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Surprise and social influence are linked through several neuropsychological
mechanisms. By garnering attention, causing arousal, and motivating engagement,
surprise provides a context for effective or durable social influence. Attention to a
surprising event motivates the formation of an explanation or updating of models,
while high arousal experiences due to surprise promote memory formation. They both
encourage engagement with the surprising event through efforts aimed at understanding
the situation. By affecting the behavior of the individual or a social group via setting an
attractive engagement context, surprise plays an important role in shaping personal and
social change. Surprise is an outcome of the brain’s function in constantly anticipating
the future of sensory inputs based on past experiences. When new sensory data is
different from the brain’s predictions shaped by recent trends, distinct neural signals
are generated to report this surprise. As a quantitative approach to modeling the
generation of brain surprise, input stimuli containing surprising elements are employed
in experiments such as oddball tasks during which brain activity is recorded. Although
surprise has been well characterized in many studies, an information-theoretical model
to describe and predict the surprise level of an external stimulus in the recorded MEG
data has not been reported to date, and setting forth such a model is the main objective
of this paper. Through mining trial-by-trial MEG data in an oddball task according to
theoretical definitions of surprise, the proposed surprise decoding model employs the
entire epoch of the brain response to a stimulus to measure surprise and assesses which
collection of temporal/spatial components in the recorded data can provide optimal
power for describing the brain’s surprise. We considered three different theoretical
formulations for surprise assuming the brain acts as an ideal observer that calculates
transition probabilities to estimate the generative distribution of the input. We found
that middle temporal components and the right and left fronto-central regions offer the
strongest power for decoding surprise. Our findings provide a practical and rigorous
method for measuring the brain’s surprise, which can be employed in conjunction with
behavioral data to evaluate the interactive and social effects of surprising events.

Keywords: brain surprise, shift in belief, surprise decoder, oddball task, magnetoencephalography, decoding
power, temporal/spatial MEG components
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INTRODUCTION

The predictive coding framework (Rao and Ballard, 1999)
postulates that the brain is constantly predicting its incoming
sensory input. Past inputs are used by the brain to form
prior knowledge while receiving the most recent input leads to
updating of this belief in the Bayesian brain model (Friston, 2005;
Doya et al., 2007; for a review see Kok and de Lange, 2015).
An input different from what the brain has predicted will be
surprising in that it generates a form of response measurable by
brain imaging techniques. This surprise (or prediction error) has
been quantified in the literature based on the expectation of a
near-optimal observer who attempts to estimate the generative
distribution of the input (Shannon, 1948; Baldi, 2002; Faraji
et al., 2018). In addition, the quantified surprise has been widely
shown to be reflected in the brain response, especially in the
components of Event-Related Potentials (ERP) (Knill and Pouget,
2004; Strange et al., 2005; Mars et al., 2008; Friston, 2009; Itti and
Baldi, 2009; Baldi and Itti, 2010; Meyniel et al., 2016; Seer et al.,
2016; Modirshanechi et al., 2019; Musiolek et al., 2019). These
studies underscore the importance and suitability of surprise to
describe the neural activity in an uncertain environment.

A strong link exists between the concept of the brain’s surprise
and social influence. Generation of a surprise signal by the brain
instigates other functions which lead to eliciting the attention of
the individual and influencing the course of cognitive processes
involved in perception, memory formation, decision making,
and engagement with the situation. Surprising events lead to
engagement with the prevailing event through mechanisms such
as attention and arousal (Russell and Barrett, 1999). When
expectations about the sequence of events in a given context are
violated, elevated attention levels are called for by the brain in
order to find an explanation for the error. Surprising events hence
attract attention and can lead to engagement with the source
of surprise (Schützwohl, 1998; Horstmann, 2002; Itti and Baldi,
2009). The occurrence of surprise means that the brain’s model
of the current event could not predict the particular instance
recently observed and thus the model may need to be adjusted
to make better predictions. Therefore, surprise changes what is
believed and can hence influence its recipient by shaping both
their perception and future behavior (Petty and Cacioppo, 1986;
Loewenstein, 2019).

In addition, surprise is connected to high arousal experiences
(Russell and Barrett, 1999). Efforts by the brain aimed at making
sense of the situation promote memory for the event (Bradley
et al., 1992). Another point is that people tend to share surprising
contents with each other, rendering surprise to have the potential
for large-scale social impact (Heath et al., 2001). Through
setting an attractive engagement context, surprise influences
the behavior of the individual or a social group and plays an
important role in promoting personal and social change.

Studying the characteristics of surprise plays an important
role in understanding how the mechanisms of attention and
arousal, learning and memory formation, and decision to engage
are formed in the brain. A remarkable observation is that the
unpredictability of an instance in a sequence of stimuli which
leads to a high value of surprise produces distinct brain signals in

the process of eliciting the attention of the observer (Mars et al.,
2008; Garrido et al., 2016; Rubin et al., 2016; Seer et al., 2016).
In this context, surprise is often represented by a parameter that
the brain attempts to minimize during the process of learning
and perceptual inference (Schmidhuber, 2010; Roesch et al., 2012;
Friston and Frith, 2015; Friston et al., 2017; Faraji et al., 2018).

In a recent study, it was discussed that surprise minimization
not only plays a key role in the cognitive processes of a single
agent, but also can be considered efficaciously in multi-agent
frameworks to describe social phenomena like cooperation and
social decision-making as well as explain the emergence of social
rules for two agents (Hartwig and Peters, 2020). Importantly,
Schwartenbeck et al. (2015) showed that in a simple binary
choice setup, a surprise minimization paradigm could explain
decision making better than utility maximization. In the context
of predictive coding, the brain tries to avoid surprise to prevent
stress, which can in long-term lead to heart disease, depression,
and type 2 diabetes (Peters et al., 2017).

