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Abstract: We investigated a spray drying process for preparing water-soluble salts of high molecular
weight chitosan (CH) intended for pharmaceutical excipient applications. CH was derived from
chitin of marine lobster origin (Panulirus argus). The effects of organic acid (acetic or lactic acid)
and the ratio (difference) of inlet/outlet air temperature (140/90 ◦C or 160/100 ◦C) on spray drying
were studied. The yield of spray-dried CH salt powders ranged from 50% to 99% in laboratory
and industrial-scale processes. The spray-dried dry powder of CH salts consisted of spherical
agglomerated particles with an average diameter of 36.2 ± 7.0 µm (CH acetate) and 108.6 ± 11.5 µm
(CH lactate). After dispersing the spray-dried CH salt powder samples in purified water, the mean
particle sizes obtained for the CH acetate salts were 31.4 nm (batch A001), 33.0 nm (A002) and 44.2 nm
(A003), and for the CH lactate salts 100.8 nm (batch L001), 103.2 nm (L002) and 121.8 nm (L003). The
optimum process conditions for spray drying were found: an inlet air temperature of 160 ± 5 ◦C,
an outlet temperature of 100 ± 5 ◦C and an atomizer disk rotational speed of 18,200 min−1. The
X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) results confirmed the
amorphous state of the CH salts. The 1H nuclear magnetic resonance (NMR) and Fourier transform
infrared (FT-IR) spectra of CH acetate and lactate salts verified that the spray drying process does
not affect the polymer backbone. In conclusion, both laboratory and industrial-scale spray drying
methods for preparing water-soluble acid salts of CH are reproducible, and the physicochemical
properties of the corresponding CH acid salts are uniform.

Keywords: chitosan salt; pharmaceutical excipient; spray drying; organic acid; process parameters;
physical material properties; scale up

1. Introduction

Chitosan (CH) is a cationic polyamine and a partially deacetylated derivative of
chitin, which is the second most abundant polymer in nature and a supporting material
of crustaceans, insects and fungal mycelia. For commercial applications, chitin is isolated
from the shells of marine crustaceans, shrimps and crabs [1]. CH is sparingly soluble in
water, but it is soluble in dilute aqueous solutions of most organic acids. CH is capable
of salt formation, and the acetate, ascorbate, lactate and malate salts of CH are water
soluble. Today, CH is of major importance in the pharmaceutical and food industry
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due to its excellent properties, such as biocompatibility, biodegradability, non-toxicity,
absorption and antimicrobial characteristics [2–5]. The potential applications of CH as a
novel pharmaceutical excipient have been highlighted in several reports [5–12]. In addition,
the regulatory authorities have approved the use of CH, and a monograph relating to CH
hydrochloride was included in the fourth edition of the European Pharmacopeia (2002) [13]
and in the Handbook of Pharmaceutical Excipients [14].

Spray drying is a low-cost continuous manufacturing process that is widely used in the
pharmaceutical and food industry for the modification of powder particle and solid-state
properties, granulation and microencapsulation (liquids or solids). For pharmaceutical
applications, spray drying is commonly applied in the production of direct compression
tableting excipients and amorphous solids and in the encapsulation of fragrances, oils and
flavours [15,16]. In addition, spray drying is the method of choice for the production of
thermally-sensitive active pharmaceutical ingredients (APIs). More recently, spray drying
is increasingly being applied in the pharmaceutical formulation of large biomolecules and
biologicals [17]. The spherical shape and uniform particle size of the spray-dried particles
promote powder flow, capsule filling and tablet compression characteristics [16].

The process conditions and the solvent system applied in spray drying have a signifi-
cant influence on the physical properties of the final powder [17]. Water is the preferred
solvent for most pharmaceutical wet processes since the use of organic solvents produces
toxicity and environmental problems [16]. Spray drying is a rapid and reproducible method
with good scale-up potential [17–19]. However, the dependence of many process variables
in spray drying may become a challenge in terms of reproducibility and ability to scale up
the process [20]. On the other hand, spray drying is a flexible process offering substantial
variation in the encapsulation matrix and is adaptable to commonly used processing equip-
ment [21,22]. Furthermore, spray drying can be well adapted on an industrial scale, which
is a true advantage over other related fabrication methods which are only applicable on a
laboratory scale [23].

Spray drying has been successfully applied in the preparation of CH suspensions, salts
and several types of microspheres and matrices for controlled release applications [24–33].
To date, virtually all spray-dried CH salts are based on chitin of marine shrimp or crab
shell origin. In our previous study, we demonstrated that CH derived from marine lobster
(P. argus) chitin can be salified with acetic, lactic and citric acids by means of spray dry-
ing [34]. The particles of CH salts were spherical in shape, and the particle characteristics
were dependent on the process temperature used in spray drying. We also found that the
CH acetate salt form had a higher moisture content compared with CH lactate and citrate
salts. CH citrate and acetate salts with a higher exothermic temperature were found to be
more stable than CH lactate salts [34].

