
J N E R JOURNAL OF NEUROENGINEERING
AND REHABILITATION

Cesqui et al. Journal of NeuroEngineering and Rehabilitation 2013, 10:75
http://www.jneuroengrehab.com/content/10/1/75
RESEARCH Open Access
EMG-based pattern recognition approach in post
stroke robot-aided rehabilitation: a feasibility
study
Benedetta Cesqui1,2*, Peppino Tropea2, Silvestro Micera2,3 and Hermano Igo Krebs4,5
Abstract

Background: Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-
rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition
approach could be employed to predict patients’ intentions while attempting to generate goal-directed
movements in the horizontal plane.

Methods: Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching
movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of
the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used.
Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier
accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment
index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE).

Results: Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static
functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the
contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In
particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the
general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from
each patient.

Conclusions: The experimental findings herein reported show that the use of EMG patterns recognition approach
might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than
estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret
the normal and abnormal muscle patterns and provide feedback on their correct recruitment.
Background
The American Heart Association, the Department of
Veterans Affairs and the Department of Defense have re-
cently endorsed the use of robotic therapy to enhance the
recovery of upper extremity following a stroke [1]. This
endorsement is a result of multiple, randomized controlled
clinical studies that showed improvement of movement
coordination and motor recovery after injury [2-6]. The
key concept behind upper extremity robotic therapy is that
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robot-based training involving repetitive task-oriented
movements with significant attention demands might pro-
mote brain plasticity and recovery. While motor recovery
has several distinct traits other than motor learning, we
often adopt motor learning models as the keystone for or-
ganizing therapy aimed at altering the underlying neural
architecture and connectivity to promote recovery. Yet lit-
tle is known about what constitutes best practice after a
stroke. We do not know the optimal amount of therapy,
the most effective duration of treatment, its content, and
the best intensity of the training sessions [7-10]. Neverthe-
less, the potential benefits of robotic therapy are consider-
able. For example, a “robotic gym” could allow the
rehabilitation of several patients to take place at the same
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time with only one therapist present or to modify the kind
of robot and its specific use during the different phases of
the recovery of the patient. The therapist role could evolve
into a supervisory function in which s/he selects from
among different types of protocols the optimal one for the
particular patient. Interesting information that might fa-
cilitate the therapist’s choice from the repertoire of possi-
bilities to optimize motor recovery can be gathered from
electromyographic (EMG) signals [9,11,12]. EMG signals
could allow us to predict in advance the desired motor
task - as these signals always start several milliseconds
prior to an action initiation - but this possibility could be
highly influenced by specific deficits. Several methods have
been developed in order to estimate different features of
the movements from muscle activity, i.e. joint angles, vel-
ocity torques, and stiffness [13-19]. In particular, many
groups suggested that muscle synergies (coordinated re-
cruitment of groups of muscles with specific activation
profile) could be the basic control modules on which the
CNS relies to generate motion since the dynamic behavior
of the musculoskeletal system seems to be captured by the
structure of the synergies [20-23]. Moreover, it has been
suggested that the assessment of muscle synergies should
be used to evaluate different therapy modalities in post-
stroke rehabilitation [24]. These results support the idea
that we might employ EMG signals to enhance robotic
therapy.
While the use of EMG signals for biofeedback in re-

habilitation has been quite controversial [25-27], few at-
tempts have been made to integrate them with robotic
therapy so far. To our knowledge, the only systematic
application of EMG has been employed in the e-100
Neurorobotic System from Myomo (Myomo, Inc., Boston,
MA, USA) with a non-invasive EMG platform, able to use
the signals to understand whether the subjects self-
initiated and controlled movement and to provide help if
necessary. To date, only small uncontrolled studies have
been performed with the system [28]. Hu and colleagues
[29] also compared outcomes of a group receiving robotic
wrist therapy assisted by an EMG-driven algorithm with a
group receiving passive wrist motion, demonstrating
better outcomes for the intention-driven group. These
results indicate the potential for employing EMG signals
to enhance robotic therapy.
Here we investigated whether EMG signals could correl-

ate the activations of the upper arm muscle patterns with
goal-directed movements, and whether this kind of infor-
mation can be used for movement prediction. Our goal
was to extract a general model/map of the EMG activation
patterns valid for point-to-point reaching movements in a
gravity-compensated, horizontal plane environment. This
information could potentially be used in future applications
to develop an assistive robotic device able to discriminate
between the intended (i.e., determined by the specific task)
and the generated (i.e., based on the recorded muscle activ-
ity) movement directions, and eventually to provide assist-
ance when the two are not coincident. In this context
different scenarios are possible. In fact, the direction error
could be detected by either comparing the real-time EMG
signals to a reference model of patterns of activation
extracted from the healthy population, or by allowing the
patient to establish his own target movements by calibrat-
ing the system for every pathological individual.
To achieve our goal, young healthy and pathological

subjects were asked to perform pointing movements on
the horizontal plane while holding the handle of a robotic
manipulandum. The EMG signals of several muscles of
the arm and of the trunk were recorded. We applied a
classical electromyography pattern classification technique
used for similar applications [30]. In particular, a standard
pattern recognition method known as Support Vector
Machine was used to identify the intended movement dir-
ection from the muscle activities relative to the first in-
stants of motion. Moreover, an analysis of EMG spatial
characteristics was carried out to detect anomalies and
spurious coactivational patterns. The aim of our analysis
was to understand how the inter- and intra-subjects’ vari-
ability affected the repeatability of the measurements,
hence the classifier accuracy, both in the case of healthy
subjects and post stroke patients.