Shannon surprise (Shannon, 1948) has been widely used as
a measure for quantifying surprise based on the likelihood of
the data (Strange et al., 2005; Mars et al., 2008; Kolossa et al.,
2015; Meyniel et al., 2016; Rubin et al., 2016; Seer et al., 2016;
Modirshanechi et al., 2019). The more “unlikely” an input is,
the more the value of its corresponding Shannon surprise will
be. The Bayesian surprise differentiates the estimated generative
distribution of the received stimuli before and after the arrival
of each input. Therefore, it quantifies how the belief about the
distribution of the input is “updated” or “shifted” after receiving
each stimulus. This concept of surprise was introduced by Baldi
(2002) and has been used thereafter by many researchers (Mars
et al., 2008; Itti and Baldi, 2009; Baldi and Itti, 2010; Seer et al.,
2016; Musiolek et al., 2019). Faraji et al. (2018) introduced an
alternative quantification of surprise, named the confidence-
corrected surprise, which reflects the “unexpectedness” (not
unlikeliness) of the input by differentiating the estimated
posterior distribution of the input with that of a naïve observer
(who bases his model on the most recent input and a uniform
prior) using the Kullback–Leibler (KL) divergence (Kullback,
1997; Cover, 1999).

Temporal components of MEG (Magnetoencephalography)
records that represent surprise have not been as much
investigated as EEG (Electroencephalography) data.
Nevertheless, some studies have focused on how the violation of
an expected event in a sequence of stimuli is reflected in the MEG
response (Chait et al., 2007; Todorovic et al., 2011; Wacongne
et al., 2011; Todorovic and de Lange, 2012; Strauss et al., 2015;
Barascud et al., 2016; Heilbron and Chait, 2018). These studies
include reports on the observation of mismatch components in
the brain’s MEG response to unpredicted stimuli or novelty.

Previous surprise modeling studies mainly base their
conclusion on a single component extracted from the EEG data,
with the MMN (mismatch negativity) (Garrido et al., 2009;
Lieder et al., 2013) or the P300 (Squires et al., 1976; Mars et al.,
2008; Kolossa et al., 2013) or both (Ostwald et al., 2012) serving
as the main components revealing the occurrence of surprise.
Abnormal values in these components have also been proposed
as biomarkers for cognitive disorders such as Schizophrenia
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and Alzheimer’s disease (Nieuwenhuis et al., 2005; Patel et al.,
2005; Barcelo et al., 2006; Duncan et al., 2009), reflecting their
importance not only in understanding the behavior of the
normal brain in handling surprise, but also in the detection
of a number of brain disorders. While such single component
analysis simplifies the ensuing effort to develop an encoder
or a decoder for the brain surprise, it ignores the possible
contribution of other temporal components corresponding to
different post-stimulus latencies.

Recent studies have proposed models using the entire
temporal signals for decoding Shannon surprise (Maheu et al.,
2019; Modirshanechi et al., 2019; Gijsen et al., 2021), assuming
that the entire epoch of the response might be modulated
by the statistical properties of the input sequence. We will
take a similar approach in this paper and mine trial-by-trial
MEG data to analyze how the entire epoch of the brain
response reflects the prediction error and which collection of
the temporal/spatial components provide optimal power for
describing the brain’s surprise.

In a study by Modirshanechi et al. (2019), the density of
significant temporal features for decoding Shannon surprise
was compared in the middle and late segments of EEG data
and no significant difference was observed between these two
segments in terms of decoding surprise. Also, Maheu et al.
(2019) conducted a study on MEG data with participants exposed
to auditory sequences with different statistical regularities, and
modeled the activity of the brain with Shannon surprise levels
using several learning models. Gijsen et al. (2021) described the
EEG dynamics of the somatosensory learning system in terms of
its neural surprise signatures.

In the current study, aside from considering different concepts
of surprise, the value of each of the temporal components
is assessed and compared with others in MEG records of
an auditory oddball task. Besides, analytical definitions are
proposed for the early, middle, and late segments based on
a method that partitions the response of each trial to three
temporal segments based on the behavior of each segment
in describing surprise. We compare the middle part of the
recorded response and the late part in terms of reflecting
the surprise of the brain. We aim to examine whether there
is one temporal component or a subset of components that
best describe each of the three mentioned surprise concepts.
We also perform a sensor-level analysis to identify the best
locations on the scalp to capture information about surprise from
neural activities.

The repetition-break plot structure (Loewenstein and Heath,
2009) is one of the recipes proposed for eliciting surprise
in studies on its social influence (Loewenstein, 2019). In
computational frameworks for studying surprise based on
measured brain signals, oddball experiments are employed
in which repeated exposure to surprising instances of the
stimuli allow for trial averaging and noise reduction. The
current study focuses on binary oddball tasks and formulates
its definition of surprise assuming a transition probability
matrix that describes the generative distribution of the
stimuli sequence (Meyniel et al., 2016). Considering the
generative distribution as a Markov process, this transition

probability matrix serves as sufficient statistics to describe
the distribution. It was shown in Meyniel et al. (2016)
that this assumption leads to a surprise value (prediction
error) that is highly correlated with the P300 response. Also,
Gijsen et al. (2021) showed that this first order transition
probability is the best inference model in terms of goodness of
fit to EEG data.

The paper sets forth comparative results for the mentioned
surprise decoders, and statistically elaborates on the relative
importance of the different channels/temporal components in
decoding the three surprise concepts (Shannon, Bayesian, and
confidence-corrected surprise which, respectively, represent the
unlikeliness, updating, and the unexpectedness of the input)
elicited by the stimuli. The results support the Bayesian learning
assumption and provide evidence for predictive coding.

MATERIALS AND METHODS

Figure 1 provides an overview of the overall flow of data and the
decoding approach used in our analysis.

