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Mathematical modelling of tumour response in primary breast cancer

DA Cameron', WM Gregory2 , A Bowman' and RCF Leonard'

'ICRF Medical Oncology Unit, Department of Clinical Oncology, Western General Hospital, Edinburgh EH4 2XU; 2ICRF Medical
Oncology Unit, Guy's Hospital, London SE] 9RT, UK.

Summary Although breast cancer is perceived to be relatively chemosensitive, cytotoxic drug therapy only
leads to cure in the adjuvant setting. In advanced disease, primary resistance and inadequate cell kill may be
important in determining the lack of a durable response to cytotoxics, but for an individual patient's tumour
there is no consistent way of determining the importance of these two factors. An adaptation of Skipper's log
cell kill model of tumour response to chemotherapy was applied to serial tumour measurements of 46 locally
advanced primary breast carcinomas undergoing neoadjuvant chemotherapy. Assuming a log-normal
distribution of errors in the clinically measured volumes, the model produced, for each tumour separately,
in vivo estimates of proportional cell kill, initial resistance and tumour doubling times during therapy. After 4
weeks' treatment, these data could then be used to predict subsequent tumour volumes with good accuracy. In
addition, for the 13 tumours that became operable after the neoadjuvant chemotherapy, there was a significant
association between the final volume as predicted by the model and the final pathological volume (P<0.05).
This approach could be usefully employed to determine those tumours that are primarily resistant to the
treatment regimen, permitting changes of therapy to more effective drugs at a time when the tumour is
clinically responding but destined to progress.
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It is well recognised, from both clinical and laboratory work,
that most cancers exhibit primary or acquired resistance to
many cytotoxic drugs, and that overgrowth of these resistant
cells leads to ultimate treatment failure (Skipper, 1978). This
is one of the main reasons for the failure to cure many

malignancies (Harris, 1985). In trying to assess clinically the
tumour response to treatment, one has to rely on
measurements that are often rather crude. For example,
clinical or radiological measurements are only possible if
there are at least 108 cells present, and even using the most
sensitive tumour markers a total tumour burden of below 10'

is usually undetectable. Following chemotherapy, malignan-
cies can be rendered undetectable as defined by clinical or
radiological tests - the so-called complete response or CR.
But only prolonged follow-up tells if a cure has been
achieved.

In the laboratory, one can identify cell lines that respond
to treatment and those that do not. However, testing for
chemosensitivity of patients' individual tumours in a manner

analagous to anti-microbial sensitivity assays is not generally
practicable; indeed in a recent study with single-agent 5-
fluorouracil an in vitro sensitivity assay was only possible in
69% of assessable patients (Elledge et al., 1995).
A model of tumour response to therapy, individualised for

each tumour, has previously been described for breast cancer
(Priore, 1966), but using an S-shaped cumulative dose-
response curve, rather than the more generally accepted log-
kill response. In this earlier model, the intention was to
improve on simple clinical measurements of metastases to
permit better assessment of the efficacy of cytotoxic agents.
No attempt was made to predict subsequent tumour
behaviour or pathological volumes. We hypothesised that
incorporating primary resistance as well as cell kill in a model
might assist the assessment of the efficacy of the cytotoxics
and, furthermore, enhance the prediction of subsequent
failure, permitting earlier changes in therapy.

The model

The model assumes exponential cell growth, and derives
estimates of the actual proportions of sensitive and resistant
cells as a consequence of the change in tumour volume with
each treatment cycle. The tumour doubling time d is assumed
to be a constant throughout the time of treatment. The
theory of the model has been described previously (Birkhead
and Gregory, 1984), and validated using small-cell lung
cancer monitored with serial computerised tomography (CT)
scans (Gregory et al., 1990). It is represented diagrammati-
cally in Figure 1; it assumes that all cells killed by one cycle
of therapy can no longer grow and furthermore, that they
make no contribution to the tumour volume recorded just
before the subsequent cycle.

