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Abstract

Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics aims 

to identify and quantitate all metabolites, but most LC-MS peaks remain unidentified. Here, 

we present a global network optimization approach, NetID, to annotate untargeted LC-MS 

metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, 

annotations that match the measured masses, retention times, and (when available) MS/MS 

fragmentation patterns. Peaks are connected based on mass differences reflecting adducting, 

fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates 

a single network linking most observed ion peaks, enhances peak assignment accuracy, and 

produces chemically-informative peak-peak relationships, including for peaks lacking MS/MS 

spectra. Applying this approach to yeast and mouse data, we identified five previously 

unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies 

indicate active flux through these metabolites. Thus, NetID applies existing metabolomic 
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knowledge and global optimization to substantially improve annotation coverage and accuracy 

in untargeted metabolomics datasets, facilitating metabolite discovery.

Introduction

Metabolomics provides a snapshot of the concentrations of detectable small molecules in a 

biological system. In doing so, it reflects the integrated impact of genetics and environment 

on metabolism. One important role of metabolomics is annotating previously unknown 

or underappreciated metabolites. For example, metabolomics facilitated identification of 2-

hydroxyglutarate as an oncometabolite, eventually leading to the development of inhibitors 

of 2-hydroxyglutarate synthesis as anticancer agents1,2. Metabolomics also contributed to 

the identification of a diversity of natural products3,4 and disease biomarkers5.

A common experimental strategy in metabolomics is liquid chromatography-high resolution 

mass spectrometry (LC-MS). LC-MS metabolomics measures thousands of ion peaks, 

of which hundreds are associated with known metabolites. A much greater number 

of peaks, however, remain unannotated. A common approach to peak annotation is 

to compare exact mass and either retention time or MS/MS (MS2) fragmentation 

pattern to authenticated standards. To facilitate such comparisons, extensive molecular 

structural databases (Pubchem6, HMDB7, KEGG8, ChemSpider9), MS2 spectral databases 

(METLIN10, GNPS11, MassBank12–14 and NIST15), and software (e.g. XCMS16,17, 

GNPS11, SIRIUS18 and MS-DIAL19) have been developed. Peaks can also arise from mass 

spectrometry phenomena, such as adducts, fragments or isotopes of metabolites20–24. Such 

peaks seem to account for at least half of non-background LC-MS features25–27. Despite 

this progress, a great number of unknown peaks remain, and figuring out their identities is a 

primary challenge in the field.

Network analysis, capitalizing on peak-peak relationships to increase annotation scope 

and accuracy, has been broadly used in metabolomics data annotation. Workflows 

employing the concept of molecular connectivity have been used to build networks (e.g., 

GNPS28–30, CANOPUS31, MetDNA32, CliqueMS33 and others34–37). Ions connected by 

either biochemistry or mass spectrometry phenomena often share MS2 fragmentation pattern 

similarity. While distinct metabolites typically separate chromatographically, ions connected 

through mass spectrometry phenomena co-elute.

Metabolite discovery involves generation of candidate molecular formulae beyond those 

in current databases. This can be achieved by modifying formulae of known metabolites 

using characteristic biochemically feasible atom transformations that match observed MS1 

mass differences36,38 (e.g. 2.016 for 2H). Such approaches can be combined with clustering 

metabolites based on similar MS2 fragmentation patterns in a molecular network, as 

demonstrated in GNPS and other works28–30,32,39. In a cluster of connected peaks, one 

known metabolite peak can help to annotate its neighbors, facilitating unknown discovery. 

One state-of-the-art database-independent method to generate novel candidate molecular 

formulae (SIRIUS 4.0) combines high-resolution m/z, natural isotope abundances, and MS2 

spectral analyses18.
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Most existing methods focus on annotation of either individual peaks or a subnetwork of 

peaks. Every peak can be sequentially assessed, but individual annotations do not make 

full use of available information regarding all other peaks in the network. In contrast, 

global optimization methods can consider peak annotations not one-by-one, but instead 

all at once to take full advantage of the entire available information. One effort in this 

direction involves using Gibbs-sampling statistics and probabilistic peak annotation, taking 

into account biochemical connections, isotope patterns, and adduct relationships40–42. This 

strategy has been combined with the MS2-based annotation SIRIUS algorithm to shift the 

probabilities of candidate peak annotations, improving annotations results43.

Here we explore an alternative global optimization strategy, integer linear programming. 

Optimization via integer linear programming has been successfully applied across fields, 

such as production planning and vehicle scheduling, in addition to computational and 

systems biology44–47. Computationally, it ensures convergence to the globally optimal 

solution, and, due to linear formulation of the problem, can be efficient in practice, enabling 

application to large networks.

To our knowledge, integer linear programming optimization has not been previously applied 

for metabolomics data annotation. To this end, we present a stand-alone algorithm “NetID.” 

The algorithm optimizes a network of mass spectrometry peak connections based on MS1 

mass differences corresponding to gain or loss of relevant chemical moieties and MS2 

spectral similarity, in a manner that differentiates biochemical connections from those 

based on mass spectrometry phenomena, and that incorporates literature data on known 

metabolites and their retention times.

We applied this integer linear programming optimization approach to untargeted 

metabolomics data from both Baker’s yeast and mouse liver. The global optimization step 

enforces a single formula assignment for each experimentally observed ion peak, increasing 

annotation accuracy as estimated by a target–decoy strategy48. Through these efforts, we 

provide likely formulae for several hundred potential metabolites that are not yet annotated 

and confirm the identities of five previously unrecognized metabolites.

Results

NetID algorithm

NetID involves three computational steps: candidate annotation, scoring, and network 

optimization (Figure 1). The workflow starts with a peak table that contains a list of peaks’ 

m/z, RT, intensity, and (when available) associated MS2 spectra, with background peaks 

removed by comparing with a process blank sample. Each peak defines a node in the 

network. In the candidate annotation phase, we match every node’s experimentally measured 

m/z to formulae in the selected metabolomics database (e.g. HMDB). Peaks matching to 

database formula within 10 ppm are assigned as seed nodes with candidate seed formulae, 

from which we extend edges to build the network.

Edges connect two nodes via gain or loss of specific chemical moieties (atoms). The 

atom differences can occur either due to metabolism (biochemical connection) or due 
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to mass spectrometry phenomena (abiotic connections). For example, a difference of 2H 

suggests an oxidation/reduction relationship and defines a biochemical edge. A difference 

of Na-H suggests sodium adducting and is a type of abiotic edge (adduct edge). Other 

atom differences define other types of abiotic connections (isotope or fragment edges). 