Methods
Subjects
Nine right-handed young healthy subjects (GROUP I) and
seven stroke survivors (GROUP II) of different impair-
ment levels volunteered to participate in the experiment.
The following inclusion criteria were applied for patient
recruitment: 1) diagnosis of a single, unilateral stroke veri-
fied by brain imaging; 2) sufficient cognitive and language
abilities to understand and follow instructions; 3) absence
of apraxia and severe concurrent medical problems (in-
cluding shoulder pain). Table 1 summarizes the features
and the clinical assessment of all patients, ordered with re-
spect to the impairment level on the base of the Fugl-
Meyer clinical rate for loss of sensorimotor function in the
arm [31]. Patients #2 and #6 were out-patients of the
Burke Rehabilitation Hospital (White Plains, NY). The
other patients were inpatients (i.e., Patient #4, #5, and #7)
and outpatients (i.e., Patient #1, #3) of the Neurological
and Severe Brain Injury Unit of Auxilium Vitae Rehabilita-
tion Center (Volterra, Italy). The experiments were carried
out during the first therapy day of the rehabilitation
program. Experiments with healthy subjects were carried
out at the Department of Mechanical Engineering of the
Massachusetts Institute of Technology, Cambridge, MA.
The experimental protocol was approved by the Commit-
tee on the Use of Human Experimental Subjects of the
Massachusetts Institute of Technology (COUHES) and



Table 1 Demographic and clinical data of patients with spastic hemiparesis

Subject Gender Stroketype Lesion location Paretic side Dominance F.M.

P1 M H Right frontal-temporal L R 15

P2 M H Unavailable in medical records R R 18

P3 F I Left caudate nucleus and thalamus R R 19

P4 M H Left Internal Capsule R R 19

P5 M I Right cortical-subcortical precentral L R 21

P6 M H Unavailable in medical records R R 30

P7 M I Right cortical-subcortical parietal L R 36

The rightmost column reports the Fugl–Meyer clinical rating of loss of sensorimotor function in the arm: 15 = severe, 36 = minimal. Labels in the 3rd, 4th, 6th,
and 7th columns refer to: F Female, M Male, H Hemorragic, I Ischemic, L Left, R Right.
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the institutional review boards of Burke Rehabilitation
Hospital and the Auxilium Vitae Rehabilitation Center.
All subjects gave their informed consent before the experi-
mental session.

Experimental protocol
Each participant sat on a chair and gripped the handle
of a planar manipulandum, the Inmotion2 Robot (Inter-
active Motion Technologies, Watertown, MA, USA)
[30]. Trunk movements were prevented or minimized
with a 5-point seatbelt. The right elbow was supported
in the horizontal plane by a rigid support. The wrist was
immobilized by a splint. Posture was adjusted depending
on the subject’s body size and height. In particular, we
properly adjusted the chair’s height to have the shoulder
joint and the robot handle lying on the same plane, and
the shoulder elevation-depression angle at about 90 de-
grees. Finally, subjects were positioned so that when in
the central position, the angle between the arm and the
forearm links was approximately 80–90 degrees.

Experiments with healthy subjects
Experiments with healthy subjects aimed at understand-
ing potential usage of the SVM classifier and quantifying
its accuracy. These experiments allowed for the explor-
ation of normal characteristics of EMG signals in terms
of spatial distribution and the definition of a reference
model of muscular activations.
Participants were instructed to make point-to-point

horizontal reaching movements between a central position
and one of four outer targets arranged on a 0.14 m cir-
cumference at North, East, South, and West locations (see
Figure 1). Each trial began once the robotic handle was
positioned in the start position. After one second, subjects
were prompted to initiate movement by an auditory cue.
Subjects were instructed to perform the trial within a cer-
tain time frame and stop at target location for at least 1 s.
Movements were performed for three different durations
(1000, 600 and 300 ms). Visual and auditory feedbacks
were provided when motion was outside the temporal
constraints; unsuccessful movements were repeated. For
each direction and each speed condition, subjects repeated
the exercise 5 times for a total of 60 movements.

Experiments with stroke subjects
Similar to typical robot-aided session therapy [30,32],
subjects were required to reach out for 8 targets placed
on the circumference of 0.14 m of diameter starting
from a central position (Figure 1). No assistance was
provided by the device throughout the experiment. No
time constraints were applied to patients. They were
instructed to stop in the target position. The exercise
was repeated 5 times for each direction (total of 80
movements).
In all cases participants received a visual feedback of

the target location and the movement of the robot han-
dle by means of a computer monitor placed in front of
them (Figure 1).

Data acquisition and analysis
The optical encoders mounted on the handle of the
Inmotion2 device enabled recording hand position with a
frequency of 1000 Hz. In the case of GROUP I and pa-
tients #2 and #6, EMG signals of several muscles were
recorded with active bipolar surface electrodes (Delsys,
Boston, MA) at 1000 Hz. Each electrode was connected to
an amplifier (total gain, 1000); signals were band-pass fil-
tered (20–450 Hz) and then recorded by the robot (pos-
ition and EMG synchronized). In the case of patients #1,
#3, #4, #5 and #7, those who performed the experiments at
the Volterra Hospital, EMG signals were recorded with the
Noraxon data acquisition system (NORAXON, Telemyo
2400 T, V2). Sample rate was set at 1500 Hz and total gain
was 1000. A synchronization signal was sent by the robot
to the Noraxon system both when the cursor exited from
the initial target and when it entered in the arrival target.
This signal was used in post processing analysis to syn-
chronize position and EMG data.
The EMG activities were recorded from a selection of

muscles, thought to become active in similar exercises
[12,33,34]: PM (Pectoralis Major), DP (Deltoid Poster-
ior), DM (Deltoid Medial), DA (Deltoid Anterior), BI