Dataset and Task
Our analysis is applied to a dataset consisting of MEG responses
recorded in an auditory oddball task (Maheu et al., 2019). In
this task, the standard and deviant stimuli were two different
French syllables randomly drawn from a binomial distribution
with the probability of the frequent syllable being 2/3 and that
of the deviant syllable being 1/3. Each syllable lasted about 200
milliseconds and the interval between two successive stimuli was
1400 milliseconds. The data record consisted of one block of
stimuli with around 405 trials.

Participants included 11 females and 9 males, aged between
18 and 25. The data of two subjects were removed because of
their excessive head movements. To ensure that the participants
paid attention to the task, they were asked every 12–18 trials to
predict the next stimuli (being a standard or a deviant) using
one of two buttons.

The brain activity was recorded by a 306 channels (102
magnetometers and 204 gradiometers) whole-head Elekta
Neuromag MEG system using a sampling rate of 1000 Hz and
a hardware-based band-pass filter of 0.1–330 Hz.

Preprocessing of Data
The following preprocessing steps were performed on the
raw data as reported by Maheu et al. (2019): Raw MEG
data were corrected for between-session head movement and
bad channels. Then, data were epoched between −250 ms to
1 s and were also cleaned from powerline and muscle and
other movement artifacts. Trials containing muscle artifacts
were detected using semi-automatic methods (based on the
variance of signals across sensors and first order derivatives
of signals over time) and removed. Then, a low-pass filter
below 30 and a 250 Hz down-sampler was applied to the
data. Eye blinks and cardiac artifacts were removed using
ICA (Independent Component Analysis) (Bell and Sejnowski,
1995). Finally, the data was baseline corrected using a window
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FIGURE 1 | The overall diagram of the decoding model of temporal analysis. The steps are explained in the Section “Materials and Methods”. (A) The scheme of the
decoding model and machine learning tools. The power of decoding is measured by the fraction of variance that is explained (R-squared). (B) The processes
performed on the preprocessed MEG data to acquire features for regression. The feature matrix is shown by SN×p. The length of each feature is p and the number of
features is N. (C) The surprise calculation module using the oddball sequence of stimuli, consisting of standards S and deviants D, as input and generating labels for
training the regression model. The labels vector is shown as YN×1.

of 250 ms before the stimulus onset. Similar to the earlier
study (Maheu et al., 2019), the analysis was performed only
on the data of the magnetometers using the EEGLAB toolbox
(Delorme and Makeig, 2004).

For temporal analysis, in order to obtain independent sources
of MEG record as features of the regression model, we performed
ICA analysis (Bell and Sejnowski, 1995). We chose FastICA
(Hyvärinen, 1999) for this data because of the high number
of channels (102) which could render the InfoMax algorithm
excessively slow. We ended up with an average (over subjects) of
69 independent components for the entire set of sensors using
FastICA. We also considered the interval of [−200 ms, 600 ms]
as the response period and reduced the number of samples by
downsampling to 80 samples per epoch. We took each trial as
a feature, so the number of features used for training was N ∈
[400 , 409] (equal to the number of stimuli in the block which
varied between the participants). We concatenated the vectors of
independent components to make a longer vector which serves as
the decoder input. Thus, the maximum dimension of each feature
was around p = 80× 69 = 5520 (equal to the number of time
samples multiplied by the number of independent components).
The superiority of using independent components instead of the
data of the channels is that the resulting feature vectors contain
lower dependencies between their elements.

For spatial analysis, for the recorded signal of each channel, we
selected the interval of [−200 ms, 600 ms] as the response period
and reduced the number of samples by downsampling to 80.

Ideal Observer Model
A fundamental question in the Bayesian brain literature is how
the brain learns the distribution of the sensory stimuli. The
brain is assumed a near-optimal estimator of the probability of

the input sequence based on a generative model with Bayesian
inference (Mars et al., 2008; Daunizeau et al., 2010; Friston,
2012; Meyniel et al., 2016; Rubin et al., 2016; Modirshanechi
et al., 2019). To be more precise, the brain uses a prior belief
about the environment, and updates it after each stimulus arrives.
In addition, in order to initialize the inference process, it is
presumed that the brain begins with the assumption of equally
probable input types despite exposure to any possible previous
blocks of stimuli (Strange et al., 2005; Harrison et al., 2006;
Bestmann et al., 2008; Meyniel et al., 2016).

Here, two crucial questions to ponder on are what exactly
constitutes the statistics that the brain attempts to learn from the
recent history of observations, and what mechanism it employs
to arrive at an optimal estimate of this probability.

Transition Probabilities
In an oddball experiment, each stimulus can be denoted by
a binary random variable xi for i = 1, . . . ,T, where T is the
length of the stimuli sequence. We consider xi = 0 if the ith
stimulus is a standard and xi = 1 otherwise. This variable follows
a Binomial distribution with parameters p0 and p1 = 1− po as
the probabilities of the standard and deviant stimuli, respectively.
Based on the hypothesis that the sequence of items has been
generated by a “Markovian” generative process, the sequence can
be modeled by the probabilities of transition between the stimuli
types. For a binary oddball sequence, the transition probabilities
can be stated as a 2× 2 matrix, which can be estimated by
counting the number of successive transitions (Meyniel et al.,
2016). It has been demonstrated that utilizing the transition
probability matrix for describing the stimuli sequence statistically
outperforms the single-parameter approach to describe the
brain’s response (Meyniel et al., 2016).
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For a binary oddball sequence, the definition of the model
parameter θ can be stated in the form of a 2× 2 matrix:

θ ,

[
p0|0 p0|1
p1|0 p1|1

]
,

where pa|b is the probability of transition from stimulus type b to
stimulus type a. Since the sum of each column of this matrix is
equal to 1, we can reduce the model parameter’s definition to a
vector θ :

θ =

[
θ0|1
θ1|0

]
=

[
p0|1
p1|0

]
.