Skipper et al. (1964) found that in the mouse model of
leukaemia a given dose of chemotherapy killed a constant
proportion of the cells present, and described this as the log-
kill model. We have used this concept to describe the cell kill
in our model, representing by k the proportion of the tumour

Tumour before

Figure 1 Diagram of model showing resistant cells in black
growing despite overall tumour shrinkage after two cycles of
chemotherapy.
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killed by one cycle of chemotherapy. It is also assumed that
at the time of the first treatment there may be cells present
that can never be killed by the treatment applied, and the
proportion of such 'primary resistant' cells is denoted by Ro.
As with the application in small-cell lung cancer (Gregory et
al., 1990), we have assumed there to be no significant
acquisition of resistance during early therapy. The original
theoretical description (Birkhead and Gregory, 1984) did
include the idea of such secondary resistance, as suggested by
Goldie et al. (1982), but showed that significant differences in
the volume of resistant cells would only be seen for the first
few cycles. Thus ignoring the impact of secondary resistance
would not significantly alter the ability of the model to
predict later tumour behaviour.

There are thus three unknown parameters (d, Ro and k)
for each tumour. The tumour volumes from four early
treatment cycles are required to derive these values and then
the model can be extended to predict the tumour volumes for
subsequent treatment cycles.

Patients and methods

Women with primary, non-metastatic inoperable breast
cancer have been managed by the Edinburgh Breast Unit
with cytotoxic protocols (Bowman et al., 1992). Since 1990,
46 such patients with a total of 52 assessable tumours have
been recruited. Women with inflammatory carcinoma were
excluded unless there was a clearly palpable primary within
the breast. A total of 18 women with 21 tumours were treated
weekly with bolus doxorubicin 20-30 mg m-2, a 24 h
infusion of 5-fluorouracil 600 mg m-2 on day 1 and oral
cyclophosphamide 150 mg daily for 3 days of each week
(CAF). Subsequently, 27 patients with 31 tumours were
treated with weekly doxorubicin 20-30 mg m-2 and con-
tinuous 5-fluorouracil 200 mg m-2 day-' (AcF), administered
using a portable electronic pump via a Hickman line, as
originally described by Lokich et al. (1981). In both studies,
treatment was for 12 weeks. As these women all attended
weekly for assessments, blood tests and treatment, sequential
tumour measurements were taken whenever possible by the
same clinician (AB or DC).

At the end of the 12 weeks treatment all patients were
reviewed in a joint Oncological and Surgical Clinic and their
subsequent management decided upon. For 13 of the 46
patients definitive surgery was undertaken and these cases
afforded a good opportunity to test the predictive power of
the model by comparing the final pathological volume with
that predicted by the model.

For this application in breast cancer, we employed the
model used for small-cell lung cancer (Gregory et al., 1990),
embodied in a suite of programs written in Microsoft Fortran
77, running on an IBM-compatible microcomputer. Further
statistical analysis was performed using Minitab (Minitab
State College, PA, U.S.A.) on the same computer.

In principle, the first four tumour volumes can be used to
derive the three independent parameters k, Ro and d (see
equation 2 in Appendix 1). Occasionally the model cannot be
applied - if, for example, there is a significant increase in
volume after the first cycle with tumour shrinkage after
subsequent cycles, the model cannot fit the observed data and
may not be used to derive the parameters for that tumour.

Even if the three parameters k, Ro and d were known, the
tumour volumes recorded would not be expected to be
identical to those predicted, owing to the potential for errors
in measuring breast tumours. Thus some assumptions about
the error distribution have had to be made. Appendix 1
includes a discussion on the mathematics of these assump-
tions; essentially two versions of the model were run. The
first, as used in small-cell lung cancer (Gregory et al., 1990),
assumed a log-normal distribution of errors, i.e. that the
error increases with increasing tumour size. The second
version assumed that there was a normal distribution of
errors, i.e. that the error distribution is independent of the

volume, but we were unable to fit the model to our data
using this assumption. All data presented have therefore been
generated by the model assuming a log-normal error
distribution.