The aim of this study was to investigate the spray drying of the water-soluble acetate
and lactate salts of high molecular weight CH intended for pharmaceutical excipient
applications. The CH used in the spray drying experiments was derived from chitin
of lobster (P. argus) origin. The effects of organic acid (acetic or lactic acid) and the ratio
(difference) of inlet/outlet air temperatures (140/90 ◦C or 160/100 ◦C) on spray drying were
studied. The physicochemical properties of CH salts, such as particle size, shape and surface
morphology, bulk powder properties, physical solid state, thermal behaviour and chemical
purity, were investigated by means of scanning electron microscopy (SEM), X-ray powder
diffraction (XRPD), differential scanning calorimetry (DSC), liquid 1H nuclear magnetic
resonance (NMR) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy.

2. Results
2.1. Yield

The yield of spray-dried CH salt powders ranged from 50% to 99% in laboratory and
industrial-scale processes. More specifically, the yield of spray-dried CH salt powders
(acetate and lactate) on a laboratory scale was 50% (or higher), but as the process was
scaled up to an industrial scale, the yields of spray-dried CH acetate and lactate powders
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were 99% and 98%, respectively. The statistical analysis (Table 1) showed that the organic
acid used in spray drying affected the yield of spray-dried CH salts, and this effect was
statistically significant (p < 0.05). It is obvious that some material is lost due to the limited
fly of particles in a drying air stream inside a spray-dryer chamber, and thus not reaching a
collector unit and cyclone separator. The use of lower molecular mass (MM) acetic acid
as a solvent increased the yield of a spray-dried CH salt powder. Increasing the ratio
(difference) of inlet/outlet air temperature (DT) in the spray drying process resulted in an
increased yield of CH salt powders with both solvents. However, the effect of DT on the
yield of CH salts in spray drying was not statistically significant (Table 1).

Table 1. Summary of statistical analysis.

Variable p-Value

Organic acid used in spray drying (molecular mass, MM) 0.0384
Ratio of inlet /outlet air temperature (difference in
temperature, DT) 0.2371

MM:DT 0.7696

Equation of model: Yield = 151.924 − 2.55 MM − 0.14 DT + 0.0023 MM DT
r2 = 0.83; Adjusted r2 = 0.70
Durbin–Watson test = 2.45547 (p = 0.9745)

2.2. Particle and Powder Properties

The particle size and size distribution of spray-dried CH acid salts (based on the
volume occupied by the particles) are shown in Figure 1. The CH acetate and lactate salts
were spray dried at inlet/outlet air temperatures of 160/100 ◦C in the industrial-scale
process (three parallel batches). The spray-dried dry powder of CH salts consisted of
spherical agglomerated particles with an average diameter of 36.2 ± 7.0 µm (CH acetate)
and 108.6 ± 11.5 µm (CH lactate). After dispersing the spray-dried CH salt powder samples
in purified water, a colloidal dispersion was formed by the polymer. The mean particle
sizes obtained for the CH acetate salts were 31.4 nm (batch A001), 33.0 nm (A002) and
44.2 nm (A003), and for the CH lactate salts 100.8 nm (batch L001), 103.2 nm (L002) and
121.8 nm (L003). The higher particle size of CH lactate salts could be explained by the
higher water activity of CH lactate salts compared to the water activity of CH acetate salts,
and because of the increase in the humidification of the sample [34]. As seen in Figure 1, CH
acid salts also presented a unimodal particle size distribution, suggesting the homogeneity
of the particle size in the colloidal dispersions of each salt. This is a characteristic outcome
for the spray-dried pharmaceutical excipients [14]. In addition, the spray-dried CH salt
particles exhibited hollow spheres with an exceptionally smooth surface (Figure 1).

The bulk density, tapped density, Hausner ratio and Carr index of the spray-dried CH
acetate and lactate salts are summarized in Table 2. The tapped densities of the spray-dried
CH acetate powder and spray-dried CH lactate powder were within 0.460–0.470 g/cm3

and 0.460–0.500 g/cm3, respectively. The bulk density values for the CH acetate and
lactate powders were 0.230–0.260 g/cm3 and 0.260–0.280 g/cm3, respectively. The tapped
and bulk density differences of the spray-dried CH salts, however, were not statistically
significant (p > 0.05).
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Carr’s index  50.0 45.6 44.7 40.4 48.0 39.1 
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Figure 1. Particle size and size distribution of chitosan (CH) acid salts (based on the volume occupied by the particles), and the 
representative scanning electron photomicrographs (SEMs) on the CH acetate salt particles (batch-A002, A) and CH lactate salt par-
ticles (batch-L002, B). Scale bar is 50 µm. The CH salts were spray dried at an inlet/outlet air temperature of 160/100 °C in an indus-
trial-scale process (three parallel batches). 
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Figure 1. Particle size and size distribution of chitosan (CH) acid salts (based on the volume occupied by the particles), and
the representative scanning electron photomicrographs (SEMs) on the CH acetate salt particles (batch-A002, A) and CH
lactate salt particles (batch-L002, B). Scale bar is 50 µm. The CH salts were spray dried at an inlet/outlet air temperature of
160/100 ◦C in an industrial-scale process (three parallel batches).
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Table 2. Bulk density, tapped density, Hausner ratio and Carr’s index of spray-dried chitosan (CH) acetate and lactate salts.
The CH acid salts were spray dried at an inlet/outlet air temperature of 160/100 ◦C in an industrial-scale process (three
parallel batches; mean (standard deviation)).

