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During prenatal development the liver is composed of multiple cell types with

unique properties compared to their adult counterparts. We aimed to establish

multilineage cultures of human fetal liver cells that could maintain stem

cell and progenitor populations found in the developing liver. An aim of this

study was to test if maturation of fetal hepatocytes in short-term cultures sup-

ported by epidermal growth factor and oncostatin M can improve their ability

to engraft immunodeficient mice. Fetal liver cultures supported a mixture

of albuminþ cytokertin-19þ hepatoblasts, hepatocytes, cholangiocytes,

CD14þþCD32þ liver sinusoidal endothelial cells (LSECs) and CD34þCD133þ

haematopoietic stem cells. Transplantation of cultured cells into uPA-NOG

or TK-NOG mice yielded long-term engraftment of hepatocytes, abundant

LSEC engraftment and multilineage haematopoiesis. Haematopoietic engraft-

ment included reconstitution of B-, T- and NK-lymphocytes. Colonies of

polarized human hepatocytes were observed surrounded by human LSECs

in contact with human CD45þ blood cells in the liver sinusoids. Thus, fetal

liver cultures support multiple cell lineages including LSECs and haemato-

poietic stem cells while also promoting the ability of fetal hepatocytes to

engraft adult mouse livers. Fetal liver cultures and liver-humanized mice cre-

ated from these cultures can provide useful model systems to study liver

development, function and disease.
1. Introduction
The liver is composed of a diversity of cell types including hepatocytes, cholangio-

cytes (biliary epithelial cells), different types of endothelial cells and multiple

lineages of blood cells. All of these cell types, and in particular their precursors,

are of great interest to the field of regenerative medicine. The liver has an extensive

capacity for regeneration and understanding the mechanisms that control liver

growth may one day lead to new cell therapies or bioengineered livers [1,2]. Plur-

ipotent stem cells offer a new source of cells for such novel therapies that does not

further constrain the already limited supply of donor liver tissue [3]. However, use

of pluripotent stem cells to generate liver cells requires an understanding of liver

development if these stem cells are to be used effectively. Baxter et al. [4] recently

demonstrated that hepatocyte-like cells derived from embryonic stem cells have a

molecular signature more like fetal cells than adult hepatocytes. Accordingly,

greater knowledge of the early development of the human liver will likely

inform efforts to use pluripotent stem cells to create new liver tissue.

There are numerous differences, ranging from gross cell composition to gene

expression of individual cell lineages that distinguish the adult and fetal liver.

During prenatal development, the two major cell lineages that constitute the

adult liver, hepatocytes and cholangiocytes, are found in the presence of an

abundance of haematopoietic cells not observed in adult tissue. Haematopoiesis

is first observed in the human embryonic liver at five weeks’ gestation [5,6].
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Haematopoietic stem cells that seed the embryonic liver are

derived from the haemogenic endothelium of the dorsal aorta

[7]. The liver, in turn, is the major haematopoietic organ in the

human embryo and fetus until midway through gestation. The

onset of bone marrow haematopoiesis begins around the 13th

week of gestation [8], and not until about 20 weeks’ gestation

does the content of CD34þ haematopoietic progenitors in the

bone marrow reach parity with the liver [9,10]. The midgesta-

tion liver supports multilineage haematopoiesis [11–13];

however, erythropoiesis greatly exceeds all other types of

blood cell production [14,15]. By one estimate, CD235aþ ery-

throid cells comprise the majority of all cell types in the

midgestation liver [16].

There has been only limited study of the haematopoietic

niches within the developing human liver. Erythroid pre-

cursors have been found among fetal hepatocytes and within

liver sinusoids [17], whereas myeloid precursors were observed

in association with vascular structures of the portal triads [18].

No specific histological niche for human B-lymphopoiesis has

been found as B-cell progenitors appeared scattered through-

out the liver parenchyma [19]. Haematopoietic stem cells, in

the mouse embryonic liver, have been found associated with

pericytes surrounding portal vessels [20]. The niches for

human haematopoietic progenitors and stem cells have not

yet been defined.

The fetal liver contains a number of endothelial cell types

that line the large vessels of the liver, the portal veins and

hepatic artery, as well as the endothelial cells that line the lym-

phatic vessels. The majority of the endothelial cells found in the

liver, however, are liver sinusoidal endothelial cells (LSECs)

[21]. These cells have some unique properties, including

being the major source of factor VIII, and transplantation of

LSECs has been proposed as a therapy for treating haemophilia

A [22]. The molecular signals that support the development of

LSECs in the liver are largely unknown, but a further under-

standing of the requirements of these cells will be needed to

design culture systems to expand LSECs or generate them

from stem cells.

Numerous differences between fetal and adult hepatocytes

have been documented [23–25]. The human fetal liver is rich in

hepatoblasts, hepatocytic precursors that can differentiate into

hepatocytes and cholangiocytes [16,26]. Hepatoblasts can be

identified by their co-expression of the hepatocyte marker albu-

min and the cholangiocyte marker cytokeratin (CK)19 [27].