The clinical tumour measurements were performed using
calipers to provide data for assessment using UICC criteria of
response, and are therefore two orthogonal diameters a and
b. In order to calculate tumour volumes from them, we have
had to approximate to the third dimension as the average of
the other two diameters and have assumed the tumour
volume to be an ellipsoid:

Tumour volume,, rx[axbx(a+b)/2] _7rxaxb(a+b)
6 12

The volume of the tumours that were surgically excised
after the 12 weeks chemotherapy was estimated using the
same formula, unless only one maximum dimension a was
reported, in which case the formula used was:

Tr x a
Tumourvolume~ 6

All patients were subjected to a pretreatment biopsy, both
for histological proof of breast cancer and to estimate the
oestrogen receptor concentration. In many cases this was
performed by removing a palpably malignant ipsilateral
axillary node. When this was not possible, a wedge biopsy
of the primary was performed. We have assumed that it is
impossible to determine how this surgical trauma affected the
measured volumes; therefore to minimise this potential source
of error, all biopsied lesions were analysed only from the
start of the fifth week of treatment, thus allowing at least 29
days to elapse from the time of surgery before the tumour
measurements were used. Since the model assumes no
significant acquisition of resistance during therapy, the
parameters can be derived from a minimum of four
sequential measurements at any point during early therapy.

Statistical methods

As we assumed a log-normal error distribution of tumour
volumes, all statistical calculations have been done on the
natural logarithm of the volume. This applies in particular to
the calculation of Pearson's correlation coefficient for the
association between predicted and actual volumes (Figures 4
and 5), and the association between doubling time and initial
volume (Figure 6). The figures for percentage variation
between actual and predicted volumes are also based on the
natural logarithms of those volumes (Figure 3), and Pearson's
correlation coefficient was used.

Results

In 16 patients there were 22 tumours that had not been
biopsied, and the model was applied to the first four tumour
measurements. The cell kinetic parameters are shown in
Table I. Only six tumours are estimated to have primary
resistant cells, with the highest value being 39%. In 9/22
tumours, the model estimated the tumour doubling time on
therapy to be between 6 and 57 days. However, in the
remaining 13 tumours the model fitted best if there was no
apparent growth during treatment, and the doubling time is
given as oo in Table I - for these tumours the model assumes
an artificially imposed maximum doubling time of 10 000
days.

In 30 patients there were 30 tumours that had been
biopsied before treatment, and these were modelled using
volumes from day 29 onwards. Seven tumours had
insufficient volumes recorded beyond the fourth week for
the model to be applied. In another seven the model could
not be applied: in one case there was no discrete mass at the
start; another had an initial period of enlargement with only
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Patient

1 Tumour
Node

2 Right
Left

3 Right
Left

4 Tumour
Node

5
6
7
8 Tumour
Node

9 First tumour
Second tumour

10
11
12
13
14
15
16

Mean
Range

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Table I Parameters derived from unbiopsie
Regimen Cell kill

CAF

AcF

AcF

CAF

AcF
AcF
CAF
CAF

CAF
CAF
AcF
AcF
AcF
AcF
CAF

CAF
CAF
CAF
CAF
CAF
CAF
AcF
AcF
AcF
AcF
AcF
AcF
AcF
AcF
AcF
CAF

0.83
0.46
0.45
0.06
0.18
0.53
0.19
0.68
0.24
0.91
0.57
0.21
0.60
0.33
0.34
0.23
0.63
0.12
0.27
0.54
0.35
0.38

57%
6-91%

0.60
0.13
0.12
0.80
0.35
0.16
0.02
0.49
0.08
1.00
0.21
0.16
0.59
0.27
0.10
0.34

d and biopsied tumours

Primary resistance Doubling time (days)
0.032 00
0 57

0.390 00
0 00
0 00

0.004 16
0 72
0 57
0 00

0 00
0 29
0 00
0 19
0 15
0 15
0 00
0 6
0 00

0 00
0.340 00
0.089 00
0.083 00

6%
0-39%

0.007
0
0

0.340
0
0
0

0.160
0

0.760
0
0

0.180
0
0
0

7
00

00
00

00

00

00

00

44
673
76
00

60
127
00

00

Mean
Range

Patients 1 - 16, unbiopsied tumours.