Most atom differences are specific to biochemical, adduct, isotope, or fragment edges, 

but a few occur in multiple categories. For example, H2O loss can be either biochemical 

(enzymatic dehydration) or abiotic (in-source water loss). By integrating literature and 

in-house data, we assembled a list of 25 biochemical atom differences and 59 abiotic atom 

differences which together define all connections in the network (Supplementary Table 1, 

2, Supplementary Data 1). Using these lists, we make candidate edge annotations such 

that (i) Δm/z between the connected nodes matches the atom mass difference and (ii) 

only co-eluting peaks are connected by abiotic edges. Through the edge extension process 

starting from the seed nodes, candidate formulae are assigned to nodes outside the initial 

seeds. A few rounds of edge extension suffice to give thorough coverage (see Methods). Due 

to finite mass measurement precision, a single node (including a seed node) may be assigned 

multiple contradictory candidate formulae, which are resolved at the following scoring and 

optimization step.

NetID then scores every candidate node and edge annotation. Candidate node annotations 

are scored based on precision of m/z match to the molecular formula and (when the relevant 

information is available) precision of retention time match to known metabolite retention 

time and quality of MS2 spectra match to database structure. In addition, there is a bonus 

for matching to formula in HMDB and a penalty for unlikely formulae (e.g. containing 

an uncommon elemental ratio or extreme number of ring and double bond equivalents)49. 

Biochemical edges receive a positive score for MS2 spectra similarity between the 

connected nodes. Abiotic edges are scored based on precision of co-elution with the parent 

metabolite, connection type (adduct, isotope, etc.), and features specific to the connection 

type, such as expected natural abundance for isotope peaks (see Methods and Supplementary 

Note 1). The overall impact is to assign high scores to those candidate annotations that 

effectively align the experimentally observed ion peaks with prior metabolomics knowledge.

With a score assigned for each candidate node and edge annotation, we formulate the 

global network optimization problem as that of maximizing the network score with linear 

constraints that each node and edge has a single annotation and that they are consistent 

(e.g. peaks connected by H2 edge must have formula differing by 2H). Such optimization is 

readily performed by linear programming with a typical runtime of minutes to hours on a 

personal computer, and results in an optimal and consistent network annotation.

Global network optimization

As an example of the utility of global network optimization, where all peaks and 

connections are simultaneously considered to enhance annotation accuracy, we present 

an example network containing five peaks (Figure 2A). We first match experimental 

measurements to the database, assigning node a and node b as seed nodes adenosine 

monophosphate (AMP, C10H14N5O7P) and adenosine (C10H13N5O4), respectively. We also 

identify five possible connections between the five nodes. Two alternative networks are 
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generated by extending from seed assignments. In the left network, node c is annotated 

as adenosine HCl adduct (C10ClH14N5O4), whereas in the right network, node c is 

(mis)annotated as a putative metabolite (C9H14N5O5P) resulting from CO2 loss from AMP. 

Node d is 13C isotope of node c in both networks. Node e is annotated as 37Cl isotope of 

node c in the left network, and is unannotated in the right network because there is no Cl 

atom in the parent molecule.

The left network has a higher total node and edge annotation score than the right network, 

and thus is selected by NetID. This selection makes sense to an experienced mass 

spectrometrist: the 37Cl isotope signature in node e indicates that node c should contain 

Cl. The power of NetID is that it automatically captures such logic, and uses the power 

of global computational optimization to extend such inferences across the network in an 

automated manner.

We applied the NetID algorithm to yeast and liver datasets, in both positive and negative 

ionization mode (Figure 2B, Extended Data Fig. 1A). Raw LC-MS data from replicate 

yeast or liver samples were analyzed together by peak-picking software (El-MAVEN50) to 

generate a single list of peaks consistently found for that sample type and ionization mode. 

Yeast data were MS1 only, while liver data included targeted MS2 spectra. Considering 

the example of negative mode yeast data with a total of 5,588 non-background peaks, in 

the candidate annotation step, roughly 1,600 potential formulae were assigned to 1,400 

peaks, with about 200 peaks receiving multiple formula annotations. These nodes were 

connected by just over 50,000 potential edges. Edge extension expanded coverage to 

over 5,000 nodes with an average of twelve potential formulae each, highlighting the 

importance of scoring and network optimization to assign proper formulae. After scoring 

node and edge annotations, global network optimization settled on about 4,800 unique node 

annotations. About 20% of the annotated peaks were metabolites (formula corresponding to 

M ±H monoisotopic peak existed in database), 14% were putative metabolites (formula 

not in database but with biochemical connection to a metabolite), and the rest were 

mass spectrometry phenomena, such as adducts, fragments, isotopes. Thus, after thorough 

background ion removal, we assign a few thousand peaks as likely metabolite ions and the 

majority as mass spectrometry artifacts. Orthogonal approaches such as credentialing via 

isotope labeling27 similarly assign the majority of peaks as mass spectrometry artifacts, but 

annotate fewer peaks as likely metabolites than NetID.

The roughly 5000 nodes were connected by about 10,000 edges. Two nodes share each edge, 

with each node connected by an average of four edges. These edges were roughly evenly 

split between biochemical and abiotic connections (Figure 2B, Extended Data Fig. 1A,B). 

More than 90% of annotated nodes fell into a single dominant connected network (Extended 

Data Fig. 1C), reflecting most peaks being connected to core metabolism. About 15% of 

peaks (737/5588), however, remained unannotated (Figure 2B). These unannotated peaks 

likely reflect deficiencies in our lists of allowed atom differences, including additional forms 

of mass spectrometry phenomena. For example, manual examination of the unconnected 

peaks revealed a dozen nickel adducts of known metabolites (Supplementary Table. 3). The 

annotated peaks included several hundred formulae for putative metabolites (Extended Data 

Fig. 2, Supplementary Data 2).
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Performance validation

We evaluated the performance of the NetID algorithm using the negative mode yeast 

data (MS1 only) under the same parameter settings as above (Figure 2C,D). We first 

employed a target-decoy estimation strategy, in which we intentionally introduce formulae 

with biologically unreasonable elements, and test whether our annotation strategy effectively 

avoids annotating peaks with these fake formulae51,52. Assessments were made using several 

different metabolite databases (HMDB7, YMDB53, PubChemLite.0.2.054, and a subset 

of biopathway related entries in PubChemLite.0.2.0). As expected, the smaller databases 

yielded fewer false identifications. Importantly, across all of the databases, NetID more 

effectively selected appropriate formulae (lower false discovery rate) compared to methods 

considering m/z only, node scores only, or both node and edge scores but without global 

optimization (Figure 2C, Extended Data Fig. 3A).