Figure 1 The experimental setup. (A) Robotic Therapy at Burke Rehabilitation Hospital. (B) Targets position distribution on the horizontal plane.
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(Biceps Brachii), TR (Triceps Brachii, lateral head), UT
(Trapezius Superior), MT (Trapezius Medial), LT (Latis
simus Dorsi), TM (Teres Major). In the case of GROUP I
we could record up to 8 external channels, thus the proto-
col was repeated twice (muscles recorded in the first
block: PM, DP, DM, DA, BI, TR, UT; muscles recorded in
the second block: DP, DM, BI, TR, UT, MT, LT, TM).
Proper electrode placement was verified for each muscle by
asking subjects to perform both free movements and iso-
metric contraction (when possible) according to testing
procedures specified in [35] and then observing the
expected activation patterns. Only motions toward North,
East, South, and West directions were analyzed. The pos-
ition data were low-pass filtered (Butterworth filter; 15 Hz
cutoff; Matlab filtfilt function) and differentiated to com-
pute tangential velocity. Movement onset and completion
were determined via a 5% of peak speed threshold. When
acquired with the Noraxon system, EMG signals were first
bandpass filtered (20–450 Hz). In all cases, they were high-
pass (Butterworth 10 Hz cut-off filter) and low-pass filtered
(moving average 20 ms).
In the case of Patients #1, #4 and #7, MT muscle in

some cases showed a change in signal amplitude during
the experiment, likely resulting from a partial detachment
of the electrode from the skin. This muscle was then re-
moved from further analysis.
Classification and validation procedure using support
vector machine (SVM)
Initial intended movement direction was extrapolated
from muscle activity recorded between [−100; 100] ms
with respect to the movement onset, represented by the
time the cursor left the start target. Due to the stochastic
nature of the EMG signal, we evaluated the discrimination
capability and robustness of several features used in the
literature for myo-control classification (for a detailed re-
view see [19]). Time domain features were preferred to
more complex time frequency representations because of
the lower computation cost and the good classification
performance [29,34,36]. In particular, we tested the follow-
ing EMG parameters:

� IAV (Integral of Absolute Value): IAV ¼ 1
N ∑N

i¼1 xij j,
which estimate the integrated absolute value of the
signal in a segment length of N samples.

� AR coefficients (Auto-Regressive coefficients): time
series in which the signal samples are estimated by
linear combination of their earlier samples [19]. The
order of the AR model was set at 4 in accordance
with previous studies [34].

� ZC (Zero Crossing parameter): the number of times
the waveform crosses the zero:

� ZC ¼
XN
i¼0

sign −xi � xiþ1ð Þ where sign xð Þ ¼ 1 if x > threshold
0 otherwise

�

Threshold value was set as 0.025 V.

� HIST (HISTogram parameter) [37]. For each muscle,
the maximal activation value across conditions and
repetitions was first computed and then used to
define a muscle specific reference voltage range,
symmetric with respect to the baseline. This range
was subdivided in bins, and the frequency (i.e., the
histogram) with which the EMG recording falls
within each of the voltage bins, was computed.
Similar to [37] the number of bins was set to 9.

The quality of the feature space was estimated by
means of the Davies Bouldin (DB) parameter applied to
the scatter matrix of data from all muscles as in [38].
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The DB index estimated how significantly a cluster over-
laps its neighbors. It was obtained through averaging the
worst case separation of each cluster from the others
based on:

DB ¼ 1
K

XK
i¼1

max Rij
� �

with i ≠ j ð1Þ

Where,

Rij ¼ Si þ Sj
Dij

ð2Þ

where Si and Sj are the dispersion of the ith and jth clus-
ters respectively

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

� �XNi

j¼1

yi−mið ÞT yj−m1

� �vuut ð3Þ

and Dij is the distance between mean values:

Dij ¼ mi−mj
� �T

mi−mj
� �n o1=2

ð4Þ

with Ni is the number of cluster Ci, yi is the i
th input pat-

tern vector and mi is the mean vector of pattern ith.
The lower the DB parameter, the higher is the degree

of class separability. The comparison among all subjects
and movement directions showed that HIST parameter
presented the best overall performances--see Table 2.
The HIST parameters were clustered using the Support

Vector Machine algorithm (LIBSVM library, http://www.
csie.ntu.edu.tw/~cjlin/libsvm [39], Gaussian radial basis
function, sigma = 2), a supervised learning method used
for classification [40]. Formally, the SVM constructs a set
of hyper planes in the dimensional space that separate be-
tween a set of objects having different class memberships.
In the present application, the classes are represented by
the four movement directions, and the objects are the 9-
components HIST vectors parameters. Accurate classifica-
tion is achieved when the hyper planes present the largest
separation.
Different validation tests were then carried out to as-

sess the accuracy of SVM as described in next sections.
Table 2 Application of the Davies–Boulding in method
for the signal features selection

Parameter DB

HISTogram parameter ( HIST ) 0.53

Zero Crossing parameter (ZC) 0.70

Auto Regressive coefficients (AR) 1.01

Integral Absolute Value (IAV) 1.24
Validation of SVM with GROUP I
Principal component analysis (PCA) was carried out using
data from healthy subjects in order to decrease the number
of muscles relevant to motion. This approach aimed at
building a low dimensional feature space and reducing
computation resources demand in terms of time and mem-
ory of the classifier. We ended up with 7 of the 10 muscles
recorded during the experiment (PM, TR, DA, DP, DM, BI,
UT). Therefore, each movement was described by a vector
of 63 components (9 values × 7 muscles).
For healthy subjects the classifier has been:

1. Trained (70% of the trials) and tested (30% of the
trials) individually, i.e., with the data of each subject
(TEST 1). This test evaluated the performance of
the classifier when calibrating the system on each
subject. Misclassification would then be ascribed to
intra-subject’s variability.

2. Trained (70% of the total amount of data) and tested
(30% of the total amount of data) with the composite
of all subjects’ data, i.e., with the data of all the 9
subjects enrolled in the study (TEST 2). This test
aimed at evaluating the possibility of building a
general model of muscle patterns activation for
GROUP I. A higher correct classification rate would
imply a lower inter-individual variability.