34% 9%
4-100% 0-76%

Patients 17 - 32, biopsied tumours.

a very late response; another was always extremely difficult to
measure. In four however, there was no obvious reason and
their tumour volume curves are shown in Figure 2. It can be
seen that most of the response in these four tumours had
occurred by day 29, and that the model was therefore
attempting to derive the parameters from a plateau in the
response curve. There was no other obvious characteristic in
these patients, except that all but one had been treated on the
second (AcF) regimen. Although the model could be
successfully applied in two of these four tumours (data not
shown) using tumour volumes from day 1, this was not
possible for all 30 tumours that had been biopsied.

The values for cell kill and resistance for the remaining 16
biopsied tumours (derived from the tumour measurements in
the fifth cycle onwards) to which the model was successfully
applied, are also seen in Table I and are similar to the
unbiopsied lesions with a mean cell kill of 34% and mean
resistance of 9%. Again it can be seen that in the majority
(10/16) the model estimates that there was no regrowth
during the therapy, and the doubling time has been given as
00.

The model parameters were then used to predict all the
tumour measurements recorded, both those used to derive the
parameters and those for the subsequent courses. Table II
shows the percentage variability between the clinical volumes
and those predicted by the model, and this is depicted
graphically in Figure 3. The x-axis corresponds to the
variability between the four actual volumes to which the

model was applied, and the 'best fit' volumes predicted by the
model. On the y-axis are the variabilities between the actual
and model predicted volumes beyond those first four
volumes. There is a good correlation between these two
figures, which is statistically significant, suggesting that where
there is a good fit over the first four volumes the model will
predict the subsequent volumes more accurately.

The final volumes for the 13 patients who had surgery at
the end of the 12 weeks' chemotherapy are set out in Table
III, and there is a good correlation between the final volume
predicted by the model and both the final measured volume
and the pathological volume (Figure 4). In three patients
there was a complete pathological response, and for these
three patients the model estimated zero primary resistance.
However, when all 13 patients are assessed this result is not
significant at the 5% level, possibly because of the small
numbers.
A clear correlation was found between all the actual

tumour volumes and those predicted by the model (Figures
5a and b). This was the case both for the tumours that had
not been biopsied (Figure 5a, r2=0.893, P<0.00001), and
those that had been subjected to a biopsy (Figure 5b,
r-=0.964, P<0.00001). These correlations are of course both
a reflection of the 'fit' of the model to the volumes used to
determine the model parameters for each tumour, as well as
the accuracy with which the model predicts the subsequent
tumour volumes. That there is a close fit irrespective of
whether or not the tumours had been biopsied confirms that
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Figure 2 Tumours unsuccessfully modelled. -i-, patient 1;
*-, patient 2; -a-, patient 3; -O-, patient 4.
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Figure 3 Variability between actual and model predicted
volumes. (r2=0.35, P<0.05).