CH Acetate CH Lactate

Property B-A001 B-A002 B-A003 B-L001 B-L002 B-L003

Bulk density
(g/cm3) 0.230 (0.020) 0.250 (0.010) 0.260 (0.020) 0.270 (0.020) 0.260 (0.010) 0.280 (0.000)

Tap density
(g/cm3) 0.460 (0.020) 0.460 (0.010) 0.470 (0.010) 0.470 (0.010) 0.500 (0.090) 0.460 (0.010)

Hausner ratio 2.00 1.84 1.81 1.74 1.92 1.64

Carr’s index 50.0 45.6 44.7 40.4 48.0 39.1

2.3. Solid-State and Thermal Properties

The FT-IR spectra of spray-dried CH acid salts are shown in Figure 2 (industrial-scale
CH acetate batches A001, A002, A003 and CH lactate batches L001, L002, L003 and the
corresponding laboratory-scale batches).
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Figure 2. Fourier transform infrared (FT-IR) spectra of chitosan (CH) salt powders. The first curve from the top in both
(A) and (B) represents the FT-IR spectrum of spray-dried CH salt obtained in a laboratory-scale process. (A) CH acetate: the
first industrial-scale batch A001 (the second curve from the top), second batch A002 (the third curve) and third batch A003
(the fourth curve). (B) CH lactate: the first industrial-scale batch L001 (the second curve from the top), second batch L002
(the third curve) and third batch L003 (the fourth curve). The CH salts were spray dried at an inlet/outlet air temperature of
160/100 ◦C in a laboratory and industrial-scale process.

The FT-IR spectra exhibited broad bands in the range of 3500–3400 cm−1 (which is
assigned to OH stretching), thus indicating intermolecular hydrogen bonding. The intense
peaks at 1550–1600 cm−1 and the weak peaks near 1400 cm−1 (attributed to carboxylate
anion stretching) were observed in the FT-IR spectra of CH acetate salts. Moreover, the
FT-IR spectra of spray-dried CH acetate and lactate salts show a distinct peak (-NH2) at
1582 cm−1 (Figure 2).

The representative 1H-NMR spectra of CH acetate (batch A002) and lactate (batch
L002) salts are shown in Figure 3. The CH acid salts were spray dried in both laboratory
and industrial-scale processes (three parallel batches). As seen in Figure 3, the spray-dried
CH salts show a signal at 3 ppm (H2). The proton bands of H3, H4 and H6 were separated
from the respective HOD bands by drawing a smooth curve on the low magnetic field side.
The terms H3, H4 and H6 refer to the ring positions of aminoglucose.
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Figure 3. 1H-NMR spectra of chitosan (CH) salt powders. (A) The upper (blue) curve represents the 1H-NMR spectrum of
spray-dried CH acetate salt obtained in a laboratory-scale process, and the lower (red) curve is the 1H-NMR spectrum of
spray-dried CH acetate salt produced in an industrial-scale process (batch A002). (B) The upper (blue) curve represents the
1H-NMR spectrum of spray-dried CH lactate salt obtained in a laboratory-scale process, and the lower (red) curve is the
1H-NMR spectrum of spray-dried CH lactate salt produced in an industrial-scale process (batch L002). The CH salts were
spray dried at an inlet/outlet air temperature of 160/100 ◦C in a laboratory and industrial-scale process.

Figure 4 shows the representative DSC thermograms of CH acetate and lactate salts
(CH acetate batch A002 and CH lactate batch L002 were spray dried in an industrial-scale
process). The closely related DSC thermograms were obtained with the corresponding
CH salts obtained in the other parallel batches (data not shown). As seen in Figure 4,
the DSC thermograms of all samples are characterized by broad endothermic peaks in
the temperature range of 70–120 ◦C. In addition, the CH acetate salt showed another
endothermic peak in the temperature range of 150–200 ◦C. Both endothermic peaks are
related to the weight loss of the CH acid salt samples [35].
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Figure 4. Differential scanning calorimetry (DSC) thermograms of chitosan (CH) salt powders. (A) CH acetate batch A002
and (B) CH lactate batch L002. The CH salts were spray dried at an inlet/outlet air temperature of 160/100 ◦C in an
industrial-scale process.

Figure 5 shows the XRPD pattern of CH and the corresponding patterns of CH acetate
and CH lactate salts obtained in the industrial-scale spray drying process. The spray-dried
CH acid salts exhibited an amorphous solid-state structure. CH and both spray-dried CH
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acid salts displayed a wide XRPD peak at around 20–25◦ (2θ), which is predominant to CH
derived from chitin of crustacean origin.
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Figure 5. X-ray powder diffraction (XRPD) patterns of chitosan (CH) and CH salt powders. (1) CH,
(2) CH acetate batch A002 and (3) CH lactate batch L002. The CH salts were spray dried at an
inlet/outlet air temperature of 160/100 ◦C in an industrial-scale process.

