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Autophagy as a ubiquitous catabolic process causes degradation of cytoplasmic
components and is generally considered to have beneficial effects on health and
lifespan. In contrast, inefficient autophagy has been linked with detrimental effects on
the organism and various diseases, such as Parkinson’s disease. Previous research,
however, showed that this paradigm is far from being black and white. For instance,
it has been reported that increased levels of autophagy during development can be
harmful, but become advantageous in the aging cell or organism, causing enhanced
healthspan and even longevity. The antagonistic pleiotropy hypothesis postulates that
genes, which control various traits in an organism, can be fitness-promoting in early
life, but subsequently trigger aging processes later. Autophagy is controlled by the
mechanistic target of rapamycin (mTOR), a key player of nutrient sensing and signaling
and classic example of a pleiotropic gene. mTOR acts upstream of transcription
factors such as FOXO, NRF, and TFEB, controlling protein synthesis, degradation, and
cellular growth, thereby regulating fertility as well as aging. Here, we review recent
findings about the pleiotropic role of autophagy during development and aging, examine
the upstream factors, and contemplate specific mechanisms leading to disease,
especially neurodegeneration.
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INTRODUCTION

The Concept of Antagonistic Pleiotropy
The hypothesis of antagonistic pleiotropy was postulated in 1957 by the American evolutionary
biologist George C. Williams (1957). It describes the phenomenon when a gene is responsible
for more than one phenotypic trait in an organism, whereas at least one trait is beneficial, and
one trait is detrimental for this organism. In regard to aging, this often means that a genetic
program controlling traits, which is beneficial for development and/or reproduction, is causative
for senescence later in life. Thus, antagonistic pleiotropy is often referred to as Trade-off theory of
aging. A potentially deleterious allele for late life does still underly positive evolutionary pressure
in early life, when its effects are beneficial for reproduction of the organism. Therefore, such
mutations are not selected against and can accumulate in a population, causing an age-specific
decline in organismal performance (Williams, 1957; Moorad and Hall, 2009; Wachter et al., 2013).
The antagonistic pleiotropy hypothesis further suggests that aging is a by-product of an investment
in development and reproduction, and that genetic variants favored in the fertile stages could cause
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senescence later in life. Attempts to test the hypothesis of
antagonistic pleiotropy has sometimes resulted in contradictory
results, and it may be best to consider that the different
theories of aging complement one another in terms of describing
mechanisms of aging. Since aging is difficult to study in humans,
given our life expectancy, ethical concerns and feasibility,
data mostly derive from non-human model organisms such as
Drosophila melanogaster and Caenorhabditis elegans (Flatt, 2009,
2011; Anderson et al., 2011). However, developments in DNA
sequencing technology within the last decade have led to human
genome-wide association studies (GWAS) and allowing detailed
insights not only into the genetic basis of disease, but also how
they are involved in the aging process. Rodriguez et al. (2017)
described the first systematic evidence of senescence genes being
associated with pleiotropies in 2017, suggesting a fundamental
role of pleiotropy in human aging patterns. They identified 26
early–late onset antagonistic pleiotropies in 19 loci and evidence
for positive selection in some of them. For instance, the single-
nucleotide polymorphism rs2157719 in the CDKN2A gene is
protective for glioma in early life, while exhibiting deleterious
effects at older ages, including an increased risk of type 2 diabetes,
coronary heart disease, glaucoma and nasopharyngeal cancer.
The authors suggest that protection from glioma, a frequent
early onset and fatal cancer, has been favored at the costs of
increased risk of the deleterious later-onset conditions. Another
recent study analyzing GWAS data confirmed that pleiotropy has
a very common, if not ubiquitous occurrence in human disease
(Chesmore et al., 2018).

The Mechanistic Target of Rapamycin
(mTOR) Pathway and How It Fits in the
Theory of Antagonistic Pleiotropy
In the mechanistic target of rapamycin (mTOR) pathway the
concept of antagonistic pleiotropy becomes particularly clear
(Blagosklonny, 2014). mTOR is needed for development and
reproduction, as its functional absence is lethal in embryogenesis
(