As an orthogonal means of testing the algorithm, we manually curated 314 peaks as 

known annotations (Supplementary Data 2), and assessed the fraction annotated correctly. 

Across databases, NetID resulted in more accurate annotations of these gold standard peaks, 

with the number of incorrect annotations roughly an order of magnitude lower for NetID 

compared to node or combined node and edge scores without global optimization (Figure 

2D, Extended Data Fig. 3B).

Thiamine-derived metabolites

Among the putative metabolites in the yeast metabolomics dataset, we found three with 

ion count > 105 that are connected in a subnetwork around thiamine. Their formulae 

are C12H16N4O2S (thiamine+O), C14H20N4O2S (thiamine+C2H2O) and C14H18N4O2S, 

(thiamine+C2H4O) (Figure 3A, Extended Data Fig. 4). These formula assignments and 

connections were initially obtained without MS2 spectra being available, reflecting the 

ability of NetID to make accurate formula assignments and connections based on MS1 

data (combined with other peak attributes like retention time). While not found in HMDB, 

thiamine+O is documented in METLIN as a thiamine oxidation product, so we focused on 

the other two potential thiamine derivatives.

MS2 spectra of the putative thiamine+C2H2O and thiamine+C2H4O contained characteristic 

thiamine fragments. Both contained a classical pyrimidine fragment, with thiamine+C2H2O 

also containing an acetylated pyrimidine fragment, leading to a probable structure (Figure 

3A,B). The structural assignment is further supported by the presence of an unmodified 

thiazole fragment. In contrast, thiamine+C2H4O lacked a classical unmodified thiazole 

fragment, instead showing a thiazole+C2H4O fragment (and a fragment with further water 

loss) (Figure 3A,B).

Isotope tracing experiments further confirmed these two peaks contain thiamine. When fed 

[U-13C]glucose as the sole carbon source, yeast synthesize thiamine de novo, resulting 

in fully labeled thiamine species, with carbon counts matching the NetID formula 

assignments (Figure 3C). Adding unlabeled thiamine to the [U-13C]glucose culture media, 

yeast uptake the unlabeled thiamine, resulting in unlabeled thiamine and M+2 labeled 
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thiamine+C2H2O and thiamine+C2H4O species. Although discovered in yeast, these are 

conserved metabolites, found also in mammalian samples (Figure 3D).

Acetylation is one of the 25 biochemical atom transformations allowed in NetID, while 

the addition of C2H4O is much less common biochemically. Accordingly, we looked 

into thiamine metabolism to explore how thiamine+C2H4O might be produced. Thiamine 

pyrophosphate is an important cofactor in pyruvate dehydrogenase (PDH, the entry step of 

carbohydrate to TCA cycle) (Figure 3E). The de-pyrophosphorylation product of thiamine 

pyrophosphate intermediate in PDH reaction yields thiamine+C2H4O (Figure 3F).

Based on this biochemical route, we realized that analogous products could be formed 

by α-ketoglutarate dehydrogenase (thiamine+C4H6O3) and branched-chain keto acid 

dehydrogenase (thiamine+C4H8O) (Figure 3F). Peaks at both of these exact masses 

were also experimentally observed, with isotope labeling results supporting their being 

thiamine-derived metabolites (Extended Data Fig. 5). Thus, NetID enabled the identification 

of four thiamine-derived metabolites that were not present in metabolomics databases 

(Supplementary Table 4).

N-glucosyl-taurine

We similarly carried out NetID annotation of a mouse liver dataset. We observed 

multiple putative metabolite peaks linked to taurine, by apparent glucosylation (+C6H10O5), 

palmitoylation (+C16H30O) and transamination (+O-NH3) (Figure 4A, Extended Data 

Fig. 6). Like the thiamine-related peaks, these were initially correctly annotated without 

relying on MS2 data. While all were missing in HMDB, the latter two were found in 

METLIN: N-palmitoyl taurine (C18H37NO4S) and sulfoacetaldehyde (C2H4O4S). Pubchem 

contains an entry for N-glucosyl-taurine (C8H17NO8S) as a synthetic chemical but no 

database previously suggested it is a metabolite. To confirm the structure of the putative 

taurine glucosylation product (C8H17NO8S), we chemically synthesized N-glucosyl-taurine 

(Extended Data Fig. 7, Supplementary Note 2). Synthetic N-glucosyl-taurine matched the 

retention time and MS2 fragmentation pattern of the observed C8H17NO8S peak (Figure 

4B,C). In liver samples of mice infused with [U-13C]glucose, C8H17NO8S appeared in 

M+6 form, suggesting active biosynthesis of N-glucosyl-taurine from circulating glucose 

(Figure 4D). N-glucosyl-taurine was not observed in yeast extract but was detected in 

multiple mouse tissues. Search for peaks matching the N-glucosyl-taurine MS2 spectra 

using MASST identified matches in both mouse and human samples thus translating these 

findings in an animal to humans55. Quantitation using the synthetic standard shows that the 

liver has the highest level of glucosyl-taurine at ~170 μM (Figure 4E, Extended Data Fig. 8). 

This ranks among the few dozen most abundant liver metabolites.

Discussion

The advent of LC-MS metabolomics revealed tens of thousands of metabolite peaks not 

matching known formulae, raising the possibility that the majority of metabolites remained 

to be discovered. While the biosphere likely contains many novel metabolites, it has been 

increasingly recognized that most peaks in typical untargeted metabolomics studies do 

not arise from novel metabolites, but rather mass spectrometry phenomena. The goal of 
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comprehensively annotating untargeted metabolomics peaks with molecular formulae has, 

however, remained elusive.

One promising strategy for peak annotation involves building networks where nodes are 

LC-MS peaks (with associated molecular formulae) and edges are atom transformations 

linking the peaks. Here we advance this strategy by combining metabolomics knowledge 

with computational global optimization. We explicitly differentiate between biochemical 

connections reflecting metabolic activity and abiotic connections arising from mass 

spectrometry phenomena. By formulating the peak annotation challenge as a linear 

programming problem, we identify an optimal network in light of all observed peaks. 

Rather than weeding out peaks from mass spectrometry phenomena like adducts and natural 

isotopes, this approach takes advantage of the information embedded in them. It further 

provides traceable peak-peak relationships, which illuminate the basis for assigned formulae 

and suggest candidate structures.