2.4. Chemical Purity

A summary of the chemical purity results of spray-dried CH acid salts is shown in
Table 3. The values for the ash content (0.3–0.5%), matter insoluble in water (0.3–0.4%),
heavy metals (<0.5 ppm) and loss on drying (2.5–4.8%) showed the good chemical purity of
the spray-dried salts of CH. Slightly higher values for the loss on drying were obtained with
CH acetate compared with the respective values for CH lactate. The degree of deacetylation
(molar) of CH acetate was also slightly higher than that of CH lactate.

Table 3. Chemical purity of spray-dried chitosan (CH) acetate and lactate salts. The CH acid salts were spray dried at an
inlet/outlet air temperature of 160/100 ◦C in an industrial-scale process (three parallel batches: mean (standard deviation).

Test
CH Acetate CH Lactate

B-A001 B-A002 B-A003 B-L001 B-L002 B-L003

Ash content (%) 0.40 (0.00) 0.39 (0.00) 0.42 (0.00) 0.50 (0.00) 0.50 (0.00) 0.42 (0.00)
Matter insoluble in water

(%) 0.35 (0.00) 0.38 (0.00) 0.40 (0.01) 0.30 (0.00) 0.33 (0.00) 0.35 (0.00)

Heavy metals (ppm) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Loss on drying (%) 4.78 (0.03) 4.81 (0.01) 4.84 (0.01) 3.20 (0.01) 3.18 (0.03) 3.21 (0.01)

Degree of deacetylation
(molar) (%) 57.36 (0.02) 57.69 (0.01) 57.72 (0.02) 53.82 (0.02) 53.61 (0.01) 53.50 (0.01)

3. Discussion

Spray drying offers numerous advantages in preparing water-soluble CH salts. Spray-
dried powders of CH salts can be obtained by dissolving CH in an acidic aqueous solution,
such as acetic, glutamic, lactic or hydrochloric acid. In the spray drying process, a polymer
solution is nebulized, inducing the fast evaporation of the solvent. The temperature used
in the spray drying process depends on the boiling point of the solvent. The polymer and
API are exposed to this temperature only for a very short time since the atomized solution
(droplets) quickly cools down under solvent evaporation. The critical material and process
factors affecting the final spray-dried particle, powder properties and particle size include
feed solution concentration, viscosity of the solution, boiling point of the solvent, nozzle
system, feed rate, inlet/outlet air temperature and atomization/drying gas affect [17].
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In our study, CH acetate and lactate salt powders were prepared using spray drying
on a laboratory and industrial scale. The effects of the two spray drying parameters
(type of organic acid and ratio of inlet/outlet air temperature) on the yield of CH salt
powders were investigated (Table 1). The yield of spray-dried CH salt powders was found
to be dependent on the organic acid used as a solvent system. Acetic acid has a lower
molecular mass (acetic acid 60.06 and lactic acid 90.08) and a lower ebullition point (acetic
acid 118.2 ◦C and lactic acid 122 ◦C); thus, it is a more volatile acid compared with lactic
acid [36]. Therefore, the yield of a spray-dried CH acetate powder was slightly higher than
that of a spray-dried CH lactate powder. The production yield values also corresponded
well with the viscosity of CH acidic solutions used in spray drying (273.6 mPas for CH
acetate and 249.0 mPas for CH lactate). All aqueous CH solutions used in this study were
readily atomized in a spray drying process.

Spray drying is a typical solvent evaporation process and the solvent (in the form
of droplets) is removed very quickly due to heat energy [17]. Since the boiling point
of water is 100 ◦C, the process inlet air temperature used in spray drying needs to be
higher than this value for successful spray drying. The selection of the relatively high inlet
temperatures (140 ◦C and 160 ◦C) for a spray drying process was based on our earlier study
on the spray drying of CH acidic salts [34], and the fact that in a spray drying process
an immediate evaporation of the polymeric droplets enhances the formation of spherical
powder particles. In a spray drying process, when the solute to be dried is dissolved or
dispersed in a non-organic solvent such as water, the inlet temperature of higher than
100 ◦C is required to enable a complete evaporation of water. If the inlet temperature is
adjusted at approximately 100 ◦C, the output temperature will be in the range of 40 ◦C and
60 ◦C, which would not enable the evaporation of all water (resulting in a completely wet
final product). Furthermore, the use of such high inlet and outlet temperatures does not
cause the degradation of the final product, since by atomization the solids are exposed to
high temperatures only for a few seconds. We found that the yield of spray-dried CH salt
powders appeared to increase slightly as the ratio of inlet to outlet air temperature was
increased. However, due to the limited number of parallel spray drying experiments, this
effect was not able to be fully verified. It has been shown previously with aqueous CH
solutions that if the inlet air temperature in spray drying is set to below 140 ◦C, the solvent
in the droplets cannot fully evaporate [21,30,37].

Regarding process performance, we found that the application of inlet/outlet air
temperature of 160/100 ◦C resulted in the higher yield of spray-dried CH salt powders
compared with the set of inlet/outlet air temperature of 140/90 ◦C. Spray-dried CH salt
particles did not adhere to the drying chamber walls and the outlet orifices of the disk
atomizer were not blocked, thus indicating that the inlet/outlet air temperature used
(160/100 ◦C) was close to optimal. A spray drying setup equipped with a disk atomizer
was also found to be suitable for processing CH salts. Disk atomizers are versatile and can
even be used for spray drying higher viscosity fluids. These atomizers have hammers to
facilitate the recovery of dry powder, and therefore the yield of a spray-dried product is
higher [38].