Based on this definition, the likelihood of a sequence of
observations Xj with a length j will be:

p
(
Xj
|θj
)
= 0.5

(
θ
j
0|1

nj0|1(1− θ
j
0|1)

nj1|1
)(

θ
j
1|0

nj1|0
(

1− θ
j
1|0

)nj0|0)
,

(1)
where θ jwith elements θ

j
0|1 and θ

j
1|0 is the estimated parameter

vector after receiving j inputs denoted by the vector Xj, the
probability of the first stimulus is assumed to be 1

2 , and nja|b is
the number of transitions from stimulus type b to stimulus type a
in the j observations up to the present sample.

The parameter nja|b can be computed in different ways
depending a forgetting model for the memory (Huettel et al.,
2002; Kiebel et al., 2008; Harrison et al., 2011; Meyniel et al.,
2016). In this paper, we have adopted a leaky integration method
to account for earlier observations. In this method, the most
recent stimulus is given a maximum weight and the weights of the
preceding observations decrease exponentially with a parameter
w (the integration coefficient) moving backward toward earlier
observations (Meyniel et al., 2016).

Eq. 1 is the product of two Binomial distributions, each
representing one of the two elements of the vector θ . Using the
Beta distribution notation to represent the prior probability of
these elements as the conjugate prior of Binary distribution, the
posterior distribution of θj after j inputs will be the multiple of
two new Beta distributions:

p
(
θj|Xj)

= Beta
(

1+ nj0|1, 1+ nj1|1
)

Beta
(

1+ nj1|0, 1+ nj0|0
)
,

(2)
To sum up, the posterior probability of the stimulus-generating
Binomial distribution parameter is obtained using a two-
dimensional descriptor parameter in Eq. 2. The next step is to
use this equation to calculate the theoretical surprise inherent in
the stimuli sequence.

Surprise Calculation
In the previous section, we estimated the stimulus-generating
distribution assuming transition probability matrix as sufficient
statistics. When the brain encounters a stimulus that was not
predicted using this estimated distribution, it may produce
a “surprise” response reflecting the prediction error (Mars
et al., 2008; Lieder et al., 2013; Meyniel et al., 2016; Rubin
et al., 2016; Modirshanechi et al., 2019). There are three

mathematical approaches in the literature to quantify this
surprise. We elaborated the approaches and derived the formulas
for calculating the three surprise measures completely in
Supplementary Material. The labels of the decoder are these
surprise values YN×1 used to train the regressor.

Temporal Analysis
Four methods for selecting the temporal components are
employed as described below.

In our study, first we seek to identify the significant single time
instances or time intervals, which can best regress the surprise
value of the stimuli. Hence, we define four different regimes of
selecting samples from the temporal data record (Figure 2):

1. Entire epoch: The total response time (-200 ms to
600 ms) is used for regression to identify all significant
coefficients (Figure 2A).

2. Samples: A single sample at time t is employed as the
decoder’s input (Figure 2B), and this operation is repeated for
all values of t to determine their relative powers in estimating
the stimuli surprise.

3. Intervals: To evaluate the significance of an interval of
accumulated temporal samples from the beginning of the
epoch to the current target time, the interval of−200 to time t
is used as input to the decoder (Figure 2C). This operation
is repeated for all values of t. This allows the decoder
to utilize the dependency among the temporal samples in
the recorded data.

4. Segments (Baseline, Early, Middle, and Late): To evaluate
the regression power of the target time interval and to
compare the segments of the MEG records, a range of
temporal samples is used as the decoder’s input feature vector
(Figure 2D).

Four disjoint time segments are identified for coarse-level
segmentation of the response profile: From −200 ms pre-
stimulus to time 0 (Baseline), from time 0 to t1 (Early
components), from t1 to t2 (Middle components), and from t2
to 600 ms (Late components) (Figure 2D).

In our work, the values of t1 and t2 are determined to provide
decoding behavior-based definitions for the Early, Middle, and
Late segments using the decoding powers obtained in the Samples
regime. After analyzing the Samples regime, we define t1 as the
first point that reaches the 10 percent of the globally maximum
decoding power. Furthermore, observing that two local maxima
exist in the middle and late responses, we define t2 as the point
with minimum decoding power in the interval [250 ms, 400 ms]
in order to separate the Middle and Late segments (see Figure 3A
in Section “Temporal Analysis”). When we capitalize the name of
these segments, we mean the segments with boundaries defined
based on this approach.

Spatial Analysis
Spatial analysis is performed in an essentially similar fashion
to the temporal analysis but the feature matrix is defined in
such a way to allow for comparing the different magnetometers
in collecting the most surprise-correlated brain activity (see
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FIGURE 2 | Different temporal component selection regimes are used to define feature vectors as inputs to the decoder. (A) All temporal components of a trial are
used (Entire epoch). (B) Each single temporal point t is used (Samples). (C) Temporal components in the range of [−200, t] are used (Intervals). (D) Temporal
segments are used with optimum t1 and t2 (Segments).

Figure 4). Similarly, the decoding model is essentially a Lasso
linear regression module and the labels for this regressor are the
calculated theoretical surprise values. We perform two methods
of analysis for the data of each channel (magnetometer):

1. The feature matrix fed to the regression module is an N ×
T matrix, i.e., all temporal samples are used to decode the
level of surprise for each magnetometer.

2. The feature matrix fed to the regression module is an
N × T′ matrix, where T′ < T, meaning that a portion of
the temporal samples is used to regress the level of surprise.
The goal is adding a temporal view to the spatial analysis
in order to compare the surprise-decoding regions on the
scalp using different temporal segments: Early, Middle, and
Late segments.

The Decoder Design
The decoder we use for this analysis was introduced by
Modirshanechi et al. (2019), and we modified its input features
as well as the surprise labels to fit our analysis as described above.
More details about the decoder can be found in Modirshanechi
et al. (2019).

