD and T2D. Additionally, genomic analysis of human iPSCs and organoids can identify genetic variants that may be diagnostic biomarkers or confer drug resistance. iPSCs and organoids have been proposed as important tools in regenerative medicine. Using gene editing, these *in vitro* models could enable the repair of mutations in genetic diseases prior to transplantation back into patients. Moreover, iPSCs and organoids can be genetically modified to be HLA-matched to patients, thereby preventing organ rejection. Although iPSCs and organoids have limitations, such as high cost and poor reproducibility, this technology holds great promise.

# Pharmacological therapies and clinical trials

The dramatically rising incidence of NAFLD, T2D and HCC means that effective therapeutic options for patients are an urgent clinical need. Given that T2D is a known risk factor for HCC, several studies have investigated antidiabetic treatments for liver cancer. Increasing evidence suggests that diabetic agents may also be attractive therapies and play a relevant role in the management of patients with HCC. The effects of antidiabetic drugs in HCC can be evaluated at two main levels: chemoprevention and treatment (Table 1).

Sorafenib was the first systemic therapy that was found to be effective in a clinical trial for advanced HCC.<sup>118</sup> For a decade, it was the only approved first-line treatment for patients with HCC. Recently, several new effective treatments have been approved as first- and second-line therapies.<sup>118–123</sup> These include several kinase inhibitors, VEGF (vascular endothelial growth factor) inhibitors, and immune-checkpoint inhibitors. However, there is still a concern regarding adverse events associated with systemic therapies. Developing alternative strategies to improve patient's

| Table 1. The effects of antidiabetic drugs in HCC can be evaluated at two main levels: Che | emoprevention and treatment. |
|--------------------------------------------------------------------------------------------|------------------------------|
|--------------------------------------------------------------------------------------------|------------------------------|

| Study                   | Phase/type                          | Identifier  | Number of patients                                                                                                                               | Study drug                      | Diabetes<br>mellitus | Number centres/<br>countries                   | Year | Primary<br>endpoint                                                                                                                                                                                | Conclusions                                                                                                                                                                                                                                                                                                                                                                            | Ref. |
|-------------------------|-------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Chemoprevention         |                                     |             |                                                                                                                                                  |                                 |                      |                                                |      |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |      |
| Evans JM et al.         | Retrospective<br>case-control study | n.a.        | Cases (983) – Controls<br>(1,846)                                                                                                                | Metformin                       | T2D                  | Population data-<br>bases/Tayside-<br>Scotland | 2005 | Odds ratio                                                                                                                                                                                         | Metformin may reduce the risk of cancer in patients with T2D. The unadjusted odds ra-<br>tio was 0.86 (95% CI 0.73 to 1.02). The unadjusted odds ratio for any exposure to metformin since 1993 was 0.79 (0.67 to 0.93).                                                                                                                                                               | 146  |
| ADOPT                   | Ш                                   | NCT00279045 | Rosiglitazone (1,456)<br>vs. metformin (1,454)<br>vs. glyburide/gliben-<br>clamide (1,441)                                                       | Metformin, TZD,<br>sulfonylurea | T2D                  | 490 centres/US,<br>Europe/hospital<br>based    | 2006 | Monotherapy<br>failure                                                                                                                                                                             | <i>Post hoc</i> analysis of occur-<br>rence of HCC in patients<br>enrolled in OADM mono-<br>therapy trial. HCC total: 4. HR<br>metformin vs. rosiglitazone:<br>0.92 (95% Cl 0.63–1.35); met-<br>formin vs. glibenclamide: 0.78<br>(95% Cl 0.53–1.14)                                                                                                                                   | 147  |
| RECORD                  | Ш                                   | NCT00379769 | Rosiglitazone (2,220)<br>vs. Metformin (1,122)<br>vs. Sulfonylurea<br>(1,105)                                                                    | Metformin, TZD,<br>sulfonylurea | T2D                  | 447 centres/US,<br>Australia/hospital<br>based | 2007 | Cardiac out-<br>comes, regula-<br>tion of<br>glycaemia                                                                                                                                             | Post hoc analysis of HCC inci-<br>dence in cardiovascular out-<br>comes study of OADM, with<br>addition of another "rescue"<br>OADM as needed for glycae-<br>mic control. HCC total: 4. On<br>background of sulfonylurea:<br>metformin vs. rosiglitazone<br>HR 1.22 (95% CI 0.86–1.74). On<br>background of metformin:<br>sulfonylurea vs. rosiglitazone<br>HR 1.33 (95% CI 0.94–1.88) | 100  |
| Donadon V <i>et al.</i> | Retrospective<br>case-control study | n.a.        | HCC cases (610) -<br>matched liver<br>cirrhosis (618) - con-<br>trols (1,696)                                                                    | Metformin                       | T2D                  | 1 centre/Italy                                 | 2010 | To explore the<br>relationships<br>among T2D,<br>antidiabetic<br>therapy and<br>HCC risk.                                                                                                          | T2D is an independent risk factor for HCC and pre-exists to HCC occurrence. Metformin was associated with a significant reduction of risk for HCC vs. controls vs. cirrhosis cases when compared with sulfonylurea and insulin therapy (OR 0.15; CI 0.04–0.50; $p = 0.005$ and OR 0.16; CI 0.06–0.46; $p = 0.0006$ respectively)                                                       | 148  |
| Chang CH et al.         | Retrospective<br>case-control study | n.a.        | T2D (606,583). A total<br>of 10,741 liver cancer<br>cases, 7,200 colorectal<br>cancer cases, and<br>70,559 diabetic con-<br>trols were included. | TZD                             | T2D                  | Population data-<br>bases/Taiwan               | 2012 | To assess the<br>association<br>between TZDs<br>(both pioglita-<br>zone and rosi-<br>glitazone) and<br>the occur-<br>rences of liver,<br>colorectal,<br>lung, and uri-<br>nary bladder<br>cancers. | The use of pioglitazone and<br>rosiglitazone is associated<br>with a decreased liver cancer<br>incidence in diabetic patients.<br>A significantly lower risk of<br>liver cancer incidence was<br>found for any use of rosigli-<br>tazone (OR 0.73, 95% CI 0.65-<br>0.81) or pioglitazone (OR 0.83,<br>95% CI 0.72-0.95),<br>respectively.                                              | 136  |

(continued on next page)

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

| Study                    | Phase/type                    | Identifier | Number of patients                                                                                          | Study drug                                  | Diabetes<br>mellitus   | Number centres/<br>countries                     | Year | Primary<br>endpoint                                                                                                                                                                                                                        | Conclusions                                                                                                                                                                                                                                                                                                                                                                      | Ref. |
|--------------------------|-------------------------------|------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|--------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Singh S et al.           | Meta-analysis                 | n.a.       | Ten studies reporting<br>22,650 cases of HCC in<br>334,307 patients                                         | Metformin, TZD,<br>sulfonylurea,<br>insulin | T2D                    | Multicentre                                      | 2013 | Risk of inci-<br>dent HCC                                                                                                                                                                                                                  | Meta-analysis of observa-<br>tional studies showed a 50%<br>reduction in HCC incidence<br>with metformin use, but an<br>increase in HCC incidence<br>with sulfonylurea or insulin<br>use. TZD did not modify the<br>risk of HCC.                                                                                                                                                 | 128  |
| Zhang H <i>et al.</i>    | Meta-analysis                 | n.a.       | Seven studies report-<br>ing 562 cases of HCC<br>in 16,549 patients                                         | Metformin                                   | T2D                    | Population data-<br>bases/China                  | 2013 | To determine<br>the association<br>between met-<br>formin use and<br>HCC among<br>diabetic<br>patients.                                                                                                                                    | Metformin treatment was<br>associated with reduced risk<br>of HCC in diabetic patients<br>(RR 0.24, 95% CI 0.13–0.46, <i>p</i><br><0.001).                                                                                                                                                                                                                                       | 129  |
| Lai SW et al.            | Retrospective<br>cohort study | n.a.       | Controls diabetics on<br>TZD treatment<br>(23,580)/case di-<br>abetics on TZD treat-<br>ment (23,580)       | TZD                                         | T2D                    | Taiwan                                           | 2020 | Risk of inci-<br>dent HCC                                                                                                                                                                                                                  | There was a negative associa-<br>tion in a duration-dependent<br>manner between the risk of<br>HCC and TZD use among T2D<br>patients who had risk factors<br>for HCC                                                                                                                                                                                                             | 137  |
| Vilar-Gomez E<br>et al.  | Cohort                        | n.a.       | No T2D (87) vs. T2D<br>(212)                                                                                | Metformin, sulfo-<br>nylurea, insulin       | T2D and NASH cirrhosis | Six centres/<br>Europe, Asia,<br>Australia, Cuba | 2021 | To determine<br>the influence<br>of T2D, hyper-<br>glycaemia, and<br>ADMs on out-<br>comes of HCC,<br>liver decom-<br>pensation, and<br>death                                                                                              | Metformin significantly<br>reduced the risk of hepatic<br>decompensation and HCC<br>only in subjects with HbA1c<br>levels greater than 7.0% (Ahr<br>0.97; 95% CI 0.95–0.99 and<br>aHR 0.67; 95% CI 0.43–0.94,<br>respectively)                                                                                                                                                   | 149  |
| Kaplan DE <i>et al</i> . | Retrospective<br>cohort study | n.a.       | 74 984 diabetics;<br>40,368 with T2D<br>before cirrhosis. 11 114<br>had active utilization<br>of metformin. | Metformin                                   | T2D                    | Population data-<br>bases/US                     | 2021 | To investigate<br>the impact of<br>metformin<br>exposure on<br>mortality, he-<br>patic decom-<br>pensation, and<br>HCC in in-<br>dividuals diag-<br>nosed with<br>cirrhosis with<br>a pre-existing<br>diagnosis of<br>diabetes<br>mellitus | Metformin use in patients<br>with cirrhosis and diabetes<br>appears safe and is associated<br>independently with reduced<br>overall, but not liver-related,<br>mortality, hepatocellular car-<br>cinoma, or decompensation<br>after adjusting for concomi-<br>tant statin and<br>angiotensinogen-converting<br>enzyme inhibitor/angio-<br>tensin-2-receptor blocker<br>exposure. | 150  |