These bi-potent cells are found in the fetal liver surrounding

ductal plates [25,28]. The surface-marker epithelial cell

adhesion molecule, or CD326, is expressed by hepatoblasts as

well as the immature hepatocytes found in the parenchyma

of the fetal liver. By contrast, adult hepatocytes do not express

CD326, which is only found on a rare subset of adult hepatic

stem cells [25,29]. Whereas fetal cells, in general, are character-

ized by a high proliferative activity in vitro and in vivo, there

have been reports of little or no engraftment of fetal hepato-

cytes/hepatoblasts transplanted into immunodeficient mice

compared with adult hepatocytes [29,30]. These findings

suggest that the unique properties of immature fetal hepato-

cytes and their precursors render the cells less suited to

engraftment and/or growth in the adult liver.

Our first aim in this study was to test the hypothesis that

maturation of human fetal hepatocytes in short-term cultures

would improve engraftment in adult mice. Additionally, we

sought to determine if fetal liver cultures could support

multiple cell lineages found in the fetal liver other than
hepatocytic cells, namely LSECs and haematopoietic cells.

Lastly, we tested if transplantation of cultured fetal liver cells

could not only lead to hepatocyte engraftment but also

engraftment of LSECs and haematopoietic stem cell

engraftment.
2. Material and methods
2.1. Procurement and processing of human liver tissue
Human fetal livers were obtained from elective legal abortions

with the written informed consent of the women under-

going the procedure and the approval of the Institutional

Review Board at the University of California San Francisco

(IRB# 10-00768). Specimens were donated anonymously at

San Francisco General Hospital. This research was conducted

in accordance with the Declaration of Helsinki. The gestational

age of the specimens was estimated based on foot-length

measurements. Tissues were obtained shortly after abortion

and held on ice in cold phosphate-buffered saline (PBS) and

antibiotics for delivery to the laboratory within 4 h.

Livers were manually disrupted with scissors and digested

with 0.005% DNAse and a blend of Collagenase I/II and

Thermolysin (Roche Diagnostic Corporation, Indianapolis,

IN) for 15 min at 378C. The reaction was then stopped with

cold fetal bovine serum (FBS). Cells were then washed with

PBS and CD235aþ red cells were depleted using BioMag goat

anti-mouse IgG immunomagnetic beads (Qiagen Inc., German-

town, MD) as previously described [31]. CD235a-depleted cells

were used for all experiments.

Cryopreserved human adult hepatocytes (Cat#HMCPTSA

and Cat#HMCS10) were purchased from Life Technologies

(Carslbad, CA).

2.2. Tissue culture
CD235a2 liver cells were plated in William’s E Medium

(Thermo Fisher Scientific, Grand Island, NY) with 5% FBS

and Primary Hepatocyte Maintenance Supplements

(#CM4000, Thermo Fisher Scientific) providing 0.1 mM

dexamethasone, 6.25 mg ml21 human recombinant insulin,

6.25 mg ml21 human transferrin, 6.25 ng ml21 selenous acid,

1.25 mg ml21 bovine serum albumin, 5.35 mg ml21 linoleic

acid, 2 mM GlutaMAX and 15 mM 4-(2-hydroxyethyl)-1-piper-

azineethanesulfonic acid. Cultures were also supplemented

with 10 ng ml21 oncostatin M (OSM) and 10 ng ml21 epidermal

growth factor (EGF). Cells were grown on BioCoat Collagen I

coated tissue culture plates (BD, Franklin Lakes, NJ) for 6

days at 3788888C. Confluent cultures were harvested using

TrypLE Enzyme solution (Life Technologies) and then stained

for flow cytometric analysis or transplantation into mice.

Some plates were fixed with 10% formalin in PBS and stained

for immunofluorescence microscopy analysis.

2.3. Xenogeneic mouse transplants
Animal transplants were conducted with approval of the Insti-

tutional Animal Care and Use Committee at PMI Pre-clinical

(San Carlos, CA). The reported research was performed

under protocol numbers IAC 1361 and IAC 1745. All animals

were bred and maintained in our specific-pathogen free

animal facility. NOD.Cg-Prkdcscid Il2rgtm1Sug Tg(Alb-Plau)11-



End

End

End
End

End

End

End End
Hep + Hem

Hep + Hem

Hep + Hem

Hep

Hep

Hep End

Hep Hep

Hep Hep

1000 mm 400 mm

400 mm

100 mm

Hem

Hem

Hep

400 mm 100 mm

200 mm 100 mm

200 mm

(a) (c)

(d )

(b)

(e) ( f )

(g) (h) (i)

Figure 1. Phase-contrast images of fetal liver cells cultured for 6 days. (a) Hepatocytes form adherent layer of cells with islands of endothelial cells (larger on b, c
and g), and dark tight colonies of cells, representing small hepatocytes (e) often with haematopoietic cells attached (d ). Non-adherent haematopoietic cells are also
present in the culture (round cells on h and i). ( f ) Close-up image of hepatocytes. Hep, hepatocytes; Hem, haematopoietic cells; End, endothelial cells.

rsob.royalsocietypublishing.org
Open

Biol.7:170108

3

4/ShiJic (uPA-NOG) mice were bred as a cross of homozygous

males with hemizygous females [32]. Offspring were pheno-

typed based on plasma levels of serum alanine transaminase

(ALT) to determine genotype [33]. Male and female animals

with ALT levels higher than 100 units were considered

homozygous and were used for transplantation.