The applicability and performance of materials intended for pharmaceutical excipient
uses are very much dependent on the particle properties (i.e., size, shape and surface
morphology) and bulk powder properties (flowability). In our study, the particle shape
and surface morphology of the spray-dried CH salts greatly differed from that of non-
spray-dried CH (which consisted of mainly irregular particles; reference is made to [34]).
The spray-dried CH acetate and CH lactate powders consisted of spherical agglomerated
particles with a mean diameter of 36.2 ± 7.0 µm and 108.6 ± 11.5 µm, respectively. The
spray-dried CH salt particles exhibited hollow aggregated spheres with an exceptionally
smooth surface. In addition, the particle size of the spray-dried CH lactate acid salt powder
was significantly larger than that of the corresponding CH acetate salt powder. This can be
explained by the fact that the solid content of the CH lactate solution (97 g/L) used in spray
drying was higher than the concentration of CH acetate solution (46 g/L), thus resulting in
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the larger particle size of the final product. These findings are also in accordance with the
results reported in literature [34,39].

The bulk powder properties of the spray-dried CH lactate and acetate salts are sum-
marized in Table 3. Since the particles of the spray-dried CH salts were hollow spheres, this
suggests a presumably lower particle true density compared with that of the non-spray-
dried material (CH). It is well known that spray drying produces solids in an amorphous
state which do not have an ordered structure or a defined shape. With respect to the
packing characteristics of the powders, it would be expected that the spray-dried small
spherical particles are prone to readily packing together, thus leading to a lower ratio of
volume to mass and consequently to a higher tapped density. The tapped and bulk density
of the present spray-dried CH salts were very closed to each other, and the difference
was not statistically significant (p > 0.05). It is generally known that spray-dried acid salts
exhibit poor powder flow properties, and the values of the Carr index and Hausner ratio
for the CH salts also indicated that both CH salts possess very poor flow characteristics
(Table 3). The resting angle of the CH salts was not determined since the spray-dried
powders did not flow through a measuring tube. In summary, the physical properties of
the powder of the two spray-dried CH salts prepared in the industrial-scale spray dryer
coincided with those of CH acetate salts reported in literature [35,40].

To verify the effects of spray drying on the chemical structure, the FT-IR and 1H-NMR
spectroscopy analyses were performed for the spray-dried CH acid salts obtained in both
the industrial-scale and the corresponding laboratory-scale processes (Figures 2 and 3).
The broad FT-IR spectroscopy bands in the range of 3500–3400 cm−1 (which is assigned
to OH stretching) suggest intermolecular hydrogen bonding. The NH stretching could
also overlap in the same region of the FT-IR spectra. With all batches of the spray-dried
CH salts, these bands at 1597 and 1615 cm−1 are diminished, suggesting that the –NH
groups are protonated. The carboxylate band of –COO− at 1556 cm−1 appeared in the
FT-IR spectra of all CH acid salts.

The FT-IR spectra for spray-dried CH acetate salts exhibit intense peaks at 1550–1600 cm−1

and weak peaks near 1400 cm−1 (attributed to carboxylate anion stretching). The spray-
dried CH lactate, in turn, shows a large peak (-NH2) at 1582 cm−1 (Figure 2). The large
shift of this vibration to higher wavenumbers compared with the typical wavenumbers of
amino groups suggests the formation of a carboxylate between the COO− groups of the
acids and the NH3

+ groups of CH [41]. Consequently, it is reasonable to assume that there
is an ionic interaction between CH and acids.

We observed that the spray-dried CH salts show a signal at 3 ppm (H2) in a 1H-NMR
spectroscopy spectra, and a small resonance line (near 4.6 ppm) is to be assigned to the
H1 band due to acetamidoglucose residue (Figure 3). The terms H3, H4 and H6 refer to
the ring positions of aminoglucose. The present results suggest that N-acetyl glucosamine
units have survived the spray drying process. As seen in Figure 3, the proton signals
corresponding to H6, H4, H3, H6 and H5 are retained, thus suggesting that the spray drying
process and its scaling up do not affect the CH polymer backbone.