Applying this approach to untargeted LC-MS data from yeast and liver samples, we assign 

formulae to roughly three-quarters of all non-background peaks. In each of positive and 

negative mode, the annotated peaks cover about 1000 known metabolites, with on average 

three mass peaks for every metabolite or putative metabolite (e.g. M+H plus two adduct 

or isotope peaks). This leaves a couple thousand unannotated peaks from each LC-MS 

run. Based on the observed ratio between peaks and metabolites, this likely correspond to 

hundreds (but not thousands) of unidentified metabolites. Importantly, this approach has 

already generated likely formulae for many hundreds of putative metabolites (Extended Data 

Fig. 2, Supplementary Data 2), including five species for which we assign structures (Figure 

3, 4).

Isomers are an important source of metabolome structural diversity but are indistinguishable 

by MS1. The present approach ignores co-eluting isomers, thereby potentially 

underestimating the number of unidentified metabolites. Future efforts with additional 

chromatography approaches and enhanced MS2 depth can help. In parallel, it will be 

valuable to expand the list of feasible mass spectrometry adducts, as uncommon adducts, 

such as the nickel adducts that we discovered here, may account for many of the peaks that 

persistently lack formula annotation. Complementary efforts on both of these fronts should 

provide a more accurate count of unidentified metabolites.

To assign formulae and eventually structures to these unidentified metabolites, integration 

of concepts from both NetID and literature approaches that better capitalize on the full 

information present in MS2 data is a promising future direction. How might such integration 

work? One strategy is to use formulae predictions from SIRIUS18, MS-DIAL19, or software 

integrating multiple such computational pipelines37 as an additional scoring input to 

NetID, prioritizing peak annotations that match formulae (and eventually, with further 

enhancements, structures) considered likely based on these software. Other data types can 

be further added as scoring parameters, for example, compound class categorization based 

on MS2 data31 or retention time prediction56,57. Importantly, by introducing these inputs as 

the step of NetID scoring, we retain the backend power of the global network optimization 
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approach to arrive at a final network that best reflects the full available information to 

annotate all observed LC-MS peaks.

As formula and structural predictions of increasing quality are made, it will be important 

to validate them experimentally. The gold standard for this purpose is chemical synthesis of 

pure standards, verifying MS2 spectral and retention time match58,59. Higher throughput 

approaches can, however, also be highly informative. For example, isotope labeling 

can confirm atom composition based on seeing the expected mass shifts upon 13C 

and 15N labeling. Abiotic peak annotations can also be experimentally validated, e.g. 

for solvent adducts by changing running buffer60 or for fragments through ramping 

in-source voltage26,61,62. Once confirmed experimentally, such annotations can be used 

as prior knowledge in future network optimization efforts. Thus, experimentational and 

computational progress is mutually reinforcing, and holds the potential to identify most 

unknown metabolites over the coming decade to yield a robust blueprint of the metabolome 

(Figure 5).

Methods

Yeast metabolomics sample preparation and isotope labeling

S. cerevisiae strain FY4 was grown for at least 10 generations in minimal essential 

media containing 0.4% [U-12C] or [U-13C]glucose and 10 mM ammonium sulfate with or 

without 0.4 mg/L thiamine hydrochloride63. Then, in mid-exponential phase, 5 mL culture 

broth (OD600 = 0.80) was filtered and metabolites were extracted using 1 mL extraction 

buffer (40:40:20:0.5 acetonitrile:methanol:water:formic acid), followed by adding 88 μL 

neutralization buffer (15% NH4HCO3). The extracts were kept at −20°C for at least 15 min 

to precipitate protein before centrifuging at 16,000 g for 10 min. The supernatant was used 

for LC-MS analysis.

Murine metabolomics sample preparation and intravenous infusion experiment

Animal studies followed protocols approved by the Princeton University Institutional 

Animal Care and Use Committee. Twelve-month-old female wild-type C57BL/6 mice (The 

Jackson Laboratory, Bar Harbor, ME) on standard mouse chow diet were sacrificed by 

cervical dislocation and tissues quickly dissected and snap frozen in liquid nitrogen with 

precooled Wollenberger clamp. Frozen samples from liquid nitrogen were then transferred 

to −80°C freezer for storage. To extract metabolites, frozen liver tissue samples were first 

weighed (~ 20 mg each) and transferred to 2 mL round-bottom Eppendorf Safe-Lock 

tubes on dry ice. Samples were then ground into powder with a cryomill machine (Retsch, 

Newtown, PA) for 30 seconds at 25 Hz, and maintained at cold temperature using liquid 

nitrogen. For every 25 mg tissues, 922 uL extraction buffer (as above) was added to the tube, 

vortexed for 10 seconds, and allowed to sit on ice for 10 minutes. Then 78 μL neutralization 

buffer was added and the samples vortexed. The samples were allowed to sit on ice for 

20 minutes and then centrifuged at 16,000 g for 25 min at 4°C. The supernatants were 

transferred to another Eppendorf tube and centrifuged at 16,000 g for another 25 min at 4°C. 

The supernatants were transferred to glass vials for LC-MS analysis. A procedure blank was 

generated identically without tissue, which was used later to remove the background ions.
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Detailed methods for intravenous infusion of mice have been described previously64. 

Briefly, in vivo infusions were performed on 12–14-week-old C57BL/6 mice pre-

catheterized in the right jugular vein (Charles River Laboratories). Mice were kept fasted 

for 6 h and then infused for 2.5 h with [U-13C]glucose (200 mM, 0.1 μL/min/g). The mouse 

infusion setup (Instech Laboratories) included a tether and swivel system so that the animal 

had free movement in the cage. Venous samples were taken from tail bleeds. At the end of 

the infusion, the mouse was euthanized by cervical dislocation and tissues were collected 

and extracted as above. Serum metabolites were extracted by adding 100 μl methanol to 5 

μL of serum and centrifuging for 20 min. The supernatant was used for LC–MS analysis.

LC-MS and LC-MS/MS

LC separation was achieved using a Vanquish UHPLC system (Thermo Fisher Scientific) 

with an Xbridge BEH Amide column (150×2mm, 2.5 μm particle size; Waters). Solvent A is 

95:5 water: acetonitrile with 20 mM ammonium acetate and 20 mM ammonium hydroxide 

at pH 9.4, and solvent B is acetonitrile. The gradient is 0 min, 90% B; 2 min, 90% B; 3 

min, 75%; 7 min, 75% B; 8 min, 70%, 9 min, 70% B; 10 min, 50% B; 12 min, 50% B; 13 

min, 25% B; 14 min, 25% B; 16 min, 0% B, 20.5 min, 0% B; 21 min, 90% B; 25 min, 90% 

B. Total running time is 25 min at a flow rate of 150 μl/min. LC-MS data were collected 

on a Q-Exactive Plus mass spectrometer (Thermo Fisher) operating in full scan mode with 

an MS1 scan range of m/z 70–1000, and resolving power of 160,000 at m/z 200. Other MS 

parameters are as follows: sheath gas flow rate, 28 (arbitrary units); aux gas flow rate, 10 

(arbitrary units); sweep gas flow rate, 1 (arbitrary units); spray voltage, 3.3 kV; capillary 

temperature, 320°C; S-lens RF level, 65; AGC target, 3E6 and maximum injection time, 500 

ms.