(continued on next page)

Review

| Table 1 (c | ontinued) |
|------------|-----------|
|------------|-----------|

| Study                   | Phase/type                          | Identifier | Number of patients                                                                                                             | Study drug                                              | Diabetes<br>mellitus | Number centres/<br>countries     | Year | Primary<br>endpoint                                                                                                                                                      | Conclusions                                                                                                                                                                                                                                                                                                                                                             | Ref.         |
|-------------------------|-------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Yen FS et al.           | Observational<br>case-control study | n.a.       | 2,828 paired pro-<br>pensity score matched<br>DPP-4 inhibitor users<br>and nonusers T2D<br>with compensated<br>liver cirrhosis | DPP-4 inhibitors                                        | T2D                  | Population data-<br>bases/Taiwan | 2021 | To assess the<br>outcomes of<br>all-cause mor-<br>tality, HCC,<br>major adverse<br>cardiovascular<br>events,<br>decom-<br>pensated<br>cirrhosis, and<br>hepatic failure. | DPP-4 inhibitor users were<br>associated with higher risks<br>of decompensated cirrhosis<br>and hepatic failure than did<br>non-users among patients<br>with T2D and compensated<br>liver cirrhosis. Risk of all-<br>cause mortality, HCC, and<br>major cardiovascular events<br>between DPP-4 inhibitor<br>users and nonusers were not<br>statistically different.     | 151          |
| Li Q et al.             | Meta-analysis                       | n.a.       | Seven studies report-<br>ing 562 cases of HCC<br>in 16,549 patients                                                            | Metformin                                               | T2D                  | Multicentre                      | 2022 | To evaluate the<br>relationship<br>between met-<br>formin therapy<br>and HCC sur-<br>vival and risk.                                                                     | Metformin in T2D patients is<br>significantly associated with<br>reduced risk and all-cause<br>mortality of HCC (OR/RR<br>0.59, 95% CI 0.51–0.68, I2 =<br>96.5%, <i>p</i> <0.001).                                                                                                                                                                                      | 130          |
| Kramer JR <i>et al.</i> | Cohort                              | n.a.       | T2D and NAFLD<br>(85,963)                                                                                                      | Metformin, sulfo-<br>nylurea, insulin                   | T2D and NAFLD        | 130 centres/US                   | 2022 | Risk of inci-<br>dent HCC                                                                                                                                                | ated with a reduced risk of<br>HCC compared with no<br>medication, 22% lower risk of<br>HCC (HR 0.77; 95% CI<br>0.65–0.90; $p = 0.001$ ),<br>whereas use of combination<br>therapy was associated with<br>increased risk (HR for insulin<br>and metformin, 1.53; 95% CI<br>1.26–1.86; $p < 0.0001$ ; HR for<br>insulin, metformin, and sul-<br>fonylureas, 1.71; 95% CI | 152          |
| Hendryx M <i>et al.</i> | Retrospective<br>cohort study       | n.a.       | 3,185 patients with<br>HCC and pre-existing<br>diabetes, 137 (4.3%)<br>patients used SGLT2<br>inhibitors.                      | Sodium-glucose<br>cotransporter 2<br>(SGLT2) inhibitors | T2D                  | SEER-Medicare<br>dataset/US      | 2022 | aHRs for<br>mortality                                                                                                                                                    | SGLT2 inhibitor initiation was<br>associated with improved<br>overall survival of patients<br>with HCC and pre-existing<br>type 2 diabetes compared<br>with no SGLT2 inhibitor use<br>(HR 0.68, 95% CI 0.54–0.86).                                                                                                                                                      | 139          |
| Treatment HCC           |                                     |            |                                                                                                                                |                                                         |                      |                                  |      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         |              |
| Chen TM et al.          | Retrospective<br>cohort study       | n.a.       | No T2D RFA (82)/T2D<br>RFA with metformin<br>(21)/T2D without<br>metformin (32)                                                | Metformin, sulfo-<br>nylurea, insulin                   | T2D 32.3%            | 1 centre/Taiwan                  | 2011 | OS                                                                                                                                                                       | Metformin users among pa-<br>tients with T2D and HCC un-<br>dergoing RFA had favourable<br>OS compared to patients with<br>T2D not receiving metformin<br>treatment.                                                                                                                                                                                                    | 153          |
| Bhat M <i>et al.</i>    | Retrospective<br>cohort study       | n.a.       | No T2D (438)/T2D not<br>on metformin (207)/<br>T2D on metformin<br>(56)                                                        | Metformin                                               | T2D 37.5%            | 1 centre (part<br>Bridge cohort) | 2014 | OS                                                                                                                                                                       | This study demonstrates no<br>survival benefit with metfor-<br>min in patients with T2D and<br>HCC.<br>(continued on next                                                                                                                                                                                                                                               | 154<br>page) |