NOD.Cg-Prkdcscid Il2rgtm1Sug Tg(Alb-UL23)7-2/ShiJic

(TK-NOG) mice were bred as crosses of wild-type NOG

males and hemizygous TK-NOG females. Breeding pairs of

TK-NOG and uPA-NOG mice were kindly provided by

Dr Hiroshi Suemizu of the Central Institute for Experimen-

tal Animals (Kawasaki, Japan). TK-NOG offspring were

genotyped with Kapa genotyping kit (Kapa Biosystems,

Wilmington, MA) as per the manufacturer’s instructions

using primers as previously described [34]. Hemizygous

male and female mice, 6–8 weeks old, were injected with

Ganciclovir (EDM Millipore Corp., Darmstadt, Germany) 7

and 5 days before transplantation to induce liver damage. Ani-

mals were transplanted by intrasplenic injection and sacrificed

using CO2 followed by cervical dislocation at different time

points post transplant (130–150 days).

2.4. Analysis of mice for engraftment of human cells
Levels of human serum albumin in transplanted mice were

determined as previously described [33].
Livers, spleens and pancreases were harvested and fixed

with 10% formalin for sectioning and immunofluorescence

staining. Tissues were processed through a sucrose gradient

(10%, 20%, 30% and 50% in PBS) and frozen in Tissue-Tek

Optimal Cutting Temperature compound (Ted Pella Inc.,

Redding, CA). Cryo-blocks were sectioned on a Cryostat

Leica CM1850 UV (Leica Biosystems Nussloch GmbH,

Nussloch, Germany) and stained with primary and secondary

antibodies as previously described [30].

Flow cytometry was used to analyse the engraftment of

livers and spleens by human cells as previously descri-

bed [30,33]. Livers and spleens were digested with Life

Technologies’ Collagenase IV (Thermo Fisher Scientific). The

light-density fractions of spleen cells were collected by centrifu-

gation over a layer of Axis-Shield’s Lymphoprep (STEMCELL

Technologies Inc., Vancouver, BC). Flow cytometry was also

used to analyse engraftment of human haematopoiesis in the

central bone marrow, which was collected as previously

described [35]. Staining with fluorescent antibodies was

performed as described [28,30].

2.5. Data analysis and presentation
Flow cytometry data were analysed using FLOWJO software, v. 9

(FlowJo, Inc.; Ashland, OR). Statistical analysis and charting was

performed using AABEL 3 and AABEL NG software (Gigawiz Ltd.
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Co. OK, USA). The non-parametric Mann–Whitney U test was

used to compare the frequencies of cell populations and engraft-

ment. A p-value of �0.05 was considered significant. Albumin

concentrations from multiple mice are presented in the text as

the mean+ s.e. Some data are presented using notched box

and whisker plots in which the notch corresponds to the

median and the box extends from the 25th to the 75th percentiles.

Whiskers extend to the extreme data points. Means are also indi-

cated using a flattened diamond symbol. Individual data points,

when shown, are indicated as open equilateral diamonds.
3. Results
3.1. Establishment of multilineage human fetal liver

cultures
Different culture media have been developed to support the

in vitro growth and survival of various types of fetal liver

cells. For example, we have successfully used commercially

available endothelial cell growth medium to grow LSECs

[30]. Haematopoietic precursors of multiple lineages can be

maintained in defined media formulations based on Iscove’s

Modified Dulbecco’s Medium and purified serum components

[9,31,36], and culture medium based on Williams’s E medium
[37] as described by Lázaro et al. [38] can be used to success-

fully grow fetal hepatocytes. In situ, all these cell types

develop and are maintained together with numerous cell–

cell interactions playing a role in maintaining tissue homeosta-

sis. We aimed to model this interaction among hepatocytic,

endothelial and haematopoietic cells in vitro in cultures using

Williams’s E medium, containing supplements used for

hepatocyte growth and the cytokines OSM and EGF. These

conditions have already been shown to be sufficient to support

fetal CD326þ hepatoblasts [28].

Erythrocyte-depleted fetal liver cells were cultured and,

after 5–6 days, three prominent types of cells were observed

by phase-contrast microscopy (figure 1). Most adherent cells

appeared to be hepatocytes (figure 1), with islands of apparent

endothelial cells (figure 1a,b,c,g), and dispersed haematopoie-

tic cells (figure 1h,i). Two hepatocyte morphologies were

observed. Some of them were large as in figure 1c,f,g, polygonal

and multinucleated. Others were small and tightly packed, as

in figure 1e, forming colony-like structures, which were often

associated with haematopoietic cells (figure 1a,d). Endothelial

cells formed clusters with a typical cobblestone morphology.