3. Trained with a composite of 7 subjects and validated
with the 2 remaining subjects selected as the 2 worst
(i.e., the subjects who showed lower success rates in
TEST 1), or the 2 best (i.e., the subjects who showed
higher percentage of correct classification in TEST 1).
Those tests aimed at characterizing the classifier
performance depending on the quality of training
and testing data.

In all cases, training and validation data were ran-
domly selected and were mutually exclusive. TESTS 1
and 2 were run 20 times each: success rate was com-
puted as the average of the percentages of correct classi-
fication observed in each iteration.

Validation with GROUP II
Different tests were carried out to evaluate the classifica-
tion accuracy of the SVM in the case of stroke patients.
In particular, SVM was:

1. Trained (70% of the trials) and tested (30% of the
trials) individually, using the muscle selection
extrapolated for healthy subjects (TEST 1). This test
aimed at the characterization of intra-subject’s
variability within pathological subjects.

2. Trained with data recorded for GROUP I and tested
individually on each patient (TEST 2). This test
aimed at the evaluation of misclassification in

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Table 3 GROUP I: classification results

Test type Classification

Results (%)

TEST 1 SVM trained and tested with individual data 93.9 ± 4.4

TEST 2 SVM trained with dataset from a composite of
all subjects and tested with the remaining dataset

89.6 ± 4.4

TEST 3 SVM trained with dataset from a composite of 7
subjects and tested with a dataset from 2 worst subjects

79.1

TEST 4 SVM trained with dataset from a composite of 7
subjects and tested with a dataset from 2 good subjects

97.5

Percentage of correct classification for each test carried out in the case of
healthy subjects.
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relation to the presence of abnormal patterns of
muscle activation.

3. Trained (70% of the trials) and tested (30% of the
trials) individually, including all recorded muscles
(TEST 3). It aimed at exploring whether the inclusion
of muscles acting on the trunk and on the shoulder
could improve the accuracy of the classifier. In other
words, we investigated the possibility of the presence
of compensatory strategies adopted to restore the
functionality of the arm.

In the case of TEST 1 and TEST 3, training and test
samples were randomly selected among the dataset. Each
test was run 5 times, and the success rates were averaged
to evaluate the total accuracy.

EMG spatial distribution index for classification and
assessment
To investigate abnormal patterns of muscle activation at
the base of possible misclassification, we exploited a
graphical approach to represent EMG spatial character-
istics distribution. PCA analysis was computed for each
movement and each subject and applied to the covari-
ance matrix of the EMG raw signals within [−100; 100]
ms with respect to the movement onset. The relevance
of each muscle in the specific motion direction under in-
vestigation for each trial was quantified by means of an
information content index, namely the Coefficient of Ex-
pressiveness (CoE) [34].
For each jth trial, each lth muscle, and each rth direc-

tion, we computed a k index defined as:

kj;l;r ¼
Xn
i¼1

ci;l;r
		 		 λi

∑p
m¼1λm

j ¼ 1; J ð5Þ

where n is the number of principal components that con-
tains 80% of the variance of the system, ci,l,r is the correl-
ation coefficient between the ith principal component and
the selected muscle for the rth movement direction, λi is the
eigenvalue associated to the ith principal component, p is
the total number of eigenvalue, J is the numbers of trials.
The CoE coefficient for each muscle was given normalizing
the kj,l,r index with respect to the maximum among the k
indexes of the muscles recorded for the jth trial.
Muscle activity during each trial was then summarized

via N-component vector of CoE values, where N was the
number of the muscles included in the analysis. Only
muscles with CoE values larger than 0.7 were considered
relevant for motion production; otherwise they were
judged non-relevant (i.e., CoE = 0).
For each muscle, the modulation of the CoE across

the four directions was evaluated considering the polar
distribution of the coefficient. Specifically the patterns of
muscle activations identified for the neurological intact
participants were used as a baseline for comparison with
those of the patients. Thus, different abnormal spatial
patterns were evaluated and correlated with the results
obtained with the SVM.

Results
SVM prediction: GROUP I
Table 3 summarizes the results of the different validation
tests carried out for GROUP I. As expected, training the
SVM individually led to a high rate of success (93.9 ±
4.4%), indicating a lower incidence of intra-subject’s vari-
ability on the classifier accuracy. It remained high at
89.6 ± 4.4% when training was done with the composite
of data of all the subjects enrolled in the experiment.
Table 4 shows the “confusion matrix,” indicating the fre-
quency of correct and misclassified directions in the val-
idation TEST 2. Results showed that the highest number
of misclassification was observed between North and
East directions. When validating the classifier with the
two subjects characterized by the worst performance in
the individual training (TEST 3), the rate of success
dropped to a mean value of 79.1%. Confusion matrix in-
dicates that the worst recognized direction was North,
classified in 55% of the cases as East; also, in 14.3% of
cases South direction was classified as North, probably
due to co-contraction of the antagonist muscles. Finally,
validation carried out with data from the subject who
showed the higher success rate during the individual
tests returned the highest classification accuracy (97.5%).