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

| Jang Wil et al. Retrospective<br>cohort study n.a. SRF without T2D Motion<br>metformin (29)/SRF<br>T2D on on metformin<br>(19) T2D 22X Four centres/Korea 2015 The use of metformin in pas-<br>tions with H2T cereving<br>matched cohort<br>(a = 70), the OS and of the<br>max mbt of the poon-<br>metformin<br>(19)   Seo YS et al. Retrospective<br>cohort study n.a. Curative resection T2D<br>not on metformin<br>(218) Metformin T2D National database 2016 05 In but of state of the<br>max mbt of the poon-<br>metformin (337)   Seo YS et al. Retrospective<br>cohort study n.a. Curative resection T2D<br>not on metformin<br>(31) Metformin T2D National database 2016 05 In patients treated with cura-<br>tor hereaft<br>twith improvement of H2C-<br>specific monotality and<br>residued occurrence of<br>mini, insuin<br>afem1b+insuin (1)   Casadei Gardini A Prospective cohort n.a. Sorafemb (13) vs. sor-<br>afem1b+insuin (14) Multiple Kinase T2D 30.05 1 centre/Italy 2015 PIS, 05 In patients treated with<br>metformin, the use of sora-<br>patients treated with<br>metformin, in, insuin<br>afem1b+insuin (14)   Clauge YK et al. Retrospective<br>aca-control study n.a. Recurrence after Lit:<br>sorafem1b+resetformin<br>(23) vs. sor-<br>afem1b+insuin<br>(23) vs. sor-<br>inin, insuin<br>(23) vs. sor-<br>min, insuin<br>(24) vs. sor-<br>min, insuin<br>(23) vs. sor-<br>min, insuin<br>(23) vs. sor-<br>min, insuin<br>(23) vs. sor-<br>min, insuin<br>(23) vs. sor-<br>sorafem1b                                                                                                                                                                                                                                                                                                                                                         | Study                       | Phase/type                          | Identifier | Number of patients                                                                                                                                                                                                                                                                                     | Study drug                                            | Diabetes<br>mellitus | Number centres/<br>countries                   | Year | Primary<br>endpoint | Conclusions                                                                                                                                                                                                                                                                                                                                                                  | Ref. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|------------------------------------------------|------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| See YS et al. Retrospective<br>cohort study n.a. Curative resection T2D<br>not on metformin<br>(218) National database<br>product on the product of the hepaic resection, metformin<br>(218) 12D National database<br>product of the hepaic resection, metformin<br>(218) 1 centre/Italy 2016 05 In patients treated with rura-<br>formin use was associated<br>with improvement of HCC-<br>specific mortality and<br>reduced occurrence of<br>retreatment events.   Casadei Gardini A<br>et al. Retrospective<br>cohort study n.a. Sorafenib (51) vs. sor-<br>afenib+metformin<br>(31) vs. sor-<br>afenib+metformin<br>(31) vs. sor-<br>min, insulin 1 centre/Italy 2015 PFS, OS The result of grader tumour<br>aggressiveness is described<br>and resistance to sordenib in<br>metformin.   Casadei Gardini A<br>et al. Prospective cohort n.a. Sorafenib (193) vs.<br>sorafenib+metformin<br>inhibitor, metfor-<br>min, insulin<br>afemib+insulin (34) Multiple kinase<br>sorafenib-metformin<br>inhibitor, metfor-<br>min, insulin<br>afemib+insulin (34) 1 centre/Italy 2017 PFS, OS The result of grader tumour<br>aggressiveness is described<br>and resistance to sordenib in<br>metformin, thus of<br>sorafenib-metformin<br>inhibitor, metfor-<br>ing in patients withet HCC under-<br>sorafenib+metformin<br>(12) sorafenib+insulin<br>(12) sorafenib+insulin<br>(14) sordenib+insulin<br>(14) sordenib+insulin<br>(14) sordenib+insulin<br>(14) sordenib+insulin<br>(14) sordenib+insulin<br>(14) sordenib-insulin<br>(14) sordenib+insulin<br>(14) sordenib-insulin<br>(14) sordenib+insulin<br>(14) sordenib-insulin<br>(14) sordenib-insulin<br>(14) sordenib-insulin<br>(14) sordenib-insulin<br>(14) sordenib-insulin<br>(14) 1 centre/Korea 2018 <                                                                                                       | Jang WI et al.              | Retrospective<br>cohort study       | n.a.       | SBRT without T2D<br>(169)/SBRT T2D not on<br>metformin (29)/SBRT<br>T2D on metformin<br>(19)                                                                                                                                                                                                           | Metformin                                             | T2D 22%              | Four centres/Korea                             | 2015 | OS                  | The use of metformin in pa-<br>tients with HCC receiving<br>radiotherapy was associated<br>with higher OS. In the pro-<br>pensity score-matched cohort<br>(n = 76), the OS rate of the<br>metformin group was higher<br>than that of the non-<br>metformin group (2-year,<br>76% vs. 37%, $p = 0.022$ ).                                                                     | 155  |
| Casadei Gardini A<br>et al.Retrospective<br>cohort studyn.a.Sorafenib (51) vs. sor-<br>afenib-metformin<br>(31) vs. sor-<br>afenib-insulin (11)Multiple<br>kinase T2D 42.5%<br>min. insulin1 centre/ltaly2015PFS, OSThe result of greater turnour<br>aggressiveness is described<br>and resistance to sorafenib in<br>patients<br>treated with<br>metformin.Casadei Gardini A<br>et al.Prospective cohort<br>studyn.a.Sorafenib (193) vs.<br>sorafenib metformin<br>(52) vs. sor-<br>afenib-insulin (34)Multiple<br>kinase T2D 30.0%<br>min, insulin1 centre/ltaly2017PFS, OSIn patients with HCC under-<br>metformin, the use of sor-<br>afenib was associated with<br>metformin, in, insulinChung YK et al.Retrospective<br>n.a.n.a.Recurrence after LR:<br>sorafenib-metformin<br>(42)/sorafenib-insulinMultiple<br>kinase T2D<br>associated with<br>account of the sorafenib-metformin<br>min, insulin1 centre/Korea2018OSAbsence of synergistic anti-<br>turnor effects of metformin<br>insulinChung YK et al.Retrospective<br>respectively.n.a.Recurrence after LR:<br>sorafenib-metformin<br>(42)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-insulin<br>(43)/sorafenib-ins                                                                                                                               | Seo YS et al.               | Retrospective<br>cohort study       | n.a.       | Curative resection T2D<br>on metformin (533)/<br>curative resection T2D<br>not on metformin<br>(218)                                                                                                                                                                                                   | Metformin                                             | T2D                  | National database<br>(NHIS and KKRC)/<br>Korea | 2016 | OS                  | In patients treated with cura-<br>tive hepatic resection, met-<br>formin use was associated<br>with improvement of HCC-<br>specific mortality and<br>reduced occurrence of<br>retreatment events.                                                                                                                                                                            | 156  |
| Casadei Gardini A<br>et al.Prospective cohortn.a.<br>studySorafenib (193) vs<br>sorafenib+metformin<br>(52) vs. sor<br>afenib+insulin (34)Sorafenib (193) vs<br>inhibitor, metfor-<br>min, insulin1 centre/Italy2017PFS, OSIn patients with HCC under-<br>going chronic treatment with<br>metformin, the use of sor-<br>afenib+insulin (34)Chung YK et al.Retrospective<br>case-control studyn.a.Recurrence after LR:<br>sorafenib-insulin<br>(23)/sorafenib-insulin<br>(241); propensity<br>scoreMultiple kinase<br>netformin<br>(241); propensity<br>score<br>matchine (78)1 centre/Korea2018OSAbsence of sone-<br>afenib-insulin (241);<br>sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib-insulin<br>(14)/sorafenib- | Casadei Gardini A<br>et al. | Retrospective<br>cohort study       | n.a.       | Sorafenib (51) vs. sor-<br>afenib+metformin<br>(31) vs. sor-<br>afenib+insulin (11)                                                                                                                                                                                                                    | Multiple kinase<br>inhibitor, metfor-<br>min, insulin | T2D 42.5%            | 1 centre/Italy                                 | 2015 | PFS, OS             | The result of greater tumour<br>aggressiveness is described<br>and resistance to sorafenib in<br>patients treated with<br>metformin.                                                                                                                                                                                                                                         | 132  |
| Chung YK <i>et al.</i> Retrospective n.a.<br>case-control study Recurrence after LR: Multiple kinase T2D 1 centre/Korea 2018 OS Absence of synergistic anti-<br>(40)/sorafenib+insulin<br>(23)/sorafenib control<br>(241); propensity<br>score matching con-<br>trol (40)<br>Recurrence after LT:<br>sorafenib+insulin<br>(14)/sorafenib+insulin<br>(17)/sorafenib control<br>(3); propensity score<br>matching (28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Casadei Gardini A<br>et al. | Prospective cohort<br>study         | n.a.       | Sorafenib (193) vs.<br>sorafenib+metformin<br>(52) vs. sor-<br>afenib+insulin (34)                                                                                                                                                                                                                     | Multiple kinase<br>inhibitor, metfor-<br>min, insulin | T2D 30.0%            | 1 centre/Italy                                 | 2017 | PFS, OS             | In patients with HCC under-<br>going chronic treatment with<br>metformin, the use of sor-<br>afenib was associated with<br>poor PFS and OS (1.9 and 6.6<br>months, respectively)<br>compared to 3.7 months and<br>10.8 months, respectively, for<br>patients without T2D and 8.4<br>months and 16.6 months,<br>respectively, for patients on<br>insulin ( <i>p</i> <0.0001). | 131  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chung YK et al.             | Retrospective<br>case-control study | n.a.       | Recurrence after LR:<br>sorafenib+metformin<br>(40)/sorafenib+insulin<br>(23)/sorafenib control<br>(241); propensity<br>score matching con-<br>trol (40)<br>Recurrence after LT:<br>sorafenib+metformin<br>(14)/sorafenib+insulin<br>(17)/sorafenib control<br>(43); propensity score<br>matching (28) | Multiple kinase<br>inhibitor, metfor-<br>min, insulin | T2D                  | 1 centre/Korea                                 | 2018 | OS                  | Absence of synergistic anti-<br>tumor effects of metformin.                                                                                                                                                                                                                                                                                                                  | 133  |