MS2 spectra were collected in targeted mode using the PRM function at 25 eV HCD energy 

with other instrument settings being resolution 17500, AGC target 106, Maximum IT 250 

ms, isolation window 1.5 m/z. Targeted MS2 data for the thiamine related metabolites were 

collected for structural identification using similar parameters as above except the HCD 

energy was set at 20, 35, and 50 eV in a step-CE mode.

Data prepossessing

LC-MS raw data files (.raw) were converted to mzXML format using ProteoWizard (version 

3.0.20315) 65. El-MAVEN (version 0.7.0 or 0.12.0) was used to generate a peak table 

containing m/z, retention time, and intensity for peaks. Parameters for peak picking were the 

defaults except for the following: mass domain resolution is 10 ppm; time domain resolution 

is 15 scans; minimum intensity is 1000; minimum peak width is 5 scans. The resulting 

peak table was exported to a .csv file. Redundant peak entries due to imperfect peak picking 

process are removed if two peaks are within 0.1 min and their m/z difference is within 2 

ppm. Background peaks are removed if the intensity in procedure blank sample is > 0.5-fold 

of that in biological samples.

Targeted MS2 data were extracted from the mzXML files using lab-developed Matlab 

code (Supplementary Note 3). MS2 spectra may contain interfering product ions from 

co-eluting isobaric parent ions. These interfering product ions were removed by examining 
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the extracted ion chromatogram (EIC) similarity between the product ions in MS2 data and 

the parent ion in MS1 data. A Pearson correlation coefficient of 0.8 was used as a cutoff to 

retain those product ions that have similar EIC as the parent ion66. The cleaned MS2 data 

were exported to Excel files for data input. Although the provided workflow uses targeted 

MS2 data as input, NetID as currently configured can also handle data-dependent MS2 data, 

but additional parsing software (under development) is need to convert the large primary 

data-dependent MS2 files into the NetID input format.

Data input

NetID requires (1) a peak table (in .csv format) containing m/z, RT and intensity from 

high-resolution mass spectrometry data; (2) a reference compound database, for which we 

provide HMDB7, YMDB53, a lite version of PubChem54 (PubChemLite.0.2.0) and a subset 

of 47,101 biopathway related entries (PubChemLite_Bio) that the user may choose; and. 

(3) a transformation table (in .csv format), for which we assembled a list of 25 biochemical 

atom differences and 59 abiotic atom differences. NetID optionally uses (4) a list of excel 

files containing MS2 fragmentation information (m/z and intensity) for peaks in the above 

peak table and (5) a list of known metabolites’ retention time, for which we provide our 

in-house retention time list for demonstration. Users can customize the compound database, 

the transformation table and the retention time list following the user guide.

For the analysis of yeast and mouse liver datasets in Figure 2–4, structures, formulae, m/z 

and MS2 spectra of metabolites were obtained from the Human Metabolome Database 

(HMDB, version 4.0) and retention times of selected metabolites were determined through 

running authentic standards using the above-mentioned LC-MS method (Supplementary 

data 3). For yeast, no MS2 data were used in NetID analysis (MS2 data were used post hoc 

to confirm certain annotations). For liver, targeted MS2 spectra were used (1479 positive 

and 803 negative ionization mode spectra experimentally obtained for previously identified 

peaks of > 105 intensity60).

Candidate node and edge annotations

The first module of NetID algorithm is to make candidate annotations for seed nodes, assign 

candidate annotations for other nodes, and assign candidate edges in the network. Each peak 

is a node in the network. We compare the experimentally measured m/z for each node to 

those of all metabolite formulae in the selected metabolomics database (e.g. HMDB). When 

the m/z difference is within a predefined tolerance (e.g. 10 ppm), candidate formulae and 

IDs are assigned to the node, and this node is defined as a primary seed node. Note that 

assignments to seeds are candidate annotations. A primary seed node can contain multiple 

candidate formulae and IDs if all are within the m/z difference range.

Edges connect two nodes via gain or loss of specific atoms. We provided a list of 25 

biochemical atom differences and 59 abiotic atom differences which together define all 

connections in the network (Supplementary Table 1, 2, Supplementary Data 1). Let each 

of these differences be denoted by Di. For each node u, if there is a node v such that the 

difference in the measured m/z of the nodes matches one of the those in the list of atom mass 

differences within m/ztol (e.g. 10 ppm) of vm/z, we add an edge between u and v. That is, if 
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um/z and vm/z are the experimentally measured m/z for the peaks corresponding to nodes u 
and v respectively (assuming vm/z > um/z for simplicity), then there is an edge between these 

nodes if there is some difference Di such that

vm/z − um/z − Di < vm/z × m/ztol (1)

If Di is an abiotic difference, in order to add an edge, it is additionally required that the 

retention time between two nodes should be within a predefined RTtol (e.g. 0.2 min). That is, 

if uRT and vRT are the retention times for u and v respectively, then it is required that

vRT − uRT < RT tol (2)

For each node, its candidate formulae set will expand due to extending formulae from its 

neighboring nodes through the edge atom differences. For example, when applying the atom 

difference of edge (u, v) on the formula assigned to primary seed node u, we can derive 

a new candidate formula for the connected node v. If the derived formula’s calculated m/z 

is within a predefined m/z tolerance (e.g. 5 ppm) of node v’s measured m/z, then a new 

candidate formula is added for node v. Iterating the process to all candidate formulae of 

node u through edge (u, v) will further expand candidate formulae for node v.

We apply the above extension process to formulae of all primary seed nodes through atom 

difference edges, and these new candidate formulae themselves can be used for another 

round of extension. Note that a primary seed node will be treated as the rest of nodes during 

the subsequent rounds of extension, and may as well be assigned with new formulae. To 

avoid duplicated efforts in the extension process, we allow formulae of primary seed nodes 

and biotransformed formulae thereof to be extended through both biotransformation and 

abiotic atom difference edges, and do not allow abiotic candidate formulae to be further 

extended through biotransformation atom difference edges. The default extension process 

includes two rounds of biotransformation edge extensions and three rounds of abiotic edge 

extensions.