As shown in Figure 3, the CH acetate salt shows characteristic signals at approximately
1.8 ppm due to the free CH3. With the CH lactate salt, the corresponding signal can be
observed at 1.5 ppm. In the case of CH lactate, the higher signal intensity is attributed
to the presence of the free acid, unlike CH acetate which exhibits a weaker signal. In the
vicinity of 2 ppm, the resonance band due to the CH3 residue of N-acetyl CH3(NAc) can
be observed (Figure 3). For both CH salts, the signal appears as a singlet at 2 ppm, thus
indicating the potential interaction between the corresponding acid and the free amine.
Two resonance lines appear at around 2.1 ppm. The upfield and downfield resonances
were assigned to the CH3 of N-acetyl residue and to the acetic acid produced by hydrolysis,
respectively. The acid hydrolysis at 70 ◦C, which results in the increase in CH3COOH,
was reported by Hirai et al. [42]. Nunthanid et al. [40] reported the conversion of the CH
acetate molecular structure to N-acetylglucosamine at higher temperatures. This suggests
that both CH acetate and lactate salts are formed as a result of spray drying.
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Our results suggest that N-acetyl glucosamine units have remained (“survived”) in
a spray drying process. Commercial CHs usually have a minimum deacetylation rate of
60%. It is well-known that the thermo-alkaline deacetylation procedures of chitin enable
deacetylated products to be obtained by 75–85%. Thus, the procedure used in our current
study (and in our previous works) enables to obtain the corresponding salts and the units
of glucosamine are detected. The monomeric form of chitin was detected in the polymer
chain of both CH salts, suggesting an incomplete deacetylation of the chitin, which relates
to the signals shown in the NMR spectra. Based on the signals analyzed in the NMR
spectra and our previous results of 13C-NMR [34], it was shown that the CH acid salts were
formed as a result of a spray drying process. In the case of CH acetate salt, the CP-MAS
13C spectra showed an additional resonance at 180 ppm assigned to a carbonyl group, thus
indicating the presence of an acetamide functional group. The conversion of CH acetate to
an acetamide form depends on a spray drying process. Nunthanid et al. (2004) reported
that the conversion of the molecular structure of CH acetate to N-acetylglucosamine is
most likely occurred that at high temperatures [35].

We investigated the physical solid-state properties (DSC, XRPD) of the CH acetate
and CH lactate salts obtained in the industrial-scale spray drying process (Figures 4 and 5).
The spray-dried CH acid salts show an amorphous solid-state structure. This can be ex-
plained by the rapid evaporation of the aqueous medium in spray drying, which produces
amorphous spherical particles that have a low glass transition temperature. These results
are in good agreement with those obtained by Fernández Cervera et al. [34]. With the
spray-dried CH acid salts, no XRPD peak is observed at 9–10◦ (2θ), thus indicating the
absence of a hydrated polymorph of CH [43]. A wide XRPD peak of CH at around 20–25◦

(2θ) is characteristic for CH derived from chitin of crustacean origin [44]. In our study, the
DSC thermograms obtained with the spray-dried CH acetate and lactate salts were in good
agreement with the XRPD results.

It is evident that the particle and physicochemical solid-state properties of CH acid
salts obtained in laboratory-scale spray drying are slightly different from those of the CH
acid salts obtained in the industrial-scale spray drying process. This is due to the differences
in the dimensions of the spray dryers and the droplet size of a spray, which can directly
affect the wall contact of particles and the rate of evaporation, respectively. Therefore,
the results obtained in the laboratory-scale spray drying process can be considered only
indicative, and the process development needs to be completed with a spray dryer in an
industrial-scale production set-up. This has also been pointed out in literature [17,39,45].
In this work, we found some challenges in designing and preparing CH acetate and lactate
salts using a laboratory-scale spray dryer (Mini Spray Dryer Büchi B-191, Switzerland) and
directly transferring the corresponding formulations to an industrial-scale process (San
Young, Korea).

The chemical purity analysis performed on the CH salts showed the good chemical
purity of the final spray-dried material (Table 3). The pharmaceutical quality attributes
of the spray-dried CH salts were in line with the pharmacopoeian (Ph.Eur.) [13] quality
requirements. Chitosan and its salts are inert, biocompatible and biodegradable materials,
characteristics that are important for the materials intended for pharmaceutical excipient
applications. It is evident that the spray-dried CH salts investigated in our study could
find pharmaceutical excipient uses, e.g., in the formulation of oral solid dosage forms (e.g.,
tablets and capsules), controlled drug release applications and wound healing therapy.

4. Materials and Methods
4.1. Materials

Chitosan (CH) was obtained from N-deacetylating lobster (P. argus) chitin in accor-
dance with the procedure reported in our previous studies [46,47]. The molecular weight
and the degree of deacetylation of CH were 309 kg/mol and 83%, respectively. Lactic acid
(BDH, London, UK), acetic acid (Merck, Darmstadt, Germany) and all other reagents used
were of analytical grade.
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4.2. Spray Drying of Chitosan Salts

The effects of the molecular mass (MM) of organic acid (X1) and the ratio (difference)
of inlet/outlet temperature, DT (X2), on the particle size, shape, surface morphology and
water content were studied using a simple full factorial experimental design. The total
number of experiments was eight (Table 4). Statgraphics Plus software (version. 5.1,
StatPoint Technologies, Inc., Warrenton, VA, USA) and Statgraphics Centurion XV (version.
15.2.05, StatPoint Technologies, Inc., Warrenton, VA, USA) were used to carry out statistical
variance analysis.

Table 4. Matrix of the experimental design.