JHEP Reports 2023 vol. 5 | 100811

| Study                | Phase/type                          | Identifier  | Number of patients                                                                                                                                                               | Study drug                                                                                               | Diabetes<br>mellitus                                                     | Number centres/<br>countries                   | Year | Primary<br>endpoint                                                                           | Conclusions                                                                                                                                                                                                                                                              | Ref.         |
|----------------------|-------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Schulte L et al.     | Retrospective<br>case-control study | n.a.        | 5,093 patients with<br>HCC, 1,917 patients<br>(37.6%) were diag-<br>nosed with T2D, of<br>whom 338 (17.6%)<br>received treatment<br>with metformin                               | Metformin                                                                                                | T2D (37.6%)                                                              | 3 centres/Ger-<br>many, Austria                | 2019 | OS                                                                                            | In the matched cohorts, mOS remained significantly longer in metformin-treated patients (22 vs. 16 months, $p = 0.021$ ). Co-treatment of metformin and sorafenib was associated with a survival disadvantage.                                                           | 127          |
| El Shorbagy S et al. | RCT                                 | n.a.        | Sorafenib+metformin<br>(40) vs. sorafenib (40)                                                                                                                                   | Multiple kinase<br>inhibitor,<br>metformin                                                               | T2D 60%                                                                  | 2 centres/Egypt                                | 2021 | OS, TDP, Safety                                                                               | No superior efficacy of adding<br>metformin to sorafenib in<br>HCC treatment.                                                                                                                                                                                            | 134          |
| Cho YY et al.        | Retrospective<br>cohort study       | n.a.        | 1,566 patients with<br>unresectable HCC who<br>received sorafenib.<br>Long-term survivor<br>group (survival more<br>than 2 years, n = 257)<br>or a control group (n =<br>1,309). | Multiple kinase<br>inhibitor                                                                             | Presence T2D ana-<br>lysed but percent-<br>age by groups not<br>reported | 9 centres/Korea                                | 2021 | Clinical char-<br>acteristics of<br>long-term sur-<br>vivors after<br>sorafenib<br>treatment. | The prognostic factors pre-<br>dicting long-term survival<br>were metformin use (aHR<br>3.464; $p$ <0.001), hand-foot<br>skin reaction (aHR 1.688; $p$ =<br>0.003), and concomitant<br>treatment with chemo-<br>embolization or radiotherapy<br>(aHR 2.766; $p$ <0.001). | 135          |
| Systemic therapy f   | or HCC                              |             |                                                                                                                                                                                  |                                                                                                          |                                                                          |                                                |      |                                                                                               |                                                                                                                                                                                                                                                                          |              |
| SHARP                | III                                 | NCT00105443 | Sorafenib (299) vs.<br>placebo (303)                                                                                                                                             | Multiple kinase<br>inhibitor: VEGFR,<br>KIT, RET, FLT-3,<br>PDGFR-β, RET/<br>PTC, MAPK                   | Not specified                                                            | 178 centres/23<br>countries                    | 2008 | OS                                                                                            | Sorafenib improves survival<br>compared with placebo                                                                                                                                                                                                                     | 118          |
| Asia-Pacific         | III                                 | NCT00492752 | Sorafenib (149) vs.<br>placebo (75)                                                                                                                                              | Multiple kinase<br>inhibitor: VEGFR,<br>KIT, RET, FLT-3,<br>PDGFR-β, RET/<br>PTC, MAPK                   | Not specified                                                            | 23 centres/China,<br>South Korea and<br>Taiwan | 2009 | OS                                                                                            | Sorafenib improves survival<br>compared with placebo                                                                                                                                                                                                                     | 157          |
| REFLECT              | Ш                                   | NCT01761266 | Lenvatinib (478) vs.<br>sorafenib (476)                                                                                                                                          | Multiple kinase<br>inhibitor: VEGFR<br>1-3, FGFR 1–4,<br>PDGFR α, RET, KIT                               | Not specified                                                            | 154 centres/24<br>countries                    | 2018 | OS                                                                                            | Lenvatinib is non-inferior<br>compared with sorafenib                                                                                                                                                                                                                    | 119          |
| IMbrave 150          | Ш                                   | NCT03434379 | Atezolizumab + bev-<br>acizumab (336) vs.<br>sorafenib (165)                                                                                                                     | Checkpoint<br>inhibitor + Anti-<br>angiogenic: Anti-<br>PD-L1 antibody +<br>Anti VEGFA<br>antibody       | Not specified*                                                           | 111 centres/17<br>countries                    | 2020 | OS, PFS (co-<br>primary)                                                                      | Atezolizumab plus bev-<br>acizumab improve overall<br>survival compared with<br>sorafenib                                                                                                                                                                                | 120          |
| HIMALAYA             | Ш                                   | NCT03298451 | Durvalumab + trem-<br>elimumab (Stride 393)<br>vs. sorafenib (389)                                                                                                               | Checkpoint<br>inhibitor + check-<br>point inhibitor:<br>Anti-PD-1<br>antibody + Anti-<br>CTLA-4 antibody | Not specified                                                            | 181 centres/16<br>countries                    | 2022 | OS                                                                                            | Durvalumab plus trem-<br>elimumab improve overall<br>survival compared with<br>sorafenib<br>(continued on next                                                                                                                                                           | 158<br>page) |

JHEP Reports 2023 vol. 5 | 100811

| <u> </u> |
|----------|
| Ъ        |

| JHEP   |  |
|--------|--|
| Report |  |
| s 2023 |  |
| vol. 5 |  |
| 100811 |  |

## Table 1 (continued)

| Study         | Phase/type | Identifier  | Number of patients                                              | Study drug                                                                                                                                         | Diabetes<br>mellitus                            | Number centres/<br>countries | Year | Primary<br>endpoint            | Conclusions                                                                                          | Ref. |
|---------------|------------|-------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|------|--------------------------------|------------------------------------------------------------------------------------------------------|------|
| COSMIC-312    | III        | NCT03755791 | Atezolizumab + cabo-<br>zantinib (432) vs. sor-<br>afenib (217) | Checkpoint<br>inhibitor + multi-<br>ple kinase inhibi-<br>tor: Anti-PD-L1<br>antibody + VEGFR,<br>MET, TAM family<br>receptors (TYRO3,<br>AXL, MER | Not specified*                                  | 178 centres/32<br>countries  | 2022 | PFS, OS (dual)                 | Atezolizumab plus cabozanti-<br>nib improve progression-free<br>survival compared with<br>sorafenib  | 159  |
| CheckMate 459 | III        | NCT02576509 | Nivolumab (371) vs.<br>sorafenib (372)                          | Checkpoint inhibi-<br>tor: Anti-PD-1<br>antibody                                                                                                   | Not specified*                                  | 22 countries                 | 2022 | OS                             | Nivolumab does not improve<br>survival compared with<br>sorafenib                                    | 160  |
| Second-line   |            |             |                                                                 |                                                                                                                                                    |                                                 |                              |      |                                |                                                                                                      |      |
| RESORCE       | III        | NCT01774344 | Regorafenib (379) vs.<br>placebo (194)                          | Protein kinase in-<br>hibitor: RAF-1,<br>RET, BRAFV600E,<br>VEGFR, TIE-2,<br>PDGFR, FGFR,<br>EGFR, CSF1R, c-kit                                    | Not specified.<br>NASH: 25 (7%) vs.<br>13 (7%)  | 152 centres/21<br>countries  | 2017 | OS                             | Regorafenib improves sur-<br>vival compared with placebo                                             | 121  |
| CELESTIAL     | Ш          | NCT01908426 | Cabozantinib (470) vs.<br>placebo (237)                         | Multiple kinase<br>inhibitor: VEGFR,<br>MET, TAM family<br>receptors (TYRO3,<br>AXL, MER)                                                          | Not specified.<br>NASH: 43 (9%) vs.<br>23 (10%) | 95 centres/19<br>countries   | 2018 | OS                             | Cabozantinib improves sur-<br>vival compared with placebo                                            | 122  |
| REACH-2       | III        | NCT02435433 | Ramucirumab (197)<br>vs. placebo (95)                           | Monoclonal anti-<br>body: Anti VEGFR-<br>2                                                                                                         | Not specified.<br>NASH: 19 (10%) vs.<br>4 (4%)  | 92 centres/22<br>countries   | 2019 | OS                             | Ramucirumab improves sur-<br>vival compared to placebo<br>with AFP ≥400 ng/ml                        | 123  |
| KEYNOTE-224   | II         | NCT02702414 | Pembrolizumab (104)                                             | Checkpoint inhibi-<br>tor: Anti-PD-1<br>antibody                                                                                                   | Not specified*                                  | 47 centres/10 countries      | 2018 | ORR                            | Pembrolizumab approved by the US FDA                                                                 | 161  |
| CheckMate-040 | I/II       | NCT01658878 | Nivolumab + ipilimu-<br>mab (140)                               | Checkpoint<br>inhibitor + check-<br>point inhibitor:<br>Anti-PD-1<br>antibody + Anti-<br>CTLA-4 antibody                                           | Not specified*                                  | 31 centres/10 countries      | 2020 | Safety, tolera-<br>bility, ORR | Nivolumab and ipilimumab<br>approved by the FDA                                                      | 162  |
| KEYNOTE-240   | III        | NCT02702401 | Pembrolizmab (278)<br>vs. placebo (135)                         | Checkpoint inhibi-<br>tor: Anti-PD-1<br>antibody                                                                                                   | Not specified*                                  | 119 centres/29<br>countries  | 2020 | PFS, OS (co-<br>primary        | Pembrolizumab does not<br>improve survival and<br>progression-free survival<br>compared with placebo | 163  |
| KEYNOTE-394   | III        | NCT03062358 | Pembrolizumab (300)<br>vs. placebo (153)                        | Checkpoint inhibi-<br>tor: Anti-PD-1<br>antibody                                                                                                   | Not specified                                   | Asia                         | 2022 | OS                             | Pembrolizumab improves<br>survival compared with pla-<br>cebo in Asia                                | 164  |