SVM prediction: GROUP II
Tables 5, 6, and 7 show the classification results and the
confusion matrices for all the tests carried out to evalu-
ate the classifier performance for each pathological sub-
ject. Compared to healthy subjects, the classification
rates dropped dramatically. Misclassifications were pre-
sent in all directions and were differently distributed
across patients.
When SVM was trained with data from the healthy sub-

jects and tested separately on each patient, the accuracy



Table 4 GROUP I: classification results of TEST 2-3-4
(see Methods)

Test type Actual classes Predicted classes

North East South West

TEST 2 North 84.1 11.7 5.6 0

East 12.1 88.3 0 0

South 3.8 0 91.8 6.6

West 0 0 2.6 93.4

TEST 3 North 45 0 14.3 0

East 55 100 0 0

South 0 0 71.4 0

West 0 0 14.3 100

TEST 4 North 100 10 0 0

East 0 90 0 0

South 0 0 100 0

West 0 0 0 100

Table 5 GROUP II: classification results and confusion
matrices for TEST2

Patient id and
classification rate

Actual classes Predicted classes

North East South West

P1 North 40 0 0 40

35% East 0 0 0 0

South 60 100 100 60

West 0 0 0 0

P2 North 20 0 0 0

35% East 60 20 0 0

South 20 80 100 100

West 0 0 0 0

P3 North 80 100 80 100

25% East 20 0 0 0

South 0 0 20 0

West 0 0 0 0

P4 North 20 0 0 0

30% East 0 0 0 0

South 80 100 100 100

West 0 0 0 0

P5 North 40 0 0 0

45% East 60 40 0 40

South 0 60 100 60

West 0 0 0 0

P6 North 20 0 0 0

35% East 0 0 0 0

South 80 100 100 100

West 0 0 0 0

P7 North 0 0 20 0

35% East 20 0 0 0

South 80 80 80 40

West 0 20 0 60

Elements on the left-right diagonal indicate the percentage of correct
classification, while elements on the off-diagonals denote percentage of
misclassification. SVM was trained with data from GROUP I and validated
individually on each patient with the muscle dataset selected for healthy
subjects (see Methods).
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rates ranged between 25-45% (Table 5). To give an over-
view of the classifier performance, in the following we
reported the classification results observed in each direction
obtained pulling together the data from all pathological
subjects. Motion toward the North direction was correctly
detected in 31.4% of the trials (misclassification rates: East -
22.9%, South - 45.5%). Poor classifier performances were
observed when aiming to move toward the East direction,
correctly recognized in only 8.6% of the cases (misclassifica-
tion rates: North - 14.3%, South - 74.3% , West - 2.8% ).
South direction was detected correctly 85.7% of the time
(misclassification rates: North - 14.3%). Finally, motion to-
ward the West direction showed a success rate of 8.6%
(misclassification rates: North - 20% -East - 5.7%, South
65.7%).
Training and testing the SVM individually (TEST 1 and

TEST 3, Tables 6 and 7) resulted in a higher percentage of
correct classification than training SVM with the model
extracted from healthy subjects. When using the seven-
muscles subset extracted for healthy subjects (i.e., TEST
1), classification rates ranged between 30-70% (Table 6).
Motion intended direction was correctly detected in 54.5%
of total trials toward the North (misclassification rates:
East - 21% , South - 12.3% West - 12.2% ), in 52.8% of the
total trials toward the East (misclassification rates: North -
15.7%, South - 31.5%), in 57.7% of the total trials toward
the South (misclassification rates: East - 26.4%, West -
15.9%), and in 50.9% of the total trials toward the West
direction (misclassification rates: North - 11.2%, East -
9.3%, South - 28.6).
When trained and tested on individual data including all

the recorded muscles (i.e., TEST 3, Table 7), accuracy rates
were slightly higher and ranged between 36.7-83.3%.
When aiming toward the North direction, the accuracy
rate was 67.8% (misclassification rates: East - 20.1%, South
- 3.8%, West - 8.3%). When moving toward the East direc-
tion, the correct classification rate was 59.8% (misclassifica-
tion rates: North - 10.3%, South - 25.3%, West - 4.6%).
Finally, motion toward South and West directions was
detected correctly in 45.8% (misclassification rates: North -
3.6%, East - 30.8%, West - 19.8%), and 64.9% (misclassifica-
tion rates: North - 10.6%, East - 11%, South - 13.5%) of the
cases, respectively.



Table 6 GROUP II: classification results and confusion
matrices for TEST1

Patient id and
classification rate

Actual classes Predicted classes

North East South West

P1 North 28.6 25 0 58.3

43.3% East 14.3 75 28.6 16.7

South 42.9 0 71.4 0

West 14.3 0 0 25

P2 North 100 0 0 0

70% East 0 77.8 0 0

South 0 22.2 85.7 60

West 0 0 14.3 40

P3 North 42.9 26.6 0 0

30% East 0 28.6 66.7 28.6

South 28.6 42.9 11.1 28.6

West 28.6 0 22.2 42.9

P4 North 12.5 57.1 0 0

26.7% East 87.5 28.6 0 0

South 0 14.3 37.5 71.4

West 0 0 62.5 28.6

P5 North 14.3 0 0 20

40% East 28.6 57.1 16.7 20

South 14.3 42.9 83.3 40

West 42.9 0 0 20

P6 North 83.3 0 0 0

70% East 16.7 45.5 12.5 0

South 0 54.5 75 0

West 0 0 12.5 100

P7 North 100 0 0 0

66.7% East 0 57.1 60 0

South 0 42.9 40 0

West 0 0 0 100

Elements on the left-right diagonal indicate the percentage of correct
classification, while elements on the off-diagonals denote percentage of
misclassification. SVM was trained (70% of trials) and tested (30% of trials)
individually on each patient with the muscle dataset selected for healthy
subjects; training and testing data were randomly selected and mutually
exclusive; test was repeated 5 times for each patient and accuracy rates were
averaged across iterations.