Table II Comparison of per cent variability for the first four and subsequent volumes

Per cent variability between model and actual
Patient Regimen First four volumes Subsequent volumes

1 CAF 17 9
22 200 (small volumes)

2 AcF 11 9
14 5

3 CAF 4 6
8 11

4 AcF 3 30
34 Insufficient volumes

5 AcF 2 1
6 CAF 2 6
7 CAF 24 124 (small volumes)
8 CAF 12 13

27 Insufficient volumes
9 AcF 5 11

8 10 (one unreliable volume)
10 CAF 30 191 (16% without one small volume)
11 CAF 17 14
12 AcF 20 13
13 AcF 14 4
14 AcF 1 3
15 AcF 15 909 (9% without one small volume)
16 CAF 2 12
17 CAF 5 0
18 CAF 17 2
19 CAF 1 11
20 CAF 11 196 (small volumes)
21 CAF 9 3
22 CAF 10 3
23 AcF 5 3
24 AcF 7 8
25 AcF 4 9
26 AcF 9 2
27 AcF 9 1
28 AcF 9 3
29 AcF 8 32
30 AcF 13 60
31 AcF 7 2
32 CAF 2 43

the application of the model to volumes only after the fourth
week of chemotherapy does not appear to impair its ability to
predict subsequent volumes, with the caveat that there were
four biopsied tumours to which the model could not be
applied after week 4, as almost all of the response had
already occurred by that time.

Figure 6 shows a plot of the doubling time (d) against
the actual initial volume. It can be seen there is a trend for
d to rise with the larger tumours, and if we ignore the
tumours with no effective growth during the treatment (and
thus for whom d is essentially oo) this is significant
(P< 0.05).
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Table III Cell kinetic parameters and pathological volumes for those tumours having surgery

Volumes
Patient Cell kill Primary resistance Doubling time Clinical Model Pathological

10 0.23 0 00 0 2.7 DCIS only
11 0.63 0 6 0 9.7 0.10
12 0.12 0 oo 0 7.0 0.88
13 0.27 0 oo 9.7 9.4 1.1
14 0.54 0.340 oo 39 47 47
15 0.35 0.089 oo 2.5 3.8 0.70
16 0.38 0.083 oo 37 24 5.6
27 0.21 0 76 55 55 13
28 0.16 0 oo 35 42 0
29 0.59 0.180 60 4.5 8.9 0.1
30 0.27 0 127 7.2 37 2.1
31 0.10 0 oo 17 18 4.2
32 0.34 0 oo 6.8 2.0 0
DCIS, ductal carcinoma in situ.
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Discussion

It is difficult to measure cell cycle parameters in breast
tumours, because one cannot establish cell lines from all
breast cancers and, even if established, such cell lines cannot
easily provide data on true doubling times because they
cannot allow for the effect of stroma and vasculature on
growth or for cell loss rates or for sampling selection.
Furthermore, there is no standard method at present of using
an in vitro estimate of resistance to chemotherapy to plan
treatment, or even predict subsequent tumour behaviour,
although attempts have been made (see Von Hoff, 1990). A
recent development, using a [3H]uridine uptake assay to
assess resistance to single-agent 5-fluorouracil, has overcome
some of these problems (Elledge et al., 1995). However, no
assay was available in 11/36 clinically assessable metastatic
tumours, and the prediction was only for response or 'no
response'. In the management of locally advanced breast
cancer, the degree of response is important, as one of the
aims of neoadjuvant treatment is to improve the operability
of the tumour.
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Figure 5 Actual and predicted volumes for (a) unbiopsied
tumours (r2=0.893, P<0.00001) and (b) biopsied tumours
(r2=0.964, P<0.00001).

There is little doubt that changes in cell proliferation, and
in the expression of c-erbB-2 and p53 (Gardin et al., 1994),
can occur as a consequence of neoadjuvant chemotherapy,
but there are no firm data on how these changes could be
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Figure 6 Initial volume against doubling time.
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used to predict for subsequent tumour response or patient
survival. Koh et al. (1992) used immunohistochemistry to
estimate the proportion of locally advanced tumours that
were positive for P-glycoprotein both before and after
neoadjuvant chemotherapy, finding that this rose from 1/11
to 14/26 with treatment and that there was an association
between a lack of response and the presence of P-
glycoprotein in the residual tumour. Thus, although these
data suggest that an increased expression of P-glycoprotein
after treatment correlates with a poor response, they do not
help predict before or during treatment which tumours were

associated with a worse response or survival.
In our study, for 20/38 patients the model fitted best if it

assumed no effective growth during the time on therapy,
modelled as a doubling time of 10 000 days. This does not
imply that any tumours had such a long doubling time; and
the assumption would not be consistent with the data of
Heuser et al., 1979, who analysed a large series of untreated
primary breast cancers with mammographic measurements
and found tumour doubling times of 109-944 days. Whether
this estimate of no growth during therapy is biologically true
must remain unknown since very little is known about the
immediate effect of treatment on clinical tumour growth
rates.