Immunofluorescent staining confirmed the presence of

different cell types in the fetal liver cultures (figure 2). Cells

forming the main adherent layer expressed the hepatocyte

marker albumin (figure 2a– l ), the cholangiocyte/hepatoblast
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marker CK19 (figure 2a,b) as well as CK8/18, which is

expressed by both lineages (figure 2c,d ). For comparison, sec-

tions of fetal liver were similarly stained as a point of

reference for normal tissue architecture (figure 3). CK19

expression was evident around ductal plate structures in first

trimester liver (figure 3a) and in the perimeter of some vascular

structures of midgestation liver (figure 3d ). CK8/18 was

expressed in a similar pattern as CK19, but was also widely

expressed by parenchymal cells (figure 3b,f ). Expression of

CK19 and CK8/18 was also evident on cholangiocytes forming
the bile ducts observed within the mesenchymal connective

tissue (unstained cells) of portal tracts (figure 3e,g). Among

cultured cells, it was evident that some of the cultured cells

express more albumin than CK19 or CK8/18, whereas others

express more of these CKs (figure 2a,c), which points to differ-

entiation towards the hepatocyte and cholangiocytes lineages,

respectively. However, at higher magnification it appears that

most hepatocytic cells coexpress albumin and the CKs markers

to some degree (figure 2b,d), suggesting the presence of

hepatoblasts and cells at intermediate stages of differentiation.
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CD326 is a marker that is observed on fetal but not

on adult hepatocytes [24]. CD326 highlights hepatoblasts

throughout the parenchyma of fetal livers (figure 3a– i,l ) with

more intense staining in ductal plate regions (figure 3a–c)

and on the cells surrounding vessels observed in midgestation

tissues (figure 3d,f ). CD326 was also expressed on cholangio-

cytes (figure 3e,g) and was co-expressed with albumin in the

parenchyma of the fetal liver (figure 3h). Likewise, both

CD326 and albumin expression were widely observed on

cultured fetal liver cells (figure 2i,j ).
Endothelial cell islands within the fetal liver cultures

were negative for albumin and other hepatocytic markers

(figure 2c,i–k), but did express the endothelial markers

CD31 (figure 2e,f ), CD105 (figure 2g,h) and CD144

(figure 2m–p). These same markers, as well as CD32, were

also expressed by endothelial cells lining sinusoids in the

fetal liver (figure 3j–n).

Haematopoietic cells, identified by CD45 expression, are

found widely dispersed throughout the parenchyma of the

fetal liver (figure 3i). In the staining of the cultured cells,

lightly adherent cells or non-adherent cells were lost during

the wash and staining procedures and, therefore, were not

represented in these analyses. Thus, haematopoietic cells rep-

resented in the stained samples were adherent cells mostly

localized around endothelial cells (figure 2k,l,o,p).

We previously described a panel of cell-surface markers

useful for flow cytometric discrimination of major cell lineages
in the fetal liver using CD14, CD45 and CD326 [28,30]. Among

freshly isolated cells (figure 4a), CD45 expression identifies

nucleated haematopoietic cells; low expression of CD14 and

high expression of CD326 on cells lacking CD45 expression

marks hepatoblasts (referred to as CD326þþ cells); addition-

ally, bright CD14 expression on CD452 cells identifies LSECs

(referred to as CD14þþ cells). Here we show that the same

cells populations present in fresh fetal liver can be found

after short-term culture (figure 4b). In three experiments, the

proportion of LSECs among all live cells after culture was a

mean 6.4%, whereas CD326þþ cells represented a mean

26.4% of cultured cells. This is consistent with the proliferation

of hepatocytic cells under culture conditions that favour

hepatocyte growth, but is also probably affected by the

decrease in CD142CD3262 cells believed to be non-adherent

cells that are depleted due to washing of the cultures. Despite

the loss of some non-adherent cells, a mean of 10.4% CD45þ

cells were observed among the live cells harvested from

the cultures.

Additional lineage markers were evaluated before

and after culture to verify the presence of multiple cell

lineages among the cultured cells. Detailed analysis of the

CD326þþ cell population demonstrated that expression of

CD26, CD49f and CD324, found on fresh hepatoblasts [28],

was preserved after culture (figure 5). Analysis of CD14þþ

cells showed the expression of CD26, CD31, CD32,

CD34, CD49f and CD202b before (figure 6a) and after
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(figure 6b) culture, consistent with the known phenotype of

fetal LSECs [30].