No. Run X1 X2
Molecular Mass (MM)
of Organic Acid (X1)

Ratio (Difference) of
Inlet/Outlet Temperature,

DT (◦C) (X2)

1 7 −1 +1 60.05 160/100 (60)
2 3 +1 +1 90.08 160/100 (60)
3 1 −1 −1 60.05 140/90 (50)
4 2 +1 −1 90.08 140/90 (50)
5 6 −1 +1 60.05 160/100 (60)
6 4 +1 +1 90.08 160/100 (60)
7 5 −1 −1 60.05 140/90 (50)
8 8 +1 −1 90.08 140/90 (50)

The CH dispersions containing 4.0 g of the polymer were prepared using lactic acid
10% (w/w) or acetic acid 10% (w/w) as an aqueous solvent system. The concentration of
solids was 97.0 g/L and 46.0 g/L, respectively. The dispersions were stirred for 24 h at room
temperature until a homogeneous appearance (without any particles) was achieved. Then,
the CH dispersions were filtered and subsequently spray dried. The acidic solutions of CH
were spray dried using a laboratory-scale spray dryer (Mini Spray Dryer Büchi B-191, Büchi
Labortechnik AG, Flawil, Switzerland), with the settings of the inlet/outlet temperature
set at 140/90 ◦C and 160/100 ◦C, respectively (Table 4) [34]. For process optimization, the
yield of each spray drying experiment was determined (=a major response).

4.3. Scaling Up of Spray Drying

The industrial-scale spray drying of CH salts was carried out with a San Young (Seoul,
Korea) spray dryer. The diameter of the drying chamber was 2.50 m and the total height
1.5 m. The inlet air temperature was kept at 160 ± 5 ◦C and the outlet air temperature at
100 ± 5 ◦C. The rotational speed of the atomizer disk was 12,736 min−1. The spray-dried
powders were subsequently dried for 3 h. Three batches of both CH acetate and lactate
salts were produced in order to investigate the effects of scale-up on spray drying and final
product properties. An industrial-scale batch size was 50 L.

4.4. Characterization of Chitosan Salts
4.4.1. Viscosity of Aqueous Chitosan Salt Solutions

The viscosity of aqueous CH salt solutions was measured as 20.0 ± 0.1 ◦C by a viscome-
ter (HAAKE RV-20, Karlsruhe, Germany) at 0–500 1/s prior to spray drying. The viscosities
of the CH acetate and lactate solutions were 273.6 mPas and 249.0 mPas, respectively.

4.4.2. Particle Size, Shape and Morphology

The particle size, shape and surface morphology of CH acid salts were studied by
scanning electron microscopy, SEM (FEG-MEV JEOL 7500F, Jeol GmbH, Freising, Germany).
The SEM was operated at an acceleration voltage of 2 kV. The samples were coated with a
carbon layer with a thickness of estimated 15 nm (not measured) and imaged at different
magnifications. The particle size of spray-dried CH powders was determined by means of
laser diffraction combined with dielectrophoresis (Shimadzu IG-1000, Kyoto, Japan). The
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particle size measurements were conducted by a particle-in-liquid (PIL) method. For PIL
particle size measurements, 300 µL of 1% (w/v) aqueous solution (0.25 mg/25 mL) was
used as a medium. The frequency used was set at 350 kHz and the voltage at 30 V. The
measurement time was 100 ms.

4.4.3. Water Content

The moisture content of CH salts was determined in triplicate using the Karl Fischer
method (Mettler DL35, Mettler-Toledo GmbH, Schwerzenbach, Switzerland).

4.4.4. Fourier Transform Infrared (FT-IR) Spectroscopy

The FT-IR spectra of the samples were collected with an FT-IR spectrometer (Vertex
70/Bruker, Ettlingen, Germany). The IR specimens were mounted as KBr discs. A total of
64 cumulative scans were taken in transmission mode with a resolution of 4 cm−1 and in
the frequency range of 4000 to 400 cm−1.

4.4.5. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) thermograms of CH and CH salt powders
were obtained using a differential scanning calorimeter (DSC Q100 TA, New Castle, DE,
USA). Samples were accurately weighed out in aluminium pans and sealed. In this method,
a small hole was created in the top of the pan in order to allow the release of moisture. A
nitrogen purge with a flow rate of 50 mL/min was used in the furnace. The heating rate
was 5 ◦C/min and the temperature scanning range was from 0 to 300 ◦C.

4.4.6. Liquid 1H-NMR Spectroscopy

High resolution liquid 1H-NMR spectroscopy was carried out with a Bruker Advance
DPX 250 FT NMR spectrometer (Bruker Corp., Billerica, MA, USA) using D2O as a solvent
at a concentration of 60 mg/mL. The solutions were freeze dried three times to exchange
labile protons. The spectra were recorded at 250 MHz, 13 MHz and a temperature of 25 ◦C.
The 90◦ pulse width was at 9 µs. The spectral width and data points were 3000 Hz and
32 K points, respectively, and 1H chemical shifts were expressed in ppm downfield from
the signal for tetramethylsilane as an external reference.

4.4.7. X-ray Powder Diffraction (XRPD)

X-ray powder diffraction (XRPD) patterns were obtained using a variable temperature
X-ray diffractometer (D8 Advance Bruker AXS GMBH, Karlsruhe, Germany) (VT-XRPD).
The VT-XRPD experiments were performed in symmetrical reflection mode with CuKα

radiation (1.54 Å). The scattered intensities were measured with a scintillation counter.
The angular range was from 6◦ to 80◦ with 0.2◦ increments, and the measuring time was
3 s/step.