The patients were all treated with one of two different
regimens. Those given CAF had all the cytotoxics adminis-
tered in the first 3 days of each week, whereas in AcF, weekly
doxorubicin is combined with continuous 5-fluorouracil. The
current model does not assume such continuous exposure to
a cytotoxic. However, there was no significant difference
between the two treatments in terms of cell-kinetic
parameters, or in the accuracy of the model-predicted
volumes. It should also be noted that there was no

significant difference in the proportion of tumours with no
apparent growth on therapy between the two treatment arms
- so it cannot be seen as an effect of the continuous 5-FU in
the group of patients treated with AcF.
We have shown here that a relatively simple mathematical

model can be applied to a set of clinically derived
measurements and in many cases apparently reasonable cell
cycle parameters can be deduced. It would be particularly
interesting to compare these figures with data derived from in
vitro studies on cells from these tumours, but currently that is
not possible. However, if the parameters are at all realistic,
then they should produce predictions for subsequent tumour
volumes that are close to those actually recorded. Formal
statistical inferences are difficult, but Figure 3 shows that
where the model fits tightly over the first four volumes it
more accurately predicts the subsequent volumes. This may
be because the measurements are intrinsically more accurate
in some tumours; or perhaps more likely that there are some

tumours for whom this model provides a better description of
the underlying kinetics. However, in many cases where the
subsequent predictions are less accurate, the actual clinical
volumes are very small (usually less than 1 cm3).

In addition we found a correlation between the model-
predicted final volume and the pathological volume in the 13
patients who had surgery at the end of their treatment, with
the three patients in pathological CR having no resistant cells
according to the model. As can be seen from Figure 4, this
correlation is not good enough to accurately predict the
pathological volume, but the model is at least as accurate as
clinical measurement just before surgery.

Given the potential for errors in the clinical measurements,
the above results are impressive and demonstrate the validity
of applying this type of model, even with the assumptions
that have had to be made. It is not clear, therefore, whether
the differences between model and measured volumes
represent errors in the clinical estimation of the tumour size
or inaccuracies inherent in the model or its parameters being
imprecise. Pain et al. (1992) suggest that clinical measure-
ments overestimate the size of small breast tumours and
underestimate large ones, although they concluded overall
that ultrasound was no better, tending to underestimate
tumour size. Forouhi et al. (1994), on the other hand found a
much better correlation between pathological size and that
measured by ultrasound, although there was also a significant
correlation between pathological and clinically measured
tumours. Warr et al. (1984) found that clinical measurement
of lesions below 2.6 cm had a much higher percentage of
false-positive partial responses, although they were not able
to compare the actual measurements with a 'gold standard'
pathological size, as in the above two studies. As the tumours
in our study all regressed on chemotherapy, these studies all
suggest that there are likely to be significant errors in the
clinical measurements that will not lessen as the tumours
shrink. Indeed, Figures 5a and b, together with Table II,
suggests that the error in the clinical volume may be larger
for smaller tumours. It is unclear how this could be best
accommodated mathematically, as such smaller volumes only
appear during subsequent treatment cycles. However, it does
not pose a significant problem for the model derivation of the
cell-kinetic parameters as, with the exceptions of the nodes
measured in patients 4 and 8, all other volumes used to derive
the parameters were based on tumour dimensions of greater
than 1.5 cm.