Briefly, the decoder mainly consists of one module of linear
regression. A Lasso linear regression model takes as its input
the feature matrix SN×p′ extracted from the data according to
one of the 4 described temporal feature selection regimes (N
is the number of features and p′ ≤ p is the dimension of each
feature which depends on the temporal feature selection regime),
as well as the label vector YN×1 calculated from the input stimuli
sequence according to one of the three mentioned definitions
of surprise as its labels (see Figure 1). The Lasso regressor
aims to minimize the reconstruction error while observing an
added sparsity term, eliminating the input features that might
be irrelevant to the reconstruction of surprise, and helps avoid
overfitting to the training data.

To evaluate the trained model on the test data using a
fivefold cross-validation, we used the R-squared measure
as decoding power. These values were compared to chance
levels to test (and reject) the hypothesis that the input
features are independent from surprise labels. Noticing
that the decoding power is a function of the integration
coefficient w (the parameter defining the coefficients of
the window of integration), we reported the maximum
decoding power across all the w values for each regression by
employing the best integration coefficients. Also, in the end,
we reported and analyzed the best values for the integration
coefficients averaged over subjects. After the removal of
features with zero coefficients by the Lasso regressor, the
remaining features were presumed effective and employed in
describing the surprise.

At the end of each decoding analysis task, to judge the
resulting R-squared values, we tested the hypothesis that SN×p
and YN×1are independent of each other (Rouder et al., 2009;
Modirshanechi et al., 2019). This was done by making random
permutations in the vector YN×1 and acquiring the R-squared
value of the resulting regression each time as chance level
(Pereira et al., 2009).

The entire analysis was performed separately for each subject
and for each type of surprise. We used Matlab to design and
simulate the decoder.

RESULTS

Tables 1–4 and Figures 3, 5, 6 summarize our results, which are
described in detail next.

Temporal Analysis
Here we describe the decoding powers of the three quantifications
of surprise when each is employed as label for training
surprise decoders.
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FIGURE 3 | (A) Surprise decoding powers of the three surprise quantifications and chance level for the Samples regime. (B) Statistical analysis of the Samples
regime. Each diagram illustrates an 80 × 80 matrix of p-values in logarithmic scale obtained by t-test. The red areas indicate the presence of significant differences
between the two samples representing the horizontal and vertical axes values. (C) Surprise decoding powers of the three surprise quantifications and chance level
for the temporal regime of Intervals [-200 ms, t]. (D) Statistical analysis of the Intervals regime. Each diagram illustrates an 80 × 80 matrix of p-values in logarithmic
scale obtained by t-test to evaluate the significance of difference between decoding powers of each pair of features in the Intervals regime. (E) Box plots of decoding
powers for different Segments (early, middle, and late). In these boxplots, horizontal lines indicate the median of the data and the boxes extend from the lower to
upper quartile values. The whiskers extending from the boxes indicate the range of the data. Flier points are those past the ends of the whiskers. (F) The decoding
power of different values of w (vertical axis) over time (horizontal axis) for different definitions of surprise in the Intervals and Samples regimes. Colors denote the
decoding power. Note that the p-values are shown in a logarithmic scale for better visualization.

Entire Epoch
The R2 values and chance levels when using the entire epoch
are presented in Table 1. The mean of R2 values are at least
ten times bigger than the mean of chance levels. We conducted

t-tests to examine the presence of significant differences between
chance levels and decoding powers. We corrected the significance
level using Bonferroni correction (Bonferroni, 1936) considering
12 tests to 0.0042 (we conducted these tests with the tests of
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FIGURE 4 | Different feature matrices used for temporal (Samples regime) and spatial analysis: SN×c and SN×T , respectively.

TABLE 1 | Decoding power (R2 values), chance level, and p-values of t-tests comparing chance levels and decoding powers for the three definitions of surprise for the
temporal regime of Entire epoch.

Decoding power Shannon Confidence-
corrected

Bayesian

Entire epoch 0.134 0.070 0.033

Chance level

Entire epoch −0.0031 ± 0.0050 −0.0031 ± 0.0051 −0.0031 ± 0.0050

p-values

Entire epoch 0.000100 0.000112 0.000747

Highlighted p-values are the ones lower than significance level using Bonferroni correction (equal to 0.0042).

Table 3 that compares decoding powers with the chance levels
for the Segments simultaneously. Three surprise models and four
segments lead to 12 tests). We observed that the decoding powers
are significantly higher than chance level in the Entire epoch
regime. The values of chance level and decoding power in this
table can be considered as upper bounds for other goodness of fit
measurements in the other three temporal regimes. We selected
the maximum value among the three chance levels to plot for
comparison in Figures 3A,C, 5A.

Samples Regime
The decoding power of this regression model is illustrated in
Figure 3A for different values of t ∈ [−200 ms, 600 ms]. Due
to the employment of only one time sample in each epoch
for describing the trial’s surprise; it is understandable to have
relatively low R2 levels. In the curves of Figure 3A, the middle
and late components appear to describe surprise better than the
early components. In addition, one noticeable peak is observed
in the middle segment. The fact that the Samples regime is able to
identify time points in the middle segment of the MEG response
with the highest surprise-decoding powers (for any of the three
definitions of surprise) is a remarkable observation in our study.

Intervals Regime
Figure 3C illustrates the decoding powers of decoders trained
using an interval of temporal samples in the range of [-200 ms,
t] for different values of t. This regime is expected to reveal at
which time instance enough evidence has been accumulated from

the response for achieving a confident decoding performance.
In each curve, the R2 value stays close to zero until around
100 ms, when there is a considerable rise in the decoding power.
This increase occurs in the temporal range which we called the
middle segment in our Segments regime. The decoding power
increases only little after around 250 ms. We can deduct that
the response components do not add much information about
surprise after around 250 ms.