4.4.8. Physical Powder Properties

The density and powder flow properties of spray-dried CH salts were studied by
determining and calculating the bulk density, tapped density, Hausner ratio and Carr’s
index for the powders. Bulk and tapped densities were determined using an established
United States Pharmacopoeia (USP 41, 2018) method [48]. Carr’s index and the Hausner
ratio were calculated from the bulk and tapped densities using the following equations:
[(ρtapped-ρbulk)/ρtapped] × 100, and ρtapped/ρbulk, respectively [48]. Each sample was mea-
sured in triplicate. The experimental data were analysed in accordance with the analysis of
variance (ANOVA). When a statistically significant difference (p < 0.05) was obtained, a
Tukey HSD test was performed.
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4.4.9. Chemical Purity Analysis

Ash content, matter insoluble in water, heavy metals, loss on drying and degree of
deacetylation (molar) were analysed according to the European Pharmacopoeia (Ph.Eur.)
and relevant literature [13,49].

For analysing sulphated ash, 2 g of the sample were incinerated using a muffle
(Carbolite, Debyshire, UK) at 750–800 ◦C for 6 h until the occurrence of total carbonization
and the disappearance of white smoke. The final cooling process was carried out in a
desiccator and the crucible was weighed. This operation was successfully repeated up to
a constant weight. The calculations were expressed on the basis of three replicates. The
acceptance limit was set at NMT 1.0%.

The matter insoluble in water was determined by dissolving 1% (w/v) chitosan salt in
water and then filtering it (filter paper grade 610, Darmstadt, Germany). The filter with the
residue was dried at 105 ◦C until a constant weight was obtained. The calculations were
executed on the basis of three replicates. The acceptance limit was set at NMT 0.5%.

For analysing heavy metals, 4 mL of a lead standard solution (10 ppm Pb) were used
as a reference solution. The acceptance limit was set at NMT 40 ppm. We used an atomic
absorption spectroscopy method described in more detailed in our earlier paper [47]. The
calcium, copper, zinc, iron, cadmium, lead, manganese, cobalt and magnesium contents
were determined by an atomic absorption spectrophotometer (Avanta P GBC, Braeside,
Victoria, Australia) using a hollow cathode lamp of the element. The determination of
sodium and potassium was conducted in an emission mode. The least linear squares
method was used for calibration.

4.4.10. Loss on Drying

We weighed 1.0 g of the sample (n = 3) on an analytical balance (Sartorius TE 214S,
Goettingen, Germany) and placed the sample in an oven (Memmert GmbH, Schwabach,
Germany) at 105 ◦C until a constant weight was obtained. The acceptance limit was set at
NMT 10%.

4.4.11. Degree of Deacetylation (DD)

The test solution was prepared by dissolving 0.250 g of CH in purified water (water
for analysis) and diluting to 50.0 mL. The solution was stirred vigorously and 1.0 mL of
this solution was further diluted to 100.0 mL with purified water. The absorbance of the
solution was determined by means of UV spectroscopy at an analytical wavelength of
200–205 nm as the first derivative of the absorbance curve. The quartz cuvettes with a
diameter of 1 cm were used in the determination. The pH of the solution was determined.

The reference solutions were prepared at 1.0 µg/mL, 5.0 µg/mL, 15.0 µg/mL and
35.0 µg/mL of N-acetylglucosamine in purified water. The absorbance of each solution was
determined at 200–205 nm as the first derivative of the absorption curve. A standard curve
was created by plotting the first derivative at 202 nm as a function of the concentration of N-
acetylglucosamine and the slope of the least squares linear regression curve was calculated.
The standard curve was used to determine the equivalent amount of N-acetylglucosamine
for the sample. The DD (molar) was calculated using the following Equation (1):

DD(%) =
100 × M1 × (C1 + C2)

(M1 × C1)× [(M1 + M3)× C2]
(1)

where C1 is the concentration of CH salt in the test solution (µg/mL), C2 is the concentration
of N-acetylglucosamine in the test solution (µg/mL), M1 refers to the relative molecular
mass of the N-acetylglucosamine unit in the polymer; M1 = 203) and M3 refers to the
relative molecular mass of the CH salt. M3 was calculated from the pH of the solution,
taking 6.80 as the pKa value (Equation (2)):

M3 = f × M2 + [(1 + f)× (M2 + 36.5)] (2)
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where,
f =

p
1 + p

, p = 10 × (pH − pKa)

and M2 = 161 (relative molecular mass of deacetylated unit (glucosamine) (C6H11NO4)
in polymer).

5. Conclusions

Our study confirms that spray drying can be well adapted and scaled up to produce
CH salts derived from chitin of lobster origin (P. argus) and that the physicochemical
properties of the salts are dependent on the organic acid used as a solvent system. The
CH acetate and lactate salts can be successfully atomized by optimizing the ratio of inlet
air to outlet air temperature and the rotational speed of an atomizer disk. These process
parameters are critical for spray drying CH salts in an industrial-scale process and for
obtaining a final product of an adequate pharmaceutical excipient quality.
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