The fetal liver is a rich source of haematopoietic stem

cells, which have a phenotype CD45þCD34þCD133þ [39],

as shown in figure 7a. Cells with this phenotype were also

observed among the cultured cells (figure 7b). Moreover, a
spectrum of CD34 expression was observed, suggesting the

presence of haematopoietic progenitors at different stages of

differentiation and maturation. A population of

CD14þCD45þ cells was also observed, probably representing

monocyte/macrophages. Thus, the analyses of cells from the

fetal liver cultures confirmed that at least three cell lineages
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Table 1. Liver engraftment in uPA-NOG mice transplanted with fresh fetal liver cells.

experiment
days in
culture

no. cells
transplanted

time to
harvest (days)

no. mice
analysed

number engrafted
with human cells

number engrafted with
human hepatocytes

1 0 5 � 105 100 6 6 1

2 0 1 � 106 130 8 8 0

3 0 1 � 106 130 8 8 0

4 0 1 � 106 130 5 5 0

5 0 1 � 106 203 2 2 0

6 0 1.5 � 106 189 2 2 0

7 0 3 � 106 201 3 3 0

8 6 8 � 105 43 – 155 8 8 4

9 6 5 � 105 138 – 160 10 10 7

10 6 3 – 8 � 105 169 – 175 7 5 2
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(hepatocytic, endothelial and haematopoietic) were present

in the cultures after 6 days of growth under conditions that

favour the growth of hepatocytic cells.

3.2. Human engraftment in mice
The uPA-NOG strain of mice can be engrafted with adult

human hepatocytes [32,33,40], but we previously failed to

observe engraftment when these mice were transplanted

with fresh fetal liver cells [30]. Table 1 summarizes data from

seven experiments in which erythrocyte-depleted fetal liver

cells were transplanted into uPA-NOG mice. All the mice

were engrafted with human cells based on flow cytometric

analyses. Only one mouse, however, yielded evidence of

hepatocyte engraftment based the analysis of human albumin
at 10 ng ml21 in the serum, and no cells expressing albumin

were detected by immunofluorescence staining of liver sections.

The human cells present in the livers of these mice were com-

prised of LSECs and haematopoietic cells as previously

reported [30].

We tested if hepatocytes derived from cultured human fetal

liver cells could engraft uPA-NOG mice (table 1). Evidence of

engraftment of mouse livers by human hepatocytes, LSECs

and haematopoietic cells was observed in three independent

experiments. Clusters of human hepatocytes were detected in

the murine liver by expression of the pan-human marker b-2

microglobulin (B2M) and the human hepatocyte-markers albu-

min and CK8/18 (figure 8a). Significantly more mice were

found to be engrafted with hepatocytes when transplanted

with cultured cells than with fresh fetal liver cells based on
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Figure 8. Immunofluorescent staining of human engraftment in mouse liver sections. Hepatic engraftment (a) and LSEC engraftment (b) defined by morphology
and tissue specific human markers (green). Murine cells are stained with pan-mouse marker H-2Kd (red). Nuclei are stained with DAPI (blue).
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the analysis of the frequency of mice detected in which hepato-

cytes were observed in the livers and/or human albumin was

detected in the serum ( p ¼ 0.0167). Human albumin was

detected in the serum of mice in experiments 9 and 10 at

16.2+10.1 mg ml21 and 0.39+0.14 mg ml21, respectively.

Human LSECs, expressing B2M, were morphologically differ-

ent from hepatocytes and were found dispersed between

mouse hepatocyte populations, as previously observed [30].

These LSECs expressed the endothelial markers CD32, CD34

and CD105 (figure 8b).

Spleens were engrafted mostly with small rounded

CD45þ haematopoietic cells, but also some elongated CD34þ

endothelial cells were detected (figure 9a). Human endothelial

cells were also detected in mouse pancreases (figure 9b) and

connective tissues associated with the spleen (figure 9c).

CD32, a specific marker for LSECs was not detected on

human endothelial cells in extra-hepatic tissues (data not

shown), suggesting a loss or change in the LSEC phenotype

outside the liver.

Flow cytometric analyses of murine livers revealed two

extremes of human engraftment defined by expression of

CD14 or CD45 on HLA-ABCþ human cells, performed by a

method similar to previously described [30,33]. We noted

that the proportion of CD45þ haematopoietic to

CD452CD14þ non-haematopoietic cells varied in different
mice (figure 10a). Descriptive statistical analysis confirmed

that the non-haematopoietic population generally exceeded

the haematopoietic cells in transplanted livers (p , 0.01, n ¼
25), but with a notable range in outcomes (figure 10b). Flow

cytometric analyses of the non-haematopoietic cells showed

that they expressed LSEC and hepatocyte markers similar to

fresh and cultured fetal liver cells (figure 10c).