Information on the presence of diabetes mellitus in clinical trials for the treatment of advanced HCC is very scarce. AFP, alpha-fetoprotein; CTLA-4, cytotoxic T-Lymphocyte antigen 4; ICI, immune checkpoint inhibitors; LR, liver resection; LT, liver transplantation; n.a., not applicable; OADM, oral antidiabetic medications; ORR, objective response rate; OS, overall survival; PD-1, programmed cell death 1; PFS, progression-free survival; RFA, radiofrequency ablation; SBRT, stereotactic body radiotherapy; T2D, type 2 diabetes; TDP, time to disease progression; TKI, tyrosine kinase inhibitors.

\* Patients with controlled type 1 diabetes mellitus who are on an insulin regimen were eligible for the study.

quality of life will be crucial in the advancement of HCC treatments.

Given the role of lipogenesis in NAFLD-associated HCC, FASN inhibitors have also been proposed as promising treatments. As mentioned previously, FASN was found to inhibit HCC formation in oncogenic mouse models.<sup>46,47</sup> In a preclinical study, FASN inhibitors were found to improve efficacy in combination HCC treatments.<sup>124</sup> Additionally, the use of a FASN inhibitor (TVB-2640) in a NASH clinical trial showed efficacy in decreasing liver fat and improving biochemical biomarkers.<sup>125</sup> These findings provide support for investigating FASN inhibitors in NAFLD-associated HCC.

The number of patients with diabetes is generally not specified in clinical trials (Table 1). In three studies on second-line drugs, patients with diabetes are indirectly referred to as subgroups with NASH.<sup>121–123</sup> The classification of therapeutic groups should consider both the presence of diabetes and the level of metabolic control. This could optimise the efficacy of systemic treatments.

Metformin is an insulin sensitiser that reduces hepatic gluconeogenesis and hyperinsulinemia. It activates the AMPK pathway via inhibition of mitochondrial respiration, which increases insulin sensitivity.<sup>126</sup> Activation of AMPK also leads to downstream inhibition of mTOR, which plays a key role in proliferation and immune activation in cancer. In patients with HCC and T2D, metformin treatment prolonged overall survival.<sup>127</sup> Metformin was found to reduce HCC risk in a network metaanalysis of clinical studies (Table 1).<sup>128–130</sup> It should be considered that metformin was also associated with a poor response to sorafenib treatment in patients with HCC,<sup>127,131,132</sup> but opposite results have also been reported.<sup>133–135</sup>

Thiazolidinediones (TZDs) are another class of antidiabetic drugs that activate PPARs, key regulators of glucose metabolism and insulin sensitivity.<sup>136</sup> The anti-tumoral role of these drugs has also been noted, with evidence that they are involved in cell growth arrest, apoptosis induction, and preventing cell invasion. Indeed, the TZDs pioglitazone and rosiglitazone were associated with a reduction in liver cancer incidence in patients with T2D.<sup>136</sup> Like metformin, TZDs were found to reduce HCC risk.<sup>127,137</sup> However, TZDs have also been linked to an increased risk of cardiovascular events in patients with cirrhosis.<sup>138</sup> Further studies with TZDs as a treatment for patients with HCC and T2D are required to determine its potential efficacy.

Several other classes of antidiabetic drugs have been proposed as potential therapeutics in HCC (Table 1). A recent epidemiological study found that sodium-glucose cotransporter-2 inhibitors were associated with improved overall survival in patients with HCC and T2D.<sup>139</sup> GLP-1 receptor agonists have also been investigated *in vitro* and *in vivo* in HCC models. However, large scale studies on patients are required to determine the beneficial effects of these drugs.

# **Future directions**

The complexity of the pathogenic pathways involved in NAFLD/ T2D-related HCC remains to be elucidated. Determining the aetiopathogenesis of T2D in both NAFLD and non-NAFLD scenarios will impact the understanding of HCC initiation and progression (*e.g.*, in patients with T2D without NAFLD but with an active hepatitis C or B virus infection, and non-abusive alcohol consumption). Recently, it was recommended that the term NAFLD be replaced by metabolic dysfunction-associated fatty liver disease (or MAFLD) to downplay the importance of alcohol in the definition and to emphasise the metabolic risk factors that underlie its pathology.<sup>140,141</sup> Considering this non-exclusive diagnosis, the development of HCC should also be analysed based on the response to changes in diet and anti-diabetogenic drug treatment.

Mouse models cannot fully recapitulate mechanisms of human disease progression, as was observed in a comparative study between patients with NAFLD/NASH and experimental mice.<sup>142</sup> New disease models and therapeutic treatments can aid in the understanding of T2D as a risk factor for HCC. The development of 3D organoids derived from iPSCs or organoids derived from cancer cells of patients with diabetes that can recapitulate human genetic expression will further our understanding of disease biology. New emerging technologies, including single-cell RNA sequencing, spatial transcriptomics, and advanced metabolomics, are also promising for the study of hepatic cell networks, cellular heterogeneity, and cancer clonal evolution.<sup>143–145</sup> These single-cell technologies will deliver new insights into disease-associated reprogramming and further our understanding of the pathological mechanisms linking NAFLD/ T2D and HCC.

# Conclusions

Dietary intake is crucial in the maintenance of metabolic health. Increased dietary fat and simple sugars are major inducers of altered metabolism, which includes increased lipogenesis, lipid accumulation and insulin resistance. The key responsible regulators usually involve transcription factors or upstream components controlling lipid metabolism. Obesity, NAFLD and T2D promote liver inflammation and increase oxidative stress, which accelerates oxidative cell death and promotes HCC. Therefore, HCC shares common altered metabolic pathways with NAFLD/ T2D, suggesting the involvement of dysregulated lipidaemia and insulinemia in tumorigenesis promotion. The molecular pathways leading to the transition from a high-fat, insulin-resistant, inflammatory liver to tumorigenesis are not well understood. Yet some of the emerging key players have been described in this review, highlighting our current understanding of NAFLD/T2Dassociated HCC. The use of innovative technologies such as 3D organoids will increase our understanding of these diseases and reveal novel therapeutic targets.

#### Abbreviations

CPS1, carbamoyl-phosphate synthase 1; DAGs, diacylglycerols; DNL, *de novo* lipogenesis; FASN, fatty acid synthase; HCC, hepatocellular carcinoma; HFD, high-fat diet; HLCs, hepatocyte-like cells; IGF, insulin-like growth factor; IKK- $\beta$ , inhibitor of NF- $\kappa$ B; IL, interleukin; iPSCs, induced

pluripotent stem cells; IR, insulin receptor; JAK, Janus kinase; JNK, c-Jun N-terminal kinases; mTOR(C), mammalian target of rapamycin (complex); NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NCOA5, nuclear receptor coactivator 5; NRF-2, nuclear factor erythroid 2–related factor 2; PC, pyruvate carboxylase; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PNPLA3, patatinlike phospholipase domain-containing 3; PPAR, peroxisome-proliferator activated receptor; PTP, protein tyrosine phosphatases; PUFA, polyunsaturated fatty acid; ROS, reactive oxygen species; SFA, saturated fatty acid; SNPs, single-nucleotide polymorphisms; SREBP1, sterol regulatory element binding protein-1; STAT, signal transducer and activator of transcription; TGF, transforming growth factor; TM6SF2, transmembrane-6 superfamily member-2; TNF, tumour necrosis factor; TrxR1, thioredoxin reductase-1; T2D, type 2 diabetes; TZDs, thiazolidinediones.

#### **Financial support**

This work was supported by a European Research Council (ERC) Consolidator grant METAPTPs (GA817940), FNRS-WELBIO grant (35112672), FNRS-PDR grant (40007740), TELEVIE grant (40007402), and ULB Foundation. BRM was supported by the "Miguel Servet Type I" program (CP19/ 00098, ISCIII, Spain; co-funded by the Fondo Europeo de Desarrollo Regional-FEDER). ST is supported by a TELEVIE scholarship. ENG is a Research Associate of the FNRS, Belgium.