Segments Regime
First, the time points that best partition the entire after-onset
epoch to three parts are obtained based on the method described
in Section “Preprocessing of Data” and reported in Table 2.

The R2 values and chance levels for using data points in each
of the segments named Early, Middle, and Late for decoding
surprise are presented in Table 3. We observe that for the
Early segment, the R2 values and the chance levels are close
to each other. We conducted t-tests to examine the presence
of significant differences between chance levels and decoding

TABLE 2 | The temporal borders separating the Early, Middle, and Late segments
obtained from partitioning the decoding power curves in Figure 3A.

Shannon Bayesian Confidence-
corrected

(t1, t2) (see
Figure 2D)

(60, 350) (50, 360) (60, 380)
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TABLE 3 | Decoding power, chance level, and p-values of t-tests comparing chance levels and decoding powers for the three definitions of surprise for the temporal
regime of Segments.

Decoding power Shannon Bayesian Confidence-
corrected

Early 0.004 ± 0.007 0.002 ± 0.001 0.002 ± 0.001

Middle 0.147 ± 0.116 0.056 ± 0.066 0.087 ± 0.088

Late 0.036 ± 0.046 0.025 ± 0.035 0.021 ± 0.038

Chance level

Early −0.0031 ± 0.0050 −0.0031 ± 0.0051 −0.0031 ± 0.0051

Middle −0.0031 ± 0.0050 −0.0031 ± 0.0051 −0.0031 ± 0.0051

Late −0.0031 ± 0.0050 −0.0004 ± 0.0069 −0.0031 ± 0.0051

p−values

Early 0.015457 0.000160 0.000112

Middle 0.000001 0.000228 0.000035

Late 0.002373 0.005639 0.024679

Highlighted p-values are the ones lower than significance level using Bonferroni correction (equal to 0.0042).

powers. We corrected the significance level using Bonferroni
correction to 0.0042. We observed that decoding powers are
significantly higher than chance level in the Middle segment
for all three surprise models. However, we did not observe
this significance for the Early and Late segments in any of
the surprise models. This result is expected since the early
segment of the response epoch is known to have little or no
information about surprise and has been reported to mainly
reflect the physical aspects of the stimuli (Sur and Sinha, 2009).
To explain this result, we note that even though the characteristics
of the two types of stimuli (standards and deviants) are different
from each other, the components recorded during the early
processing of the stimuli do not appear to account for the stimuli’s
surprise. In other words, these processes also seem to create
signatures in the recorded response that are not differentiable
from each other in a significant way as far as the issue of
their confound with the brain’s surprise is considered. The latter
point is a remarkable observation which our statistical analysis
also reveals and as such, provides further evidence that early
sensory processes in the brain employ generic sets of operations
on all stimuli as the surprise aspects of the input are still not
known to the brain.

We can further add that even though the differences between
the characteristics of the two types of stimuli may affect the early
part of the recorded brain response (which might be observed
as differences between the two responses when the usual trial
averaging techniques are used and decoding the surprise of each
trial is not an objective), such differences in the recorded response
cannot be used to decode the surprise that is embedded in the
input sequence. In other words, this lack of differentiability in
terms of surprise decoding between the early parts of the response
to the stimuli can itself serve as an indication that the input
characteristics do not interject any confound into the decoding
process employed in our model.

We observe in Table 3 that the Middle segment demonstrates
significant values of decoding power. Figure 3E shows the
variation of the decoding powers of different segments across the
subjects using three boxplots for the three surprise values.

Significance of Temporal Features
Table 4 shows the results of repeated measures of ANOVA
(Analysis of Variance) (Gueorguieva and Krystal, 2004) for
comparing the decoding powers of the three segments of Early,
Middle, and Late, employing data from the different subjects as
the statistical samples. The f -value of the ANOVA analysis and
the p-values of the post hoc analysis are reported in the table. We
conducted three one-way ANOVA tests each corresponding to a
surprise model. The significance level is corrected to 0.0167 using
Bonferroni correction.

The table indicates that not only the Early segment is
significantly less powerful than the Middle segment, but also
significant difference is observed between the R2 of the Shannon
and Confidence-corrected surprise values for the Middle and Late
segments. This is because the Late components, as it was also
observed in the results of the Samples regime, are significantly
less powerful than the Middle components. However, this is not
the case for the Bayesian surprise, which offers relatively similar
decoding powers for the Middle and Late segments.

Similarly, in Figure 3B, the relative importance of temporal
components for decoding surprise is assessed for decoders
based on the Samples regime. In these figures, each picture
illustrates an 80× 80 matrix of −log2(p− values) coded to
colors, representing 1600 tests performed to evaluate the
significance of the difference between the decoding powers of
each pair of features in the Samples regime. We used the
logarithmic p-value scale to afford a wider range for better
visualization. Note that these are uncorrected p-values as we only
want to compare the relative levels of p-values here and scaling all
of them (using Bonferroni correction) has no impact. A similar
plot is shown in Figure 3D for the Intervals regime.

In the Samples regime, there is no single time instance
with significantly better decoding power (for decoding any of
the three surprise quantifications) than all the other temporal
points (Figure 3B).

In the Intervals regime, the relatively narrow diagonal blue
line around the point (200 ms, 200 ms) shows the rapid rising
behavior of the decoding power when the points of the middle

Frontiers in Systems Neuroscience | www.frontiersin.org 9 June 2022 | Volume 16 | Article 865453

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-865453 June 6, 2022 Time: 16:57 # 10

Mousavi et al. Signatures of Surprise in MEG Data

TABLE 4 | Results of the ANOVA test for comparing three temporal segments of Early, Middle, and Late of the Segments regime in decoding each surprise.