Each candidate node annotation is defined as (i) metabolite, (ii) putative metabolite, or (iii) 

artifact (nodes can also be unannotated). Specifically, if the elemental formula corresponding 

to the (de)protonated ion of a monoisotopic peak is found in the employed metabolomics 

database, this node is defined as a metabolite. If the formula is not found at the employed 

database, but the node is connected to a metabolite via biochemical connection(s), the 

node is defined as a putative metabolite. Finally, if the node is connected only via abiotic 

connections such as adduct, fragment, or isotope connection(s), it is defined as an artifact. 

As currently configured, NetID defines metabolite peaks exclusively as (de)protonated 

ions. In the case that a (de)protonated ion peak is not detected, but related adducts are 

(e.g. [M+Na]+), the adducts will remain unannotated (or be misannotated), as there is no 

procedure for annotating adducts lacking (de)protonated ion peaks.
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Scoring in NetID

The second module of NetID algorithm is to score every candidate node and edge annotation 

assigned in the candidate annotation step.

The node scoring system aims to assign high scores to annotations that align observed 

ion peaks with known metabolites based on m/z, retention time, MS2, and/or isotope 

abundances. Let the set of candidate annotations for node u be denoted as a1…ai…am . For 

each node u and each of its candidate annotation ai, let S u, ai  denotes the score of candidate 

annotation ai for node u. S u, ai  is the sum of seven different scoring components, including 

(a) Sm/z, a negative score evaluating the difference between measured m/z and the calculated 

m/z of assigned molecular formula; (b) SRT, a positive score if the measured RT for the 

peak corresponding to node u matches to a known standard; (c) SMS2, a positive score if the 

measured MS2 spectrum of node u matches the database MS2 spectrum of annotation ai; (d) 

Sdatabase, a positive score if the annotated formula ai exists in the employed metabolomics 

database; (e) Smissing_isotope, a negative score if an expected isotopic peak is missing; (f) 

Srule, a negative score if annotation ai violates basic chemical rules; (g) Sderivative, a positive 

score if the annotation ai is derived from a parent peak with a high score annotation. For 

details, see Supplementary Note 1.

The edge scoring system aims to assign high scores to edge annotations that correctly 

capture biochemical connections between metabolites (based on MS2 spectra similarity) 

and abiotic connections between metabolites and their mass spectrometry phenomena 

derivatives. Biochemical, isotope, adduct, and neutral loss edge annotations are the most 

common types. We also score other less common abiotic connection types appeared in 

orbitrap data, including oligomers, multi-charge species, heterodimers, in-source fragments 

of known or unknown metabolites61, and ringing artifact peaks surrounding high-intensity 

ions26,67.

Suppose we consider two nodes u and v that are connected by an edge (u, v). For each 

pair of nodes u and v such that there is an edge (u, v), let the set of candidate formula for 

node u and v be denoted as a1…ai…am  and b1…bj…bn , respectively, and let the set of 

candidate atom differences for edge (u, v) be D1…Dk…Dl . Let S(u, v, ai, bj, Dk) be the score 

of choosing candidate formula ai for node u, candidate formula bj for node v and candidate 

atom difference Dk for edge (u, v). Note that S(u, v, ai, bj, Dk) is set to be 0 if atom difference 

Dk does not represent the formula difference of ai and bj:

S u, v, ai, bj, Dk = 0, if ai − bj ≠ Dk (3)

S u, v, ai, bj, Dk  is the sum of four different scoring components, including (a) SMS2_similarity, 

a positive score defined for biochemical edges if node u and v have experimental measured 

MS2 spectra, and they share MS2 similarity; (b) Sco_elution, a negative score defined for 

abiotic edges, if the RT of two connected nodes differs more than a threshold (e.g. 0.05 
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min); (c) Stype(u, v, ai, bj, Dk), a non-negative score defined for all edges, depending on the 

connection type of edge, which is defined by Dk, including biotransformation, adduct, 

isotope, and fragment edges, and optionally including oligomer and multi-charge species, 

heterodimer, in-source fragments and ringing artifacts edges; (d) Sisotope_intensity, a negative 

score defined for isotopic edges (a type of abiotic edge) if the measured isotope peaks 

deviate from expected natural abundance. For details, see Supplementary Note 1.

Global network optimization using linear programming

The third module of NetID algorithm is to perform global network optimization. Using 

scores assigned for each candidate node and edge annotation, our goal is to find formula 

annotations for each node and edge so as to maximize the sum of their scores across the 

network under the constraints that each node is assigned a single annotation, and that the 

network annotation is consistent. When a node has multiple candidate node annotations that 

shared with same formula (e.g. isomers), the one with highest score (better MS2 match or 

RT match) is selected. When equal scores happen, the candidate annotation that appears first 

in the metabolite list from database is reported as a default. We use linear programming to 

solve this optimization problem, as described next.

For each node u and each of its candidate formula ai, we define a node binary decision 

variable xu, ai to denote whether candidate formula ai is selected as the annotation for node u. 

That is,

xu, ai = 1, if node u is annotated with formula ai
Otherwise, xu, ai = 0 (4)

For each edge, we define a binary decision variable cu, v, ai, bj, Dk to denote whether candidate 

formulae ai and bj are chosen for nodes u and v, and the candidate atom difference Dk
corresponds to the formula difference of candidate formulae ai and bj of the connected nodes 

u and v. That is,

cu, v, ai, bj, Dk = 1, if ai − bj = Dk,
and if node u, v are annotated with formula ai, bj respectively,

Otherwise, cu, v, ai, bj, Dk = 0
(5)

We constrain the optimization so that each node has a single annotation, and an edge exists 

only if the atom difference of that edge annotation matches the formula difference of nodes. 

For computational purposes, nodes may also receive “blank” or “no formula” annotation (we 

refer to such nodes in elsewhere in the text as “unannotated”). The node and edge binary 

variables must satisfy

∑ixu, ai = 1 (6)
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cu, v, ai, bj, Dk ≤ xu, ai, cu, v, ai, bj, Dk ≤ xv, bj (7)

cu, v, ai, bj, Dk ≥ xu, ai + xv, bj − 1 (8)

For all variables defined above, we add the constraints that they are either 1 or 0, 

representing the candidate annotation is selected or not selected, respectively, in the network.

With scores of each candidate node and edge annotation, the objective for the optimization 

is to determine all variables xu, a and cu, v, a, b, D so as to maximize the sum of all node scores 

and edge scores in a network while satisfying the above constraints.