There were a small number of tumours to which the model
could not be applied. In most cases this was because of
unreliable or inadequate clinical volume measurements, but
in four cases that had all been biopsied it transpired that the
model was applied to a plateau of tumour response (see
Figure 2). Earlier application of the model in two of these
four cases was successful, but as it was only with the
knowledge of the subsequent volumes that the presence of a
response plateau was apparent, such an approach could not
be entertained when using this model to prospectively predict
tumour behaviour. Indeed, if the model was applied from the
first treatment cycle for all tumours, thus ignoring the impact
of surgical trauma on tumour measurements, it does not
provide overall as close a fit to the measured volumes.
Clearly it would be helpful to either avoid biopsy of the
tumour to be measured, or to have a method of
differentiating the tumour from any haematoma.

Figure 6 shows that there is a trend for the tumour
doubling time to rise with initial tumour volume, which is in
keeping with a different model of tumour growth, such as
Gompertzian (Gompertz, 1825; Laird, 1964). It would be
interesting to apply such a model to these data, but it would
require estimation of one additional parameter, ,B (which
represents the rate at which the growth falls away from
exponential). Given the potential for errors in the measure-
ments as discussed above, it might be better to get more
accurate volume measurements first, for example using
ultrasound. In contrast however, Brown et al. (1984) showed
that in a large series of primary breast cancers there was no

. . I . . . . . . . I
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evidence for bounded (Gompertzian or otherw-ise) growth of
breast cancers up to their size at presentation. Indeed. they
found that exponential growth with up to 50-fold variation in
tumour doubling times (such as in this series) was sufficient
to reproduce the size distribution seen at clinical presentation.

The model presented is relatively simple. in both its
assumptions and applicability. No explicit allowance has been
made for the fact that only a part of the tumour may be
proliferating. or for the possibility of recruitment of further
cells into proliferation following treatment. or for cell loss
caused other than by therapy. Thus. the parameter values
cannot be taken as an accurate prediction of those that would
be obtained by a biological estimation. were it possible
(which it is not). What the model does perniut is an empinrcal
approach to volume extrapolation for tumours undergoing
treatment. and this senres of tumours has shown that
prediction of subsequent behaviour is accurate. This model
can also be applied to measurements of pnrmary breast
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Appendix
The model predicts that the sequential tumour volumes before
treatment (XO, XI, X2,...,XX) will be described by the equation:

where N(x,,,a) is the value of a normal distribution with mean p
and variance a2 at x. Hence

1-a-(1- a)ko1-axXoe&4 (1)

where a=(l-k) and ko=k(l-RO). Ro is the proportion of the
tumour initially resistant, a is the growth rate, t, is the time
between the first treatment and treatment cycle i+ 1 and i is the
treatment cycle number itself. Then, from equation (1)

log Xi = log[ a1-ai)ko] + log X + at

Let the actual tumour volumes be VO, Vl,...,Vn. We have assumed
that these are log-normally distributed about the true volumes
with some constant standard deviation a (this is equivalent to the
assumption that the same percentage error can be expected at each
tumour volume).
Then the likelihood L of the (log of) these volumes under the

model is:

L(log Vo, log Vl,..., log V1/) = N(log Vo, log Xo, o) x
N(log Vl, log Xl, a) ...N(log Vn, log Xn,, a)

n

= t N(log Vi, log Xi, a)
i=O

n

log L=E log N(logVi,log Xi,a)
t=O

Now

N(xp,a) = 1 exp[ (2 X)2]

Thus

Log L = E log [1 exp[-(log X 2-logVi) ] (2)

The maximum likelihood estimates (MLEs) for Xo, k, Ro, o and a
(i.e. the values of these parameters that produce the closest fit
between the model's predictions and the data) can then be
determined by maximising L from equation (2). This can be
achieved by differentiating log L with respect to each of the
parameters Xo,k,Ro,ca and a and maximising log L based on the
values of these derivatives using a semi-Newtonian algorithm.