Surprise model ANOVA f-value p-value (Middle
vs. Late)

p-value (Early vs.
Middle)

p-value (Early vs.
Late)

Shannon 18.909 0.0007 1.31e-05 0.0079

Bayesian 7.575 0.0919 0.0017 0.0106

Confidence-corrected 11.937 0.0077 0.0003 0.0501

Highlighted p-values are the ones lower than significance level using Bonferroni correction (equal to 0.0167).

FIGURE 5 | (A) Decoding power of magnetometers averaged on subjects for the three surprise values and chance level. (B) Channel locations. (C) Decoding
powers of three surprise values in different channels using the entire response epoch. (D) P-value of t-test of difference between decoding powers of pairs of
surprise values. Channels with lower p-values are shown in yellow. Note that a different color scale is used in each plot for better visibility of areas with high decoding
powers. Also, p-values are logarithmically scaled for better visualization.

segment are included (Figure 3D). Furthermore, after around
250 ms (in Figure 3D), adding new temporal components as
features for decoding surprise (for any of the three definitions)
does not lead to a significantly higher decoding power.

The Effect of Integration Coefficient
In Figure 3F, the decoding powers of the designed decoders
are plotted for different integration coefficients in the range
of [1,100]. Two different behaviors can be observed for the

three surprise quantifications. For the Shannon and confidence-
corrected surprise values, when w is not small, a relatively
high decoding power is observed. However, for the Bayesian
surprise w needs to be relatively small in order to obtain high
decoding powers.

In addition, in the Samples regime of this analysis, the best
integration coefficient is not much dependent on time. In other
words, the best w is not much different for the middle and late
components (Figure 3F).
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Spatial Analysis
In this part, first the decoding power for each of the 102
magnetometers is obtained for the three surprise quantifications
using the entire temporal epoch as the input feature for
regressors. In Figure 5A the decoding power is averaged over
subjects and plotted for all channels. The value of the decoding
power is clearly greater in comparison to the chance level
listed in Table 1, so the assumption of independence between
surprise values and the entire epoch of the MEG data can be
rejected. Interestingly, for almost all magnetometers, the MEG
data decodes Shannon surprise best and Bayesian surprise worst.
However, these comparisons are also statistically assessed using
paired t-test to see whether the difference of decoding powers
between pairs of surprise values is significant for each channel
considering the subjects as samples. The resulting p-values are
plotted as topographic maps in Figure 5D with lower p-value
shown in yellow. The p-values are uncorrected and shown
in logarithmic scale for better visualization. These plots are
produced using the FieldTrip toolbox (Oostenveld et al., 2011)
on the “neuromag306mag” layout, which is shown in Figure 5B.
Then, the average values of the decoding power over the subjects
are plotted as topographic maps in Figure 5C in which the
brighter channels are the best magnetometers that can be selected
for decoding Shannon (middle), Bayesian (left), and confidence-
corrected (right) surprise values.

In the second part of the analysis, the decoding power of each
channel is assessed temporally for the three defined segments
of Early, Middle, and Late (see Figure 2). The goal is to gain
an insight into the spatiotemporal value of the data in terms
of describing surprise. Figure 6 depicts topographic plots of
decoding powers for the three surprise quantifications for each
of the mentioned temporal segments. The Middle segment
possesses the highest level of decoding power, and the Late
segment offers a lower decoding power compared to the Middle
segment. These topographies in the Early and Late segments
include the areas reported by Wacongne et al. (2011) for the
effect of local mismatch at 120 ms and the effect of global
deviance at 350 ms after the onset. Local mismatch and global
deviance can lead to high theoretical surprise and relate the
temporal samples reported by Wacongne et al. (2011) to our
results. In addition, Strauss et al. (2015) reported the effect of
local mismatch at 150 ms and the global variance at 350 ms
for MEG data, which are correlated with the temporal segments
used to decode surprise in the Middle and Late segments
in our analysis.

DISCUSSION

Evidence for Bayesian Brain and Ideal
Observer
The assumptions of the Bayesian brain and the ideal observer
(Knill and Pouget, 2004; Behrens et al., 2007; Mathys et al., 2011;
Nassar et al., 2012, 2010) are embedded in the way we have
calculated the theoretical surprise of each stimulus. Although
there are three different approaches for defining this surprise,

all are based on the parameters learned following the Bayesian
brain and ideal observer assumptions. Our results demonstrate
the feasibility of decoding these three quantifications of the
theoretical surprise on a trial-by-trial basis with significant
decoding power, and hence provide new evidence for supporting
the Bayesian brain and ideal observer assumptions.

Optimal Use of Temporal Components in
Measuring Surprise
A remarkable distinction of our work is that we have
not considered any single predefined temporal sample as
a representative for the surprise of the brain. Extracting
a reliable single temporal value from each epoch (even
after epoch averaging, which is a common practice in
ERP analysis) is a complex and rather ad hoc procedure
(Debener et al., 2005; Cecotti and Graser, 2010; Turnip
et al., 2011; Amini et al., 2013; Kolossa et al., 2013). In our
approach, we use data from the entire response on a trial-
by-trial basis to derive the surprise of the brain as a linear
combination of the samples of the response with optimally
determined weights.

Optimal Use of the Spatially Distributed
Effects of Surprise
Earlier studies based on fMRI data analysis have reported that
the Shannon and Bayesian surprise values are modulated in
different brain regions (Ostwald et al., 2012; O’Reilly et al., 2013;
Schwartenbeck et al., 2016; Visalli et al., 2019). In addition, the
well-known surprise-related components of the ERP signal such
as MMN and P300 have been shown to emanate from the fronto-
parietal and the fronto-central regions of the brain, respectively
(Giard et al., 1990). In the current study, we have not imposed
any spatial preferences between the magnetometers or among
the ICs with spatial distributions close to the known sources
of surprise in the brain. This choice offers generality to our
analysis through employing all available data and letting the
decoders capture all the relevant information during the training
procedure. In fact, we employed a sparse regression model, which
forces the coefficients of the surprise-irrelevant temporal/spatial
components to be zero.