Table 7 GROUP II: classification results and confusion
matrices for TEST3

Patient id and
classification rate

Actual classes Predicted classes

North East South West

P1 North 66.7 20 25 14.3

53.3% East 16.7 40 41.7 0

South 0 20 33.3 0

West 16.7 20 0 85.7

P2 North 100 0 0 0

70% East 0 87.5 0 0

South 0 0 27.3 0

West 0 12.5 72.7 100

P3 North 66.7 25 0 0

36.7% East 16.7 75 75 50

South 0 0 0 0

West 16.7 0 25 50

P4 North 28.6 12.5 0 12.5

36.7% East 57.1 37.5 14.3 12.5

South 14.3 50 57.1 50

West 0 0 28.6 25

P5 North 25 14.3 0 33.3

43.3% East 37.5 57.1 16.7 0

South 12.5 28.6 83.3 44.4

West 25 0 0 22.2

P6 North 87.5 0 0 0

83.3% East 12.5 71.4 12.5 0

South 0 28.6 75 0

West 0 0 12.5 100

P7 North 100 0 0 14.3

70% East 0 50 55.6 14.3

South 0 50 44 0

West 0 0 0 71.4

Elements on the left-right diagonal indicate the percentage of correct
classification, while elements on the off-diagonals denote percentage of
misclassification. SVM was trained (70% of trials) and tested (30% of trials)
individually on each patient with the muscle dataset recorded during the
experimental session (see Methods); training and testing data were randomly
selected and mutually exclusive; test was repeated 5 times for each patient
and accuracy rates were averaged across iterations.
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EMG spatial distribution
Spatial characteristics of the muscle EMG activation rela-
tive to the initial part of the movement were evaluated
considering the polar distribution of the CoE coefficients,
which were averaged across repeated trials and different
subjects (CoE_M). The CoE_M ±1.96 · SE (SE = Standard
Error) coefficients computed for each direction were
connected by periodic cubic spline interpolation curves
(Figure 2). The resulting area inside the curves represented
the 95% confidence interval of the CoE distribution. The
analysis of the spatial distribution of the CoE parameter
was used to explain and interpret the observed misclassifi-
cation rates of the classifier.

Healthy subjects
In Figure 2, muscles were ordered according to their rele-
vance in motion production observed for healthy subjects
from the analysis of the EMGs raw data (i.e., Figure 3). The
TR muscle showed a higher CoE value when moving toward
the North direction; similarly, DM and DP contributed more



Figure 2 CoE parameter directional tuning. Modulation of the CoE parameter across the four aimed directions (N, E, S, W) for each recorded
muscle are shown respectively for the healthy subjects group (GR I) and for each patient enrolled in the study. CoE coefficients of each muscle
were averaged across repeated trials and, in the case of GR I, also across different subjects (CoE_M). The polar diagrams show the distribution of
the CoE_M ±1.96 · SE (SE = Standard Error) coefficients connected by periodic cubic spline interpolation curves. The resulting area inside the
curves represents the 95% confidence interval of the CoE distribution for each muscle. Dashed black lines are circles of unit radius. Muscles were
ordered according to their relevance in motion production in each direction observed for GR I: in particular TR was responsible for motion
toward North direction, DM and DP toward East direction, UT and BI toward South direction, and PM and DA toward West direction.
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when aiming toward the East direction, although often
active also when moving toward the North direction; UT
and BI presented a larger activity when aiming toward the
South direction and PM and DA toward the West
direction (Figure 2, first row). This approach took into
consideration modulation of muscle activity reported by
Flanders and Georgopoulus [22,23]. In accordance with
those studies, we observed that muscles relevant when
initiating motion toward one direction, i.e., playing an
agonist role, were not activated in the opposite direction
where they acted as antagonist. Some episodic, abnormal
co-activational patterns at the base of SVM misclassifica-
tion were observed. They were presumably related to the
need for mechanical stabilization of the arm, especially in
the case of a fast movement condition (movement time
300 ms). For example, the activation of the elbow flexor
(BI) sometimes required the activation of the shoulder
adductor (PM) to stabilize the shoulder. Similar relation-
ships were present between elbow extensor (TR) and
shoulder abductors (DP).
Overall, GROUP I showed highly repeatable and stable
patterns of activation across different subjects, trial
repetitions and movement velocities as revealed by the
narrow confidence interval of the CoE parameter. Con-
spicuously, in accordance with PCA analysis, muscles of
the back--such as MT, LT, TM--were not relevant for
motion production as indicated by the lower CoE values.

Stroke subjects
In accordance with previous studies [41] we observed that
EMG signals were quite different from those observed in
healthy subjects in almost all the pathological subjects en-
rolled in the study (for example, see Figures 3 and 4). A
graphical overview of muscle patterns characteristics rela-
tive to the initial phase of the movement, described by
means of the CoE parameter distribution, was reported for
each subject in the polar plots of Figure 2.
In the case of Patient #1, TR contributed to motion to-

ward North, West and East directions; DM and the DP
were involved mainly when initiating motion toward the
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South and West directions and the DA muscle when mov-
ing toward the East direction (see Figures 2 and 4). Patient
#2 presented no specific directional tuning of the CoE par-
ameter relative to the TR muscle; the UT muscle was in-
volved more when aiming toward the lateral directions (i.e.,
the West and East directions) than toward the South direc-
tion, as in the case of healthy subjects; the PM muscle
showed the higher CoE values when moving toward back
and forward directions (i.e., North and South directions).
Patient #3 showed no specific directional tuning of the CoE
parameter of both the TR and DP muscles; the UT muscle
was mainly involved when the subject extended the forearm
toward the North and the West directions; the DA muscle
was recruited when moving toward the North direction.
Patient #4 showed co-activational patterns of agonist and
antagonist muscles: notably the DP and the DA muscles
when moving toward the West direction, and the TR and
the BI muscles moving toward the North direction. Patient
#5 showed no specific directional tuning of the CoE param-
eters of several muscles--i.e., the DM, DP, UT, PM and LT
muscles--while the DA muscle often contributed to initiate
motion toward the North direction. Patient #6 presented
abnormal co-activational patterns between elbow extensor
and flexor muscles: the CoE parameters relative to the ac-
tivity of the TR muscle were higher when initiating the
movement toward the South direction, while those relative
to the BI muscle were higher when moving toward the
North direction. Finally, in the case of Patient #7, the TR
and PM muscles contributed mainly to motion toward the
East direction, and the BI muscle was not relevant in any
direction as showed by the null CoE coefficients.
In almost all patients, there was a larger involvement

of the back muscles in motion production with respect
to GROUP I, as shown by the higher CoE coefficient of
the LT and TM muscles reported in Figure 2.
Summarizing, the analysis of the CoE parameter distri-

bution in the case of pathological subjects showed that ab-
normalities varied idiosyncratically and were ascribed to
several factors, such as: a shift of the preferred muscle ac-
tivation direction, co-contraction of antagonist muscles,
and the presence of abnormal coactivational patterns.
Discussion
Therapeutic robotics started about 20 years ago. Because
robots can be used to reproduce different multi-sensory