Maximize: ∑xu, a × S(u, a) + ∑cu, v, a, b, D × S(u, v, a, b, D)

The optimization result provides a string of binary numbers that denotes whether a candidate 

node or edge annotation is selected for the global optimal network. IBM ILOG CPLEX 

Optimization Studio (version 12.10) is used to solve the linear programming problem. For 

the reported datasets and using the default parameter settings, optimization finishes within 

an hour on a standard laptop (Supplementary Table 5). Depending on the number of peaks 

in data tables, the entries in the atom difference tables, the choice of reference compound 

databases, and the parameters involved in scoring, runtimes during internal testing ranged 

from minutes to hours.

Evaluation of NetID

After running the candidate annotation and network extension process as usual for NetID, 

we compared four different annotation selection methods: (i) m/z only, selecting the 

candidate annotation with closest m/z to the measured m/z; (ii) node scores, selecting the 

candidate annotation with highest candidate node score (as per usual NetID scoring rules); 

(iii) node + edge scores, adding half of a candidate edge score to each node score of the two 

connected candidate node annotations, and selecting the candidate annotation with highest 

combined score; (iv) NetID optimization, using the candidate node and edge score, and 

selecting the candidate annotation from global optimization. The parameter settings are kept 

the same across Figure 2B-D.

We employed a target-decoy strategy to estimate false discovery rate51,52. The target library 

is the compound library we use for annotation, including HMDB (human metabolomics 

database), PBCM (PubChemLite.0.2.0)54, PBCM_BIO (a subset of biopathway related 

entries in PubChemLite.0.2.0) and YMDB (yeast metabolomics database)53. The decoy 

formula was generated by adding an implausible element adduct to a formula from target 

library. These implausible elements are those not in any formulae in database, namely, 

He, Be, Ne, Sc, Kr, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Xe, 

Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, 

Pt, Au, Hg, Tl, Pb, Bi, Th and U. Applying the decoy formula generation process (i.e. 
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adding a single randomly selected implausible element in place of hydrogen) to all unique 

formulae in a target compound library gives the corresponding decoy library. The combined 

target library and decoy library were used for annotation. Any annotation containing an 

implausible element is considered a false positive (FP) result. The number of FP results 

from target library is estimated to be similar to that from decoy library, because 1:1 ratio 

of target formulae and decoy formulae were used. That is FPtarget_library ≈ FPdecoy_library. 

Using the combined target-decoy library, the false discovery rate (FDR) is estimated to be 

FPdecoy_library / T, where T is the total number of annotations. The decoy library generation 

process was repeated ten times for each database.

We manually annotated 314 peaks in the yeast negative mode dataset (Supplementary data 

1). Using these annotations as ground truth, we evaluated the fraction of correct annotation 

for the four different annotation methods above. Peak annotations matching to the ground 

truth formulae, including adduct, isotope formulae, are counted as correct, and peaks that 

are not annotated or their annotations did not match are counted as incorrect. The annotation 

process used 1:1 target-decoy library and was repeated 10 times as above.

Visualization

We provide an interactive Shiny R app to visualize and explore the NetID output network. 

In addition, NetID outputs two .csv files (cyto_node.csv and cyto_edges.csv) that are 

compatible with the general network visualization software Cytoscape. The interactive Shiny 

R app and detailed user guide are available at GitHub (https://github.com/LiChenPU/NetID).

Data availability

All LC-MS data, including the yeast and mouse metabolomics datasets, the 13C labeling 

datasets, and over 2000 targeted MS2 files collected from the liver data in mzXML 

formats were deposited in MassIVE (ID = MSV000087434). R code for generating 

NetID statistics and performing FDR analysis in Figure 2 and Extended Data Fig. 

1 are provided in GitHub (https://github.com/LiChenPU/NetID/releases/tag/v1.0) and 

Zenodo (https://zenodo.org/record/5508337). Atom difference rule table is provided in 

Supplementary Data 1, peak table for yeast data negative mode, including NetID annotation 

results, putative metabolite list, and manual curation results in Supplementary Data 2, an in-

house retention time list for known metabolites in Supplementary Data 3, HMDB, YMDB, 

PubChemLite, PubChemLite_bio reference compound databases (customized to contain 

relevant information) in Supplementary Data 4-7, and MS2 spectra of newly-discovered 

metabolites in Supplementary Data 8.

Code availability

NetID was developed mainly in R, and used a mixture of IBM ILOG CPLEX Optimization 

Studio, Matlab and Python. NetID code and example files are available for non-commercial 

use in GitHub at https://github.com/LiChenPU/NetID/releases/tag/v1.0 and Zenodo at 

https://zenodo.org/record/5508337, under the GNU General Public License v3.0. User guide 

and pseudocode are provided in Supplementary Notes 3, and 4.
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Extended Data

Extended Data Fig. 1. Characterization of NetID network
Characterization of NetID network. (A) Summary table of the candidate annotation step in 

NetID workflow. (B) Visualization of the optimal network obtained from negative mode 

LC-MS analysis of Baker’s yeast, containing 4851 nodes and 9699 connections. Metabolite 

and putative metabolite peaks are in green and artifact peaks in purple. (C) Connectivity of 

NetID network from the yeast negative-mode dataset.

Chen et al. Page 17

Nat Methods. Author manuscript; available in PMC 2022 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2. Examples of putative metabolites in yeast negative-mode dataset
Examples of putative metabolites in yeast negative-mode dataset. (A-C) Subnetwork 

surrounding glutathione (A), glycerophosphocholine (B), and xanthurenic acid (C). (D) Peak 

properties and annotations for putative metabolites (yellow nodes) in subnetworks (A)-(C).
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Extended Data Fig. 3. Evaluation of annotation false discovery rate (FDR) and fraction gold-
standard peaks annotated correctly using different reference databases
Evaluation of annotation false discovery rate (FDR) and fraction gold-standard peaks 

annotated correctly using different reference databases. The four tested reference compound 

databases are HMDB (human metabolomics database), PBCM (PubChemLite.0.2.0, 

zenodo.org/record/3611238), PBCM_BIO (a subset of biopathway related entries in 

PubChemLite.0.2.0) and YMDB (yeast metabolomics database). (A) False discovery rate 

estimated using target-decoy strategy. (B) Fraction of 314 manually curated “ground truth” 

annotations made correctly. For A and B, each individual data point (circle) is from a 
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different randomized decoy library. N = 10 randomized libraries were tested for each 

reference compound database. Boxes show median and IQR and whiskers extend to largest 

and smallest value no further than ±1.5 × IQR from hinge.