Optimizing the Timescale of Integration
The best description for the Bayesian surprise derived from
the brain’s response occurs when a rather short window of
integration is used. This behavior stems from the very definition
of the Bayesian surprise. The value of the KL divergence
constantly decreases as we increase the timescale of integration
since the two distributions involved become closer to each
other. Given the rather short window of integration involved
in keeping track of the Bayesian surprise, this quantification
of surprise tends to be more sensitive to fluctuations in
the recorded data compared to the Shannon and confidence-
corrected surprises. The latter two use longer windows of
integration, and are hence more robust to such fluctuations and
can provide more accurate estimates of the underlying statistics
of the input sequence generation process. This superiority is
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FIGURE 6 | Sensor-level topographies of decoding powers of three surprise values in different channels using the Early, Middle, and Late segments. Note that a
different color scales is used in each plot for better visibility of areas with high decoding powers. Also, p-values are logarithmically scaled for better visualization.

reflected in the higher decoding performance for these two
concepts of surprise over the Bayesian surprise as illustrated
across all of our results.

Magnetoencephalography and
Electroencephalography Comparison
Malmivuo (2012) suggested that MEG and EEG recordings
are only partially independent. While EEG-based studies have
provided an understanding of the temporal and spatial signatures
of surprise, the better signal-to-noise ratio and readability of the
MEG recordings compared to EEG (Hämäläinen et al., 1993;
Strauss et al., 2015) offer opportunities based on MEG data for
further examination of the mechanisms that generate surprise in
the brain. A larger number of recording sensors distributed more
densely across the head, as is often the case for MEG recordings,
provides better coverage of local activity beneath the scalp.

A likely explanation for the lower performance of the late
components in the MEG analysis in our decoding model, which

do not reflect the powerful P300 response in EEG data, can be that
while each EEG sensor collects and integrates data from a rather
distributed and deep set of sources in the brain (Malmivuo and
Plonsey, 1995), each MEG sensor can only capture the activities
of sources in its close proximity beneath the scalp (Schomer and
Da Silva, 2012). The surprise generation mechanisms of the brain
transmit signals to a number of different regions of the brain,
which in turn produce the late components of surprise which are
distributed and diffused. The relatively lower decoding power of
the late components in MEG records can be explained by noting
that since these late components are generated by distributed
sources, MEG sensors may not be able to adequately capture them
(Wacongne et al., 2011; Ilmoniemi and Sarvas, 2019).

Spatial Signatures of Surprise
Frontal regions of the cortex (including the dorsal cingulate
cortex) were reported in fMRI studies (e.g., by Schwartenbeck
et al., 2016) to modulate activities related to information-
theoretic (Shannon) surprise. The posterior parietal cortex
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(O’Reilly et al., 2013) and the inferior frontal gyrus are proposed
as two regions that correlate with both the Shannon and Bayesian
surprises (Visalli et al., 2019). Our observations on data collected
from the scalp by MEG sensors are in agreement with these
fMRI-based studies. Magnetometers placed on the two sides of
the frontal midline may detect the surprise-related activity of
the dorsal cingulate cortex, which is located closer to the scalp,
while magnetometers placed on the two sides of the parietal
midline may detect the activities of the posterior parietal cortex
(see Figures 5, 6). However, making interpretations about the
sources evoked by auditory stimulation which result in such
topographic maps is subject to ambiguity as discussed in the
literature for some time (Hämäläinen et al., 1995). On the one
hand, interpretations such as above may be challenged in light
of the implied orientation of the underlying sources, i.e., to
have both the cingulate and posterior parietal source dipoles be
oriented along the anterior-posterior axis, which is not expected
anatomically. Accordingly, an alternative interpretation of the
topographic maps in Figures 5, 6 could be that they might
reveal activities corresponding to bilateral superior temporal
lobe sources as maps similar to those are typically evoked by
auditory stimuli and are reported to indicate bilateral auditory
cortex sources (Zevin, 2009). On the other hand, some studies
argue for not attributing MEG sources to deep regions of
the brain (like temporal lobe) by pointing out that the MEG
data acquisition is most sensitive to superficial sources, and
that its sensitivity is much reduced for deep sources (Cohen
and Cuffin, 1983; de Jongh et al., 2005; Ahlfors et al., 2010).
According to such observations, attributing the four maxima in
the maps of Figures 5, 6 to frontal and parietal source pairs
may be a possibility. However, and adding to the complexity
of making interpretations on the MEG topographical maps,
one could also mention the possibility that bilateral sources in
the auditory cortices may also produce an extra deflection in
these maps close to the posterior midline due to the proximity
of fields from the two sources which have opposite directions
(Hämäläinen et al., 1995).

CONCLUSION

Surprise and its impact have been well characterized in many
studies on social interactions as well as in computational
frameworks using recorded brain signals. However, an
information-theoretical model to describe and predict the
surprise level of an external stimulus in recorded MEG data

has not been reported to date. The current study proposed a
regression model for decoding the level of the brain’s surprise in
response to sensory sequences using optimally selected temporal
components of recorded MEG data. Three surprise quantification
definitions, Shannon, Bayesian, and confidence-corrected, were
assessed in offering decoding power in modeling the recorded
data. Four different regimes for selecting temporal samples
were used to evaluate which parts of the recorded data contain
signatures that best represent the brain’s surprise. We found that
the middle temporal components of the MEG response offer the
strongest power for decoding surprise. The best magnetometers
for collecting the activities related to all three concepts of surprise
were found to be in the right and left fronto-central regions.
Measuring surprise of the brain by decoding techniques such
as the method proposed in the current study can complement
data obtained via behavioral observations in order to devise
computational models for evaluating the effect of surprise in
social interactions.
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