### **Conflict of interest**

The authors declare no conflicts of interest that pertain to this work. Please refer to the accompanying ICMJE disclosure forms for further details.

# **Authors' contributions**

Manuscript concept: ENG; drafting of the manuscript: ST, ML EG, CJLT, BRM, ENG. ST and ML equally contributed to this manuscript.

#### Supplementary data

Supplementary data to this article can be found online at https://doi.org/1 0.1016/j.jhepr.2023.100811.

#### References

### Author names in bold designate shared co-first authorship

- [1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–249.
- [2] Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021;7:6.
- [3] Sanyal AJ, Harrison SA, Ratziu V, Abdelmalek MF, Diehl AM, Caldwell S, et al. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: data from the simtuzumab trials. Hepatology 2019;70:1913–1927.
- [4] Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023;77:1797–1835.
- [5] Huang DQ, Singal AG, Kono Y, Tan DJH, El-Serag HB, Loomba R. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab 2022;34:969–977 e962.
- [6] Simon TG, King LY, Chong DQ, Nguyen LH, Ma Y, VoPham T, et al. Diabetes, metabolic comorbidities, and risk of hepatocellular carcinoma: results from two prospective cohort studies. Hepatology 2018;67:1797– 1806.
- [7] Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas. Diabetes Res Clin Pract 2019;157:107843. 9(th) edition.
- [8] Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 2018;6:361–369.
- [9] Jarvis H, Craig D, Barker R, Spiers G, Stow D, Anstee QM, et al. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of population-based observational studies. PLoS Med 2020;17:e1003100.
- [10] Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, et al. The global epidemiology of NAFLD and NASH in patients with type 2

diabetes: a systematic review and meta-analysis. J Hepatol 2019;71:793-801.

- [11] Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD, Dufour JF, et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 2014;61:75–81.
- [12] Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JB, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 2014;5:4309.
- [13] Tang S, Zhang J, Mei TT, Guo HQ, Wei XH, Zhang WY, et al. Association of TM6SF2 rs58542926 T/C gene polymorphism with hepatocellular carcinoma: a meta-analysis. BMC Cancer 2019;19:1128.
- [14] Anstee QM, Darlay R, Cockell S, Meroni M, Govaere O, Tiniakos D, et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort(<sup>☆</sup>). J Hepatol 2020;73:505–515.
- [15] Ueyama M, Nishida N, Korenaga M, Korenaga K, Kumagai E, Yanai H, et al. The impact of PNPLA3 and JAZF1 on hepatocellular carcinoma in non-viral hepatitis patients with type 2 diabetes mellitus. J Gastroenterol 2016;51:370–379.
- [16] Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 2017;49:1758–1766.
- [17] Luukkonen PK, Zhou Y, Sadevirta S, Leivonen M, Arola J, Oresic M, et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J Hepatol 2016;64:1167–1175.
- [18] Bianco C, Jamialahmadi O, Pelusi S, Baselli G, Dongiovanni P, Zanoni I, et al. Non-invasive stratification of hepatocellular carcinoma risk in nonalcoholic fatty liver using polygenic risk scores. J Hepatol 2021;74:775– 782.
- [19] Gao S, Li A, Liu F, Chen F, Williams M, Zhang C, et al. NCOA5 haploinsufficiency results in glucose intolerance and subsequent hepatocellular carcinoma. Cancer Cell 2013;24:725–737.
- [20] Dhar D, Seki E, Karin M. NCOA5, IL-6, type 2 diabetes, and HCC: the deadly quartet. Cell Metab 2014;19:6–7.
- [21] Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2012;346:e7492.
- [22] Vreman RA, Goodell AJ, Rodriguez LA, Porco TC, Lustig RH, Kahn JG. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: a microsimulation model. BMJ Open 2017;7:e013543.
- [23] Wali JA, Milner AJ, Luk AWS, Pulpitel TJ, Dodgson T, Facey HJW, et al. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat Metab 2021;3:810–828.
- [24] Softic S, Gupta MK, Wang GX, Fujisaka S, O'Neill BT, Rao TN, et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest 2017;127:4059–4074.
- [25] Todoric J, Di Caro G, Reibe S, Henstridge DC, Green CR, Vrbanac A, et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab 2020;2:1034–1045.
- [26] Tee SS, Kim N, Cullen Q, Eskandari R, Mamakhanyan A, Srouji RM, et al. Ketohexokinase-mediated fructose metabolism is lost in hepatocellular carcinoma and can be leveraged for metabolic imaging. Sci Adv 2022;8: eabm7985.
- [27] Paoli A, Bianco A, Grimaldi KA, Lodi A, Bosco G. Long term successful weight loss with a combination biphasic ketogenic Mediterranean diet and Mediterranean diet maintenance protocol. Nutrients 2013;5:5205–5217.
- [28] Watanabe M, Tozzi R, Risi R, Tuccinardi D, Mariani S, Basciani S, et al. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: a comprehensive review of the literature. Obes Rev 2020;21: e13024.
- [29] Le Couteur DG, Solon-Biet SM, Parker BL, Pulpitel T, Brandon AE, Hunt NJ, et al. Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. Cell Metab 2021;33:2367– 2379 e2364.
- [30] Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 2014;19:418–430.
- [31] Brahma MK, Gilglioni EH, Zhou L, Trepo E, Chen P, Gurzov EN. Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges. Oncogene 2021;40:5155–5167.
- [32] Xiong X, Kuang H, Liu T, Lin JD. A single-cell perspective of the mammalian liver in health and disease. Hepatology 2020;71:1467–1473.

- [33] Yang JD, Ahmed F, Mara KC, Addissie BD, Allen AM, Gores GJ, et al. Diabetes is associated with increased risk of hepatocellular carcinoma in patients with cirrhosis from nonalcoholic fatty liver disease. Hepatology 2020;71:907–916.
- [34] Alexander M, Loomis AK, van der Lei J, Duarte-Salles T, Prieto-Alhambra D, Ansell D, et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med 2019;17:95.
- [35] Cantarini MC, de la Monte SM, Pang M, Tong M, D'Errico A, Trevisani F, et al. Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology 2006;44:446–457.
- [36] Tanaka S, Mohr L, Schmidt EV, Sugimachi K, Wands JR. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology 1997;26:598–604.
- [37] Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature 2019;576:51–60.
- [38] Lally JSV, Ghoshal S, DePeralta DK, Moaven O, Wei L, Masia R, et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab 2019;29:174–182 e175.
- [39] Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat Rev Gastroenterol Hepatol 2021;18:599–612.
- [40] Petersen MC, Madiraju AK, Gassaway BM, Marcel M, Nasiri AR, Butrico G, et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J Clin Invest 2016;126:4361–4371.
- [41] Ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ, la Fleur SE, et al. Hepatic diacylglycerol-associated protein kinase cepsilon translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep 2017;19:1997–2004.
- [42] Gurzov EN, Tran M, Fernandez-Rojo MA, Merry TL, Zhang X, Xu Y, et al. Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab 2014;20:85–102.
- [43] Roumans KHM, Lindeboom L, Veeraiah P, Remie CME, Phielix E, Havekes B, et al. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nat Commun 2020;11:1891.
- [44] Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022;4:100479.
- [45] Broadfield LA, Duarte JAG, Schmieder R, Broekaert D, Veys K, Planque M, et al. Fat induces glucose metabolism in nontransformed liver cells and promotes liver tumorigenesis. Cancer Res 2021;81:1988–2001.
- [46] Hu J, Che L, Li L, Pilo MG, Cigliano A, Ribback S, et al. Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci Rep 2016;6:20484.
- [47] Li L, Pilo GM, Li X, Cigliano A, Latte G, Che L, et al. Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. J Hepatol 2016;64:333–341.
- [48] Jia J, Che L, Cigliano A, Wang X, Peitta G, Tao J, et al. Pivotal role of fatty acid synthase in c-MYC driven hepatocarcinogenesis. Int J Mol Sci 2020;21.
- [49] Che L, Pilo MG, Cigliano A, Latte G, Simile MM, Ribback S, et al. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle 2017;16:499–507.
- [50] Hasenfuss SC, Bakiri L, Thomsen MK, Williams EG, Auwerx J, Wagner EF. Regulation of steatohepatitis and PPARgamma signaling by distinct AP-1 dimers. Cell Metab 2014;19:84–95.
- [51] Lee SM, Muratalla J, Karimi S, Diaz-Ruiz A, Frutos MD, Guzman G, et al. Hepatocyte PPARgamma contributes to the progression of non-alcoholic steatohepatitis in male and female obese mice. Cell Mol Life Sci 2023;80:39.
- [52] Pettinelli P, Videla LA. Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab 2011;96:1424–1430.
- [53] Yu J, Shen B, Chu ES, Teoh N, Cheung KF, Wu CW, et al. Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro. Hepatology 2010;51:2008–2019.
- [54] Katoch S, Sharma V, Patial V. Peroxisome proliferator-activated receptor gamma as a therapeutic target for hepatocellular carcinoma: experimental and clinical scenarios. World J Gastroenterol 2022;28:3535–3554.