Extended Data Fig. 4. Subnetwork surrounding thiamine with additional known structures
Subnetwork surrounding thiamine with additional known structures. Nodes, connections, 

and formulae are direct output of NetID. Boxes with structures were manually added.
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Extended Data Fig. 5. Evidence for the additional thiamine-derived metabolites
Evidence for the additional thiamine-derived metabolites. Similar to Figure 3, adding 

unlabeled thiamine to [U-13C]glucose culture media, yeast uptake the unlabeled thiamine, 

resulting in unlabeled thiamine, M+4 labeled thiamine+[C4H6O3] and thiamine+[C4H8O] 

species (n=5). The proposed formulae are also supported by m/z measured by high-

resolution mass-spectrometry. Bar represents mean values and error bar indicates s.d..
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Extended Data Fig. 6. Subnetwork surrounding taurine with additional known structures
Subnetwork surrounding taurine with additional known structures. Nodes, connections, and 

formulae are direct output of NetID. Boxes with structures were manually added.
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Extended Data Fig. 7. SelTOCSY NMR confirmation of the structure of the chemically 
synthesized N-glucosyl-taurine
SelTOCSY NMR confirmation of the structure of the chemically synthesized N-glucosyl-

taurine. The final crude material is a mixture of glucose, taurine, and N-glucosyl-taurine at 

5.2% (pink line). Comparing N-glucosyl-taurine (yellow) to alpha- (blue) and beta-glucose 

(green) NMR experiments indicate that C1 of the glucosyl group connects the amine group 

of taurine in α-position.

Chen et al. Page 23

Nat Methods. Author manuscript; available in PMC 2022 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 8. Glucosyl-taurine is a liver metabolite, not ex vivo reaction product
Glucosyl-taurine is a liver metabolite, not ex vivo reaction product. To test for ex vivo 
production of glucosyl-taurine, liver extract (with or without spiked 55 μM [U-13C]glucose) 

or extraction buffer (40:40:20 ACN:MeOH:H2O + NH4HCO3 or 50:50 MeOH:H2O) 

containing pure glucose and taurine were incubated at 5°C for the indicated duration. 

Metabolites formed by ex vivo reactions typically accumulate upon sample incubation, 

while glucosyl-taurine does not. Moreover, there is minimal assimilation of [U-13C]glucose 

into glucosyl-taurine to make M+6 glucosyl-taurine in liver extract, and, while trace 

glucosyl-taurine can be formed abiotically in acetonitrile:methanol:water at pH = 7, the 

observed biological quantity is 100-fold greater.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A global network optimization approach for untargeted metabolomics data annotation 
(NetID).
The input data are LC-MS peaks with m/z, retention times, intensities and optional 

MS2 spectra. The output is a molecular network with peaks (nodes) assigned with 

unique formulae and connected by edges reflecting atom differences arising either 

through metabolism (biochemical connection) or mass spectrometry phenomenon (abiotic 

connection). Peaks are classified as “metabolite” (M+H or M-H peak of formula found 

in selected metabolomics database, e.g. HMDB), “putative metabolite” (formula not found 

in database but with biochemical connection to a metabolite), or “artifact” (only abiotic 
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connection to a metabolite). NetID algorithm involves three steps. Candidate annotation 

first matches peaks to database formulae. These seed annotations are then extended 

through edges to cover most nodes, with the majority of nodes receiving multiple formula 

annotations. Each node and edge annotation are then scored based on match to known 

masses, retention times, and MS/MS fragmentation patterns. Global network optimization 

maximizes sum of node scores and edge scores, while enforcing a unique formula for each 

node and a unique transformation relationship for each edge.
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Figure 2. Utility of global network optimization.
(A) An example network demonstrating the value of the global optimization step in 

NetID. Node a and node b match database formulae and are connected by an edge of 

phosphate (HPO3). Node c can be connected to either node a or node b through mutually 

incompatible annotations, resulting in two different candidate networks. The table below the 

two candidate networks shows the annotations and scoring criteria for each, with the left 

network preferred for more good node and edge annotations. (B) Summary table of NetID 

annotations of negative and positive mode LC-MS data from Baker’s yeast and mouse liver. 

(C) False discovery rate estimated using target-decoy strategy. Each data point (circle) is 

from a different randomized decoy library. (D) Fraction of 314 manually curated “ground 

truth” annotations made correctly. N = 10 randomized libraries were tested for C and D. 

Boxes show median and IQR and whiskers extend to largest and smallest value no further 

than ±1.5 × IQR from hinge.
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Figure 3. NetID reveals thiamine-derived metabolites in yeast.
(A) Subnetwork surrounding thiamine. Nodes, connections, and formulae are direct output 

of NetID. Boxes with structures were manually added. (B) MS2 spectra of thiamine, 

thiamine+C2H2O, and thiamine+C2H4O, with proposed structures of the major fragments. 

(C) Labeling fraction of thiamine and its derivatives, in [U-13C]glucose with and without 

unlabeled thiamine in the medium (n = 5). (D) The thiamine derivatives are also found in 

mouse tissues and urine (n=3). (E) Proposed mechanism for formation of thiamine+C2H4O. 

Pyruvate dehydrogenase (PDH) decarboxylates pyruvate, and adds the resulting [C2H4O] 
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unit (in red) to thiamine. (F) The same enzymatic mechanism occurs in oxoglutarate 

dehydrogenase (OGDH) and branched-chain α-ketoacid dehydrogenase complex (BCKDC), 

and generates thiamine+C4H6O3 and thiamine+C4H8O respectively. Bar represents mean 

values and error bar indicates s.d. in (C) and s.e. in (D).
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Figure 4. NetID discovers mammalian taurine derivatives.
(A) Subnetwork surrounding taurine from mouse liver extract data. Nodes, connections, 

and formulae are direct output of NetID. Boxes with structures were manually added. (B) 

LC-MS chromatogram of N-glucosyl-taurine standard and the putative glucosyl-taurine from 

liver extract. (C) Top 10 abundant ion peaks in MS2 spectrum of glucosyl-taurine peak from 

liver extract (top), and synthetic N-glucosyl-taurine standard (bottom). (D) Isotope labeling 

pattern of putative glucosyl-taurine in mice, infused via jugular vein catheter for 2 h with 

[U-13C]glucose (n=3). (E) Absolute N-glucosyl-taurine concentration in murine serum and 

tissues (n=3). Bar represents mean values and error bar indicates s.d. in (D) and s.e. in (E).
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Figure 5. NetID applies global optimization for metabolomics data annotation and metabolite 
discovery.
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