SouthEast WestNorth

TR

DM

DP

UT

BC

PM

DA

LT

Max
EMGTM

10 cm

0 1 2 3
Time [s]

-0.5 0 0.5 1 1.5
Time [s]

0 1 2

0.
2 

m
/s

Time [s]
0 0.5 1 1.5

Time [s]

End-point
Speed

10 cm

Figure 4 Examples of end-point kinematic and EMG signals collected during one trial from one pathological subject (P1). Top panel:
endpoint trajectories are shown for each movement direction (columns). Central panels: EMG signals are shown for each muscle (rows) and
movement direction (columns); data were full wave rectified and normalized with respect to the maximum of the specific muscle over all
conditions, filtered (see Methods section), and integrated over 10 ms intervals; the gray area represents the time window used for the present
analysis; muscles abbreviation are defined in the Methods section. Bottom panel: tangential velocity profiles are shown for each movement
direction (columns). Data are aligned to the movement onset.

Cesqui et al. Journal of NeuroEngineering and Rehabilitation 2013, 10:75 Page 11 of 15
http://www.jneuroengrehab.com/content/10/1/75
interactive scenarios, applying robot-assisted therapy allows
us to customize the interventions on individual physical im-
pairments [9,30,42,43], and to also provide precise control
over a large number of physical variables--haptic, visual,
and auditory cues--that influence motor behavior [10,32].
Here we explored the efficacy of using EMG signals, not as
a measure of the strength of specific groups of muscles
[12,42] but as a way to detect intentions to move toward a
certain direction. This classification could be used in future
applications to enable the control of assistive and rehabilita-
tion robotic devices. With this aim in mind, we examined
whether we could build a static functional map of the EMG
activation patterns for point-to-point reaching movements
located on the horizontal plane environment. We used the
SVM algorithm to predict the intended motion direction
with the highest possible accuracy and to understand
whether and how the inter- and intra-subjects’ variability
could affect repeatability of the measurements.

Limits of EMG pattern recognition
The approach was quite successful for healthy subjects. In
this case, we were able to achieve a classification accuracy
of 89.6 ± 4.4% (TEST 2, Table 2). Even more interesting,
we employed the data from all subjects and did not train
the algorithm on individual data. Inter- and intra-subject’s
variability was not a critical factor affecting the classifier
performance, as shown by the higher classification rates
obtained with TESTS 2, 3 and 4 reported in Table 2. Ac-
curacy increased significantly, i.e., up to almost 97.5% of
the success rate when the algorithm was trained and
tested on individual data or when validating the SVM with
our best subjects. However, we were not able to obtain
100% correct predictions in any case. While the accuracy
could be increased further (for instance with the use of
more sophisticated techniques [19,36,44]), the results
obtained in the present analysis are in line with different
techniques used in the past for similar applications. For
example, it has been reported an accuracy close to 100%
using a neuro-fuzzy classifier to detect planar arm mo-
vements similar to those tested in the present study [34].
In the case of EMG based control of prosthetic devices,
several studies reported a success rate ranging between
94-99% [17,45,46]. Other classification algorithms, such as
the Hidden Markov Models (HHM) and Higher Order
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Statistics (HSO), have also been tested but the results have
not been very promising so far [47,48]. Finally, brain com-
puter interfaces (BCI) used to command computer devices
with upper extremity muscle activity achieved a remark-
able 96-97% recognition of individual intentions [16]. Of
note, in all the cited studies the classifier was tuned to the
specific individual, as for TEST 1 in the present analysis.
Overall the present analysis showed that in the case of

healthy subjects, beside the presence of episodic abnormal
co-activational patterns at the base of SVM misclassifica-
tion, EMGs can provide a reliable map of the coactivation
relationships between groups of muscles.

EMG pattern recognition in robot-mediated neuro-
rehabilitation
In the case of stroke patients, the classifier accuracy
dropped dramatically and ranged between 25% and 45%
(Table 5). Mainly, the classifier failed to recognize motion
toward the East and the West directions (i.e., the average
accuracy rates were 8.6% in both cases). Consistent differ-
ences in the EMG patterns between the two groups were
also observed (see Figures 2, 3, and 4). The analysis of the
CoE directional distribution revealed the presence of indi-
vidual abnormal patterns of activation--spastic muscular
restraint, muscle synergies, lack of elbow extension, weak-
ness of specific muscle coordination deficits--in accord-
ance with previous studies [8,12,26,27,33,41,48-52]. For
instance, the simultaneous activation of the shoulder ab-
duction and elbow flexion, i.e., flexor synergy [41,53,54],
was present in several subjects (Patient #1, #2, #3, #4 and
#5). Both DM and DP muscles were no longer activated
with the elbow extensor and the TR muscle, and showed a
high CoE coefficient when attempting to move toward the
South direction. This could explain the misclassification
rates observed when attempting to move toward the
North (i.e., 68.6%) and East directions (91.4%), as well as
the large amount of trials misclassified in the South direc-
tion (Table 5).
The number of correct classifications increased when the