- [55] Dubois V, Eeckhoute J, Lefebvre P, Staels B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest 2017;127:1202–1214.
- [56] Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 2017;13:710–730.
- [57] Li C, Yang W, Zhang J, Zheng X, Yao Y, Tu K, et al. SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci 2014;15:7124–7138.
- [58] Wang C, Tong Y, Wen Y, Cai J, Guo H, Huang L, et al. Hepatocellular carcinoma-associated protein TD26 interacts and enhances sterol regulatory element-binding protein 1 activity to promote tumor cell proliferation and growth. Hepatology 2018;68:1833–1850.
- [59] Li N, Zhou ZS, Shen Y, Xu J, Miao HH, Xiong Y, et al. Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology 2017;65:1936–1947.
- [60] Lewinska M, Santos-Laso A, Arretxe E, Alonso C, Zhuravleva E, Jimenez-Aguero R, et al. The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma. EBioMedicine 2021;73:103661.
- [61] Lu Y, Li N, Gao L, Xu YJ, Huang C, Yu K, et al. Acetylcarnitine is a candidate diagnostic and prognostic biomarker of hepatocellular carcinoma. Cancer Res 2016;76:2912–2920.
- [62] Muir K, Hazim A, He Y, Peyressatre M, Kim DY, Song X, et al. Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res 2013;73:4722–4731.
- [63] Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016;13:267–276.
- [64] Remmerie A, Martens L, Thone T, Castoldi A, Seurinck R, Pavie B, et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells in the fatty liver. Immunity 2020;53:641–657 e614.
- [65] Aleksandrova K, Boeing H, Nothlings U, Jenab M, Fedirko V, Kaaks R, et al. Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology 2014;60:858–871.
- [66] Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, et al. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol 2022;13:880298.
- [67] Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 2019;69:107–120.
- [68] Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010;140:197–208.
- [69] Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11:183–190.
- [70] Luedde T, Schwabe RF. NF-kappaB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011;8:108–118.
- [71] Heida A, Gruben N, Catrysse L, Koehorst M, Koster M, Kloosterhuis NJ, et al. The hepatocyte IKK:NF-kappaB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis. Mol Metab 2021;54:101349.
- [72] **Brenachot X, Ramadori G**, Ioris RM, Veyrat-Durebex C, Altirriba J, Aras E, et al. Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance. Nat Commun 2017;8:1820.
- [73] Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007;11:119–132.
- [74] Schneider AT, Gautheron J, Feoktistova M, Roderburg C, Loosen SH, Roy S, et al. RIPK1 suppresses a TRAF2-dependent pathway to liver cancer. Cancer Cell 2017;31:94–109.
- [75] He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010;17:286–297.
- [76] Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ. The JAK/STAT pathway in obesity and diabetes. FEBS J 2016;283:3002–3015.
- [77] He G, Karin M. NF-kappaB and STAT3 key players in liver inflammation and cancer. Cell Res 2011;21:159–168.

- [78] Grohmann M, Wiede F, Dodd GT, Gurzov EN, Ooi GJ, Butt T, et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell 2018;175:1289–1306 e1220.
- [79] Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006;130:1117–1128.
- [80] Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 2009;49:87–96.
- [81] Litwak SA, Pang L, Galic S, Igoillo-Esteve M, Stanley WJ, Turatsinze JV, et al. JNK activation of BIM promotes hepatic oxidative stress, steatosis, and insulin resistance in obesity. Diabetes 2017;66:2973–2986.
- [82] Strasser A, Vaux DL. Cell death in the origin and treatment of cancer. Mol Cell 2020;78:1045–1054.
- [83] Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest 2008;118:3943– 3953.
- [84] Das M, Garlick DS, Greiner DL, Davis RJ. The role of JNK in the development of hepatocellular carcinoma. Genes Dev 2011;25:634–645.
- [85] Ieronymaki E, Theodorakis EM, Lyroni K, Vergadi E, Lagoudaki E, Al-Qahtani A, et al. Insulin resistance in macrophages alters their metabolism and promotes an M2-like phenotype. J Immunol 2019;202:1786–1797.
- [86] Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016;531:253–257.
- [87] Tsai S, Clemente-Casares X, Zhou AC, Lei H, Ahn JJ, Chan YT, et al. Insulin receptor-mediated stimulation boosts T cell immunity during inflammation and infection. Cell Metab 2018;28:922–934 e924.
- [88] Dudek M, Pfister D, Donakonda S, Filpe P, Schneider A, Laschinger M, et al. Auto-aggressive CXCR6(+) CD8 T cells cause liver immune pathology in NASH. Nature 2021;592:444–449.
- [89] Pfister D, Nunez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021;592:450–456.
- [90] Leslie J, Mackey JBG, Jamieson T, Ramon-Gil E, Drake TM, Fercoq F, et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 2022;71:2093–2106.
- [91] Kirchner H, Sinha I, Gao H, Ruby MA, Schonke M, Lindvall JM, et al. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab 2016;5:171– 183.
- [92] Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015;1:15080.
- [93] Ling C, Bacos K, Ronn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022;18:433–448.
- [94] Tian Y, Arai E, Makiuchi S, Tsuda N, Kuramoto J, Ohara K, et al. Aberrant DNA methylation results in altered gene expression in non-alcoholic steatohepatitis-related hepatocellular carcinomas. J Cancer Res Clin Oncol 2020;146:2461–2477.
- [95] Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S, Itzel T, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab 2013;18:296–302.
- [96] Loomba R, Gindin Y, Jiang Z, Lawitz E, Caldwell S, Djedjos CS, et al. DNA methylation signatures reflect aging in patients with nonalcoholic steatohepatitis. JCI Insight 2018;3.
- [97] Cancer Genome Atlas Research Network. Electronic address wbe, cancer genome atlas research N. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017;169:1327–1341 e1323.
- [98] Wu T, Luo G, Lian Q, Sui C, Tang J, Zhu Y, et al. Discovery of a carbamoyl phosphate synthetase 1-deficient HCC subtype with therapeutic potential through integrative genomic and experimental analysis. Hep-atology 2021;74:3249–3268.
- [99] Wei H, Wang J, Li W, Ma R, Xu Z, Luo Z, et al. The underlying pathophysiology association between the Type 2-diabetic and hepatocellular carcinoma. J Cell Physiol 2019;234:10835–10841.
- [100] Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, et al. Adaptation of hepatic mitochondrial function in humans with nonalcoholic fatty liver is lost in steatohepatitis. Cell Metab 2015;21:739– 746.

- [101] Lee D, Xu IM, Chiu DK, Leibold J, Tse AP, Bao MH, et al. Induction of oxidative stress through inhibition of thioredoxin reductase 1 is an effective therapeutic approach for hepatocellular carcinoma. Hepatology 2019;69:1768–1786.
- [102] Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 1988;81:442–448.
- [103] Zhang AMY, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in obesity, inflammation, and cancer. Diabetes Metab J 2021;45:285–311.
- [104] Janku F, Kaseb AO, Tsimberidou AM, Wolff RA, Kurzrock R. Identification of novel therapeutic targets in the PI3K/AKT/mTOR pathway in hepatocellular carcinoma using targeted next generation sequencing. Oncotarget 2014;5:3012–3022.
- [105] Yao YJ, Ping XL, Zhang H, Chen FF, Lee PK, Ahsan H, et al. PTEN/MMAC1 mutations in hepatocellular carcinomas. Oncogene 1999;18:3181–3185.
- [106] Dombrowski F, Bannasch P, Pfeifer U. Hepatocellular neoplasms induced by low-number pancreatic islet transplants in streptozotocin diabetic rats. Am J Pathol 1997;150:1071–1087.
- [107] Zhu C, Tabas I, Schwabe RF, Pajvani UB. Maladaptive regeneration the reawakening of developmental pathways in NASH and fibrosis. Nat Rev Gastroenterol Hepatol 2021;18:131–142.
- [108] Wang X, Zheng Z, Caviglia JM, Corey KE, Herfel TM, Cai B, et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab 2016;24:848–862.
- [109] Loft A, Alfaro AJ, Schmidt SF, Pedersen FB, Terkelsen MK, Puglia M, et al. Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metab 2021;33:1685–1700 e1689.
- [110] Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z, Payne CM, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 2010;51:329–335.
- [111] Szkolnicka D, Hay DC. Concise review: advances in generating hepatocytes from pluripotent stem cells for translational medicine. Stem Cells 2016;34:1421–1426.
- [112] Heslop JA, Duncan SA. The use of human pluripotent stem cells for modeling liver development and disease. Hepatology 2019;69:1306– 1316.
- [113] Hu W, Lazar MA. Modelling metabolic diseases and drug response using stem cells and organoids. Nat Rev Endocrinol 2022;18:744–759.
- [114] Rombaut M, Boeckmans J, Rodrigues RM, van Grunsven LA, Vanhaecke T, De Kock J. Direct reprogramming of somatic cells into induced hepatocytes: cracking the Enigma code. J Hepatol 2021;75:690–705.
- [115] Blaszkiewicz J, Duncan SA. Advancements in disease modeling and drug discovery using iPSC-derived hepatocyte-like cells. Genes (Basel) 2022;13.
- [116] Mun SJ, Ryu JS, Lee MO, Son YS, Oh SJ, Cho HS, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol 2019;71:970–985.
- [117] Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarro LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017;23:1424– 1435.
- [118] Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378–390.
- [119] Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018;391:1163–1173.
- [120] Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020;382:1894–1905.
- [121] Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;389:56–66.
- [122] Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018;379:54–63.
- [123] Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased alpha-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2019;20:282–296.