As mentioned above, cells with the phenotype of haemato-

poietic stem cells were preserved in liver cultures. Fresh fetal

liver cells are a known source of haematopoietic stem cells

capable of long-term multilineage engraftment of immunodefi-

cient mice [41–43]. Transplantation of the cultured cells also

resulted in haematopoietic engraftment in the bone marrow

(figure 11a) and spleens (figure 11b). Seven to nineteen mice

were examined, depending on the markers analysed, at three

time points ranging from 21 to 25 weeks after transplant. The

following cell populations were detected: CD14þ monocytes/

macrophages, CD19þ B cells, including CD19þCD34þ B-cell

progenitors, CD3þ T cells, CD56þNK cells and CD235aþ eryth-

rocytes. Statistical analysis demonstrated that human B cells

were represented equally in bone marrows and spleens,

whereas developing CD34þ cells and monocytes were more

prevalent in the bone marrow (figure 11c). By contrast, T cells

and NK cells were mostly detected in the spleen. We observed

erythropoiesis only in the bone marrow because these cells are
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Figure 9. Human engraftment in extra-hepatic tissues. (a) Haematopoietic and endothelial engraftment in the spleen. (b) Endothelial engraftment in the pancreas.
(c) Endothelial engraftment in connective tissues associated with the spleen. Human markers are shown in green, mouse H-2Kd is shown in red and DAPI-stained
nuclei are blue.
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mostly lost during the isolation of light-density splenocytes.

These data demonstrate multilineage engraftment of human

haematopoiesis, indicating the presence of haematopoietic

stem cells among the cultured cells used to engraft the mice.

TK-NOG mice were recently described as an improved

model for constructing mice with humanized livers [34].

These mice have the same immunodeficient background as

uPA-NOG mice. Hepatocyte-specific ablation in TK-NOG is

controlled by expression of the herpes simplex virus type 1 thy-

midine kinase after administration of ganciclovir. In order to

compare this model with uPA-NOG mice, we transplanted

TK-NOG mice with human liver cells from different sources:

fresh fetal liver, adult hepatocytes and cultured fetal liver

cells (figure 12). As reported previously for transplants using

uPA-NOG mice [30], fresh fetal liver cells could engraft

CD34þ endothelial and CD45þ haematopoietic engraftment

in the TK-NOG mouse liver (figure 12a), whereas hepatocyte

engraftment was not observed. Adult hepatocytes transplanted

into TK-NOG mice, however, did yield engraftment of hepato-

cytes expressing albumin (figure 12b). Cultured fetal liver cells,

on the other hand, could engraft multiple cell lineages:

albuminþ hepatocytes, CD32þ LSECs and CD34þ vascular

endothelial cells and CD45þ haematopoietic cells (figure 12c).
Note, as seen under high magnification, that human albumin

is concentrated close to the cell membrane borders among

human hepatocytes reflecting polarization of the cells. Pan-

human marker B2M helped to visualize cell morphology for

hepatocytes and demonstrated abundant LSEC engraftment

in some mouse livers. Human endothelial CD34þ and haema-

topoietic CD45þ engraftment was also detected in mouse

spleens (figure 12d ). Human endothelial cells were also

found in the connective tissues around spleens and pancreases

(figure 12e). Therefore, cultured human fetal liver cells engraft

TK-NOG mice and uPA-NOG mice leading to engraftment of

human hepatocytes, LSECs (and other endothelial cells) in

addition to haematopoietic cells.
4. Discussion
In this study, we show cultures of human fetal liver are able to

generate cells that can lead to hepatocyte, LSEC and haemato-

poietic stem cell engraftment in immunodeficient mice. Fetal

liver cultures generated complex adherent cell layers composed

of multiple cell types. Approximately a quarter to a third of the

adherent cells were CD326þþ hepatocytic cells, which increased
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in frequency over the course of the culture. These cells included

albuminþ hepatocytes and CK19þ cholangiocytes, as well

as hepatoblasts expressing both markers. Endothelial cells

formed colonies interspersed among the other adherent cells.

Small round haematopoietic cells, that were phase-bright

when viewed with phase-contrast microscopy, were found to

adhere to hepatocytic cells. Some larger irregular shaped hae-

matopoietic cells also formed part of the adherent cell layer,

often on the borders of endothelial cell islands. These cells

most probably represented CD45þCD14þ macrophages

observed in flow cytometric analyses of the cultures. Dense

cell clusters were also observed in the cultures that appeared

to contain a mixture of haematopoietic and hepatocytic cells,

although other cell types may also be present. Thus, cultures

of fetal liver cells are able to support multiple cell lineages

that organize into varied cellular environments.

Our work builds on a number of reported studies that have

focused on culturing specific subsets of human fetal liver cells.

Lázaro et al. [38] described cultures that supported hepatocytic

cells from human fetal liver. They reported that the hepatocytic

cells were comprised of large and small cells, as we have also

observed, and that expression of hepatocyte and cholangiocyte

genes were maintained for six weeks in culture. Interestingly,

these investigators also observed small ‘blast-like’ cells

that expressed CD34 and CD90, which they speculated that

some might be haematopoietic stem cells, but did not per-

form functional analyses to verify this hypothesis. Further

study by Dan et al. [44] of these blast-like cells in long-term cul-

tures, maintained on fibroblast feeder layers, resulted in the

isolation of a multipotent stem cell population capable of
generating hepatocytes, cholangiocytes as well as mesenchy-

mal and endothelial cell types. Fetal liver cultures have also

been grown under conditions used to support haematopoiesis

in long-term bone marrow cultures [45]. Stromal layers

were reported to develop to confluence within a few weeks,

during which time morphologically recognizable hepatocytes

disappeared to be replaced by cells with the appearance of

mesenchymal stromal cells. Such cultures rapidly shifted the

haematopoietic output from erythropoiesis to myelopoiesis.