system was trained and tested on individual data (Tables 6
and 7). The best classifier’s performances were achieved
when a larger number of muscles was used, i.e., including
the LT and TM muscles (Table 7), in accordance with pre-
vious studies which reported an increase in the involvement
of the trunk in post stroke upper limb movement coordin-
ation [53]. With this approach it was possible to achieve up
to 83.3% of correct classification, as in the case of Patient
#6. Nevertheless, for the other patients the accuracy was
not as high as in the case of GROUP I and ranged between
36.7 -70%. In this context, it is important to note that an
accuracy of 36.7% was close to the probability of getting a
particular direction by chance alone, which in the present
case was 25% given that the classifier had to discern
between four very distinct possible classes. Overall the
accuracy in the East and West directions increased up to
59.8% and 64.9%, respectively. To achieve a better classifi-
cation performance, SVM generated the hyper planes that
increase the separation between the different classes. The
solutions exploited varied according to the subject specific
EMG signal characteristics, that is, the distribution of the
HIST vectors in the task space. One of the possible draw-
backs of this strategy was that the system might have recog-
nized the intention to move toward a certain direction
from the pathological incorrect schemes or the stereotyp-
ical coupling muscle patterns. Moreover, the method was
affected by the presence of large variability of the EMG fea-
tures within each class. In fact, each muscle presented acti-
vation over a broader range of directions compared to
healthy subject groups as shown by the large confident in-
tervals of the CoE parameter distribution in Figure 2. It
has been largely documented that stroke patients present
an increased movement variability with respect to normal
population [49,53,55]. The end point kinematic is often
characterized by large path errors and a speed profile
composed of several low amplitude peaks, markers of
discrete sub-movements that underlie deficits in motor
control [33,41,54-57]. We also observed these characteris-
tics in the performance of the stroke patients enrolled in
this study (Figure 4). In this context, compensatory strat-
egies and corrective actions exploited by patients in their
attempt to complete the task might have been changed
from trial to trial as also reported in previous studies [53].
Summing-up, the approach was not successful in the case

of pathological subjects. The aimed direction was not pre-
dictable with a sufficient accuracy whether using the general
map extracted from data of normal subjects (i.e., reference
model), or tuning the classifier on each individual.
Some limitations of the study should be highlighted at

this point. For instance, we only recorded a small subset
of all the possible trunk and upper limb muscles. In the
case of GROUP I, this approach worked quite well. How-
ever, in the case of GROUP II the number of trunk and
back muscles should have been increased to account for
the presence of compensatory strategies in the classifica-
tions extracted with the SVM. Proper electrodes place-
ment was a critical issue when dealing with patients due
to the weak EMG signals. Moreover, patients were often
overweight due to physical inactivity with a subsequent
EMG signal decay, which further affected classification ac-
curacy. Additionally, we could not rule out the presence of
fatigue at the base of intra-subject variability in the per-
formance of stroke survivors. Finally, in the present study
we used a statistical classifier. Neural networks might also
have been employed as an alternative, given the good per-
formances in the pattern recognition described in litera-
ture [19,34]. A recent study [36] however, reported no
significant differences in the classification between the two
approaches.



Cesqui et al. Journal of NeuroEngineering and Rehabilitation 2013, 10:75 Page 13 of 15
http://www.jneuroengrehab.com/content/10/1/75
New therapies and solutions
The results of this study are in line with a previous
work from Lee and colleagues [44], which applied a
subject-specific EMG patterns classification technique
to discern the intent of stroke patient in performing six
different manual tasks. To this aim they used the LDA
(Linear Discriminant Analysis) classifier on segments
of data of 150 ms in duration shifted in 100 ms incre-
ments. While a similar approach could be applied also
to the present analysis to improve recognition accur-
acy, classification performances were nonetheless com-
parable to those herein reported. Specifically, mean
recognition accuracy was 71.3% for moderately im-
paired subjects and 37.9% for severely impaired stroke.
The poor classifier performances observed in the case
of the severely impaired patient group, posits an im-
portant issue in our view. In fact, there might be a
problem when using the classification to enable vol-
itional control of assistive devices. For instance, if the
patient produces uncoordinated activation patterns,
which are not correctly interpreted by the classifier
system, the robot could move in an undesired way.
Moreover, having the system calibrated on the data
from each patient might be not practical in clinical ap-
plication. It took us over 3 hours to collect a patient’s
data with the support of a research engineer and a re-
search therapist. While it is possible to automate the
process to collect the data by a regular clinician within an
hour, it will require significant design effort and, in lieu of
our poor results classifying 4 very distinct classes in severe
stroke, lead to a low cost/benefit. Finally, there is the the-
oretical possibility of “bad” plasticity: the classifier could
recognize the intended motion direction while reinforcing
some unwanted pathological incorrect schemes [58,59].
It is often speculated that the process of motor recov-

ery either involves spared tissue on the motor and sen-
sory areas in the lesioned hemisphere or it enhances
activity in pre-existing motor networks in the unaffected
hemisphere. Several solutions employing EMG are pos-
sible. For example, it could be possible to calibrate the
system on patient-specific characteristics and to have the
clinician select the admissible co-activation pattern that
represents an effective strategy to inhibit pathological
scheme. The control system of the robot could then be
implemented in order to train patients to always repro-
duce the same correct pattern. The rationale underlying
this approach is that learning may be elicited providing
the subject a feedback on the muscle forces he has to
produce to achieve the desired trajectory.

Conclusions
The aim of the present study was to investigate the use
of EMG pattern recognition approaches, based on statis-
tical classifiers, to decode subject’s intention to move
toward a certain direction in the horizontal plane. In the
case of normal subjects the approach worked quite well.
In the case of stroke patients the approach did not per-
form well. Our results show the limitation of the use of
this technique in robotic-aided neuro-rehabilitation; the
findings suggest that rather than using the EMG signals to
discriminate patient’s intentions, we could instead use
these signals to develop an online procedure that provides
a feedback on the error in the muscle activational patterns.
Further experiments need to be performed to verify the
clinical advantages which can be achieved using this
approach.
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