- [124] Wang H, Zhou Y, Xu H, Wang X, Zhang Y, Shang R, et al. Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology 2022;76:951–966.
- [125] Loomba R, Mohseni R, Lucas KJ, Gutierrez JA, Perry RG, Trotter JF, et al. TVB-2640 (FASN inhibitor) for the treatment of nonalcoholic steatohepatitis: FASCINATE-1, a randomized, placebo-controlled phase 2a trial. Gastroenterology 2021;161:1475–1486.
- [126] Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017;60:1577–1585.
- [127] Schulte L, Scheiner B, Voigtlander T, Koch S, Schweitzer N, Marhenke S, et al. Treatment with metformin is associated with a prolonged survival in patients with hepatocellular carcinoma. Liver Int 2019;39:714–726.
- [128] Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol 2013;108:881–891. ; quiz 892.
- [129] Zhang H, Gao C, Fang L, Zhao HC, Yao SK. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: a meta-analysis. Scand J Gastroenterol 2013;48:78–87.
- [130] Li Q, Xu H, Sui C, Zhang H. Impact of metformin use on risk and mortality of hepatocellular carcinoma in diabetes mellitus. Clin Res Hepatol Gastroenterol 2022;46:101781.
- [131] Casadei Gardini A, Faloppi L, De Matteis S, Foschi FG, Silvestris N, Tovoli F, et al. Metformin and insulin impact on clinical outcome in patients with advanced hepatocellular carcinoma receiving sorafenib: validation study and biological rationale. Eur J Cancer 2017;86:106–114.
- [132] Casadei Gardini A, Marisi G, Scarpi E, Scartozzi M, Faloppi L, Silvestris N, et al. Effects of metformin on clinical outcome in diabetic patients with advanced HCC receiving sorafenib. Expert Opin Pharmacother 2015;16:2719–2725.
- [133] Chung YK, Hwang S, Song GW, Lee YJ, Kim KH, Ahn CS, et al. Absence of antitumor effects of metformin in sorafenib-treated patients with hepatocellular carcinoma recurrence after hepatic resection and liver transplantation. Ann Hepatobiliary Pancreat Surg 2018;22:297–304.
- [134] El Shorbagy S, abuTaleb F, Labib HA, Ebian H, Harb OA, Mohammed MS, et al. Prognostic significance of VEGF and HIF-1 alpha in hepatocellular carcinoma patients receiving sorafenib versus metformin sorafenib combination. J Gastrointest Cancer 2021;52:269–279.
- [135] Cho YY, Yu SJ, Lee HW, Kim DY, Kang W, Paik YH, et al. Clinical characteristics of long-term survivors after sorafenib treatment for unresectable hepatocellular carcinoma: a Korean national multicenter retrospective cohort study. J Hepatocell Carcinoma 2021;8:613–623.
- [136] Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM, Chan KA. Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology 2012;55:1462–1472.
- [137] Lai SW, Lin CL, Liao KF. Association of hepatocellular carcinoma with thiazolidinediones use: a population-based case-control study. Medicine (Baltimore) 2020;99:e19833.
- [138] Yen FS, Wei JCC, Chiu LT, Hsu CC, Hou MC, Hwu CM. Thiazolidinediones were associated with higher risk of cardiovascular events in patients with type 2 diabetes and cirrhosis. Liver Int 2021;41:110–122.
- [139] Hendryx M, Dong Y, Ndeke JM, Luo J. Sodium-glucose cotransporter 2 (SGLT2) inhibitor initiation and hepatocellular carcinoma prognosis. PLoS One 2022;17:e0274519.
- [140] Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020;73:202–209.
- [141] Eslam M, Sanyal AJ, George J, International Consensus P. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020;158:1999–2014 e1991.
- [142] Febbraio MA, Reibe S, Shalapour S, Ooi GJ, Watt MJ, Karin M. Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab 2019;29:18–26.
- [143] Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun 2022;13:4594.
- [144] Saviano A, Henderson NC, Baumert TF. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J Hepatol 2020;73:1219–1230.
- [145] Guilliams M, Bonnardel J, Haest B, Vanderborght B, Wagner C, Remmerie A, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022;185:379–396 e338.

- [146] Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005;330:1304–1305.
- [147] Home PD, Kahn SE, Jones NP, Noronha D, Beck-Nielsen H, Viberti G, et al. Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADOPT (A diabetes outcome progression trial) and RE-CORD (rosiglitazone evaluated for cardiovascular outcomes and regulation of glycaemia in diabetes) clinical trials. Diabetologia 2010;53:1838–1845.
- [148] Donadon V, Balbi M, Mas MD, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int 2010;30:750–758.
- [149] Vilar-Gomez E, Calzadilla-Bertot L, Wong VW, Castellanos M, Aller-de la Fuente R, Eslam M, et al. Type 2 diabetes and metformin use associate with outcomes of patients with nonalcoholic steatohepatitis-related, child-pugh A cirrhosis. Clin Gastroenterol Hepatol 2021;19:136–145 e136.
- [150] Kaplan DE, Serper M, John BV, Tessiatore KM, Lerer R, Mehta R, et al. Effects of metformin exposure on survival in a large national cohort of patients with diabetes and cirrhosis. Clin Gastroenterol Hepatol 2021;19:2148–2160 e2114.
- [151] Yen FS, Wei JC, Yip HT, Hwu CM, Hou MC, Hsu CC. Dipeptidyl peptidase-4 inhibitors may accelerate cirrhosis decompensation in patients with diabetes and liver cirrhosis: a nationwide population-based cohort study in Taiwan. Hepatol Int 2021;15:179–190.
- [152] Kramer JR, Natarajan Y, Dai J, Yu X, Li L, El-Serag HB, et al. Effect of diabetes medications and glycemic control on risk of hepatocellular cancer in patients with nonalcoholic fatty liver disease. Hepatology 2022;75:1420–1428.
- [153] Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol 2011;26:858–865.
- [154] Bhat M, Chaiteerakij R, Harmsen WS, Schleck CD, Yang JD, Giama NH, et al. Metformin does not improve survival in patients with hepatocellular carcinoma. World J Gastroenterol 2014;20:15750–15755.
- [155] Jang WI, Kim MS, Lim JS, Yoo HJ, Seo YS, Han CJ, et al. Survival advantage associated with metformin usage in hepatocellular carcinoma patients receiving radiotherapy: a propensity score matching analysis. Anticancer Res 2015;35:5047–5054.
- [156] Seo YS, Kim YJ, Kim MS, Suh KS, Kim SB, Han CJ, et al. Association of metformin use with cancer-specific mortality in hepatocellular carcinoma after curative resection: a nationwide population-based study. Medicine (Baltimore) 2016;95:e3527.
- [157] Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10:25–34.
- [158] Abou-Alfa GK, Lau G, Kudo M, Chan SL, Kelley RK, Furuse J, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid 2022;1:EVIDoa2100070.
- [159] Kelley RK, Rimassa L, Cheng AL, Kaseb A, Qin S, Zhu AX, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2022;23:995–1008.
- [160] Yau T, Park JW, Finn RS, Cheng AL, Mathurin P, Edeline J, et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2022;23:77–90.
- [161] Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19:940–952.
- [162] Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol 2020;6:e204564.
- [163] Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol 2020;38:193–202.
- [164] Qin S, Chen Z, Fang W, Ren Z, Xu R, Ryoo B-Y, et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients From Asia With Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol 2023;41:1434–1443.