By focusing on providing culture conditions previously

shown to be supportive of CD326þþ hepatocytic cells [28],

our cultures preserved these cells while also maintaining

haematopoietic and endothelial elements.

Cultured fetal liver hepatocytes demonstrated improved

engraftment in uPA-NOG and TK-NOG mice. A previous

study by Zhang et al. [29] demonstrated that transplantation

of human fetal hepatocytes resulted in less engraftment than

with adult cells. Our own experience with transplants

performed in uPA-NOG mice yielded no hepatocyte engraft-

ment with freshly isolated fetal cells, yet adult hepatocytes

engrafted [28]. Indeed, we have achieved the highest levels of

hepatocyte engraftment in uPA-NOG mice using liver cells

from older donors rather than younger donors, in contrast

with what we would have predicted [33]. We speculated that

short-term culture of fetal cells would mature the hepatoblasts,

improving their ability to engraft in an adult recipient. To

stimulate hepatocyte maturation, OSM was added to the cul-

ture medium. OSM was shown to stimulate the maturation

of murine [46,47] and human fetal hepatocytes [48]. As culture

results in many changes to gene and protein expression, it
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remains to be determined what the key molecular changes are

that enable better engraftment of cultured fetal hepatocytes. It

is also worth emphasizing that even after culture, high levels of

CD326 expression and co-expression of albumin and CK19 was

observed, characteristics that define fetal hepatoblasts and not

adult hepatocytes. Thus, our short-term cultures have not fully

matured the fetal cells to match the phenotypic characteristics

of adult hepatocytes.

Endothelial cells contribute another important aspect to

modelling the fetal liver in vitro. Hepatocytes and LSECs

develop in parallel in the fetus, providing reciprocal support

for each other’s development [49,50]. Experiments with rat

liver cells demonstrated that interaction between hepatocytes

and LSECs are important for the mutual stabilization of both

types of cells, increasing albumin production, and maintaining

cytochrome P1A1/2 activity by hepatocytes and retention of

LSEC viability and phenotype [51]. In our cultures LSECs

formed islands among hepatocytic cells with haematopoietic

cells often localized on the borders of these islands. LSECs sus-

tained in our cultures exhibited a cell-surface expressional

profile similar to freshly isolated cells. The cultured LSECs

maintained the capacity to engraft the livers of mice, thus

ex vivo expansion of LSECs may prove a viable option for gen-

erating grafts to treat haemophilia A [22]. We did not

supplement the cultures with vascular endothelial growth

factor (VEGF) to support LSEC growth. Hwa et al. [52] have

observed that rat hepatocytes can support the survival of

LSECs without the addition of VEGF to the cultures and
hepatocytes have been shown to be a source of VEGF [49].

Murine hepatocyte condition medium was also shown to

support endothelial cells grown from human endothelial

progenitor cells in culture [53].

Haematopoietic stem cells and progenitors were supported

in the fetal liver cultures. These cells require cytokines for

their survival and growth, and short-term and long-term

cytokine-supported cultures of fetal liver haematopoietic

stem cells have been reported that support early haematopoie-

tic precursors [54–57]. In this study, we did not add any

haematopoietic cytokines to the cultures to support stem cells

or haematopoiesis in general. Indeed, OSM used in the cultures

is a known inhibitor of haematopoiesis [58]. Nevertheless, a

spectrum of haematopoietic precursors ranging from primitive

cells expressing CD133 and high levels of CD34 to more differ-

entiated haematopoietic precursors lacking CD133 expression

and expressing low levels of CD34 were observed in the fetal

liver cultures. The presence of haematopoietic stem cells in

the cultures was demonstrated by the long-term multilineage

engraftment in mice, indicating that cells in the mixed cultures,

such as hepatocytes and endothelial cells, provide sufficient

stimuli to maintain an active haematopoietic environment.

Fetal liver cultures may prove useful in studying the different

cellular niches that contribute to prenatal haematopoiesis.

Transplantation of uPA-NOG and TK-NOG mice with

cultured fetal liver cells not only provided a means of demon-

strating the viability of different cell lineages present in the

cultures, but also demonstrated further advancement in our
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ability to construct mice with humanized livers. In this study,

we demonstrated successful engraftment of three lineages:

hepatocytes, haematopoietic and endothelial cells. Some

recent studies have demonstrated hepatocyte engraftment

along with blood cell engraftment [40,59–61]. Our group has

previously detailed multilineage haematopoietic engraftment

of the livers of uPA-NOG mice in addition to LSEC
engraftment using freshly isolated fetal liver cells [62], but

without hepatocyte engraftment [30]. Although cultured fetal

liver cells have now yielded hepatocyte engraftment, the

levels of engraftment using these cells are still below what

others have reported using different strains of mice [63–66].

We believe that a critical aspect for supporting high-level

engraftment, besides the source and age of donor cells, is the
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degree of liver injury in the host mice. Even modest differences

in the degree of liver injury can affect engraftment levels [33].

Mice that have constitutive expression of an uPA transgene in

the liver offer a continuous proliferative advantage to donor

cells unaffected by the ectopic uPA expression [67]. However,

the generation of such mouse strains requires a balance between

mice with a severe hepatic deficiency and mice that are viable

and fecund. The uPA-NOG mice used in this study were cre-

ated to balance these two factors and, consequently, may not

be the most permissible hosts for fetal hepatoblasts [32].

Mouse strains with an inducible liver injury, such at TK-NOG

mice [34], offer the possibility to maintain healthy colonies of

recipient mice that only suffer liver injury when desired. How-

ever, with a single ganciclovir treatment such mice only suffer

acute liver damage rather than providing an environment that

continuously favours human hepatocyte proliferation. In our

comparison of two mouse strains, we observed no notable

difference in engraftment between the two strains. However,

hepatocyte engraftment in TK-NOG mice may be further

improved with higher doses of ganciclovir treatment prior

to transplant and/or repeated treatments after transplant to

promote the growth of human hepatocytes.

The highly proliferative nature of fetal haematopoietic stem

cells allows for the engraftment of uPA-NOG and TK-NOG

mice without any prior cytoablation of the bone marrow. Pre-

viously, Gutti et al. [40] experimented with co-transplantation

and sequential transplantation of human fetal hepatocytes

and haematopoietic cells, but only haematopoietic engraftment

was achieved. Only when adult hepatocyte transplants

were mixed with fetal haematopoietic grafts was dual lineage

engraftment achieved. Similarly, Strick-Marchand et al. [60]

constructed humanized mice using adult hepatocytes com-

bined with fetal haematopoietic cells. These investigators did

not discern any affect of the allogeneic haematopoietic trans-

plants on the levels of hepatocyte engraftment and vice versa.

In our experiments using syngeneic cells, we also observed a

high degree of variance in the levels of engraftment of different

lineages, suggesting that mechanisms other than immune reac-

tions between donor tissues are responsible for variability in

engraftment. It is also worth noting that, like Strick-Marchand

et al. [60], we observed hepatocyte polarization seen as clusters

of human hepatocytes with apical accumulation of albumin.

Staining showed LSEC engraftment surrounding the human

hepatocytes with abundant CD45þ blood cells in the sinusoids,

thus reconstituting major elements of human liver architecture

in an animal model that may prove valuable in the study of liver

pathologies and infectious diseases.
5. Conclusion
Human fetal liver cultures are described that support multiple

cell lineages with minimal addition of exogenous growth fac-

tors or serum. Fetal hepatocytes exposed to ex vivo culture

demonstrated improved engraftment in mice, while trans-

plantable LSECs and haematopoietic stem cells were also

maintained in the cultures. Multilineage human fetal liver cul-

tures offer a multitude of possibilities for studying liver

development and function. We see such cultures also playing

an informative role in developing cell therapies requiring the

generation of hepatocytes, haematopoietic stem cells and/or

LSECs from pluripotent stem cells or other stem cell sources.

The use of cultured fetal liver cells as graft material for con-

structing mice with humanized livers also offers additional

possibilities for developing improved animal models to study

human liver function and disease.
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6. Tavian M, Hallais MF, Péault B. 1999 Emergence of
intraembryonic hematopoietic precursors in the pre-
liver human embryo. Development 126, 793 – 803.

7. Oberlin E, El Hafny B, Petit-Cocault L, Souyri M.
2010 Definitive human and mouse hematopoiesis
originates from the embryonic endothelium: a new
class of HSCs based on VE-cadherin expression.
Int. J. Dev. Biol. 54, 1165 – 1173. (doi:10.1387/ijdb.
103121eo)

http://dx.doi.org/10.1053/j.sempedsurg.2014.05.001
http://dx.doi.org/10.1053/j.sempedsurg.2014.05.001
http://dx.doi.org/10.1016/j.jhep.2015.02.040
http://dx.doi.org/10.1016/j.jhep.2015.02.040
http://dx.doi.org/10.1007/s13238-015-0180-2
http://dx.doi.org/10.1007/s13238-015-0180-2
http://dx.doi.org/10.1016/j.jhep.2014.10.016
http://dx.doi.org/10.1016/j.jhep.2014.10.016
http://dx.doi.org/10.1172/JCI112572
http://dx.doi.org/10.1387/ijdb.103121eo
http://dx.doi.org/10.1387/ijdb.103121eo


rsob.royalsocietypublishing.org
Open

Biol.7:170108

15
8. Charbord P, Tavian M, Humeau L, Péault B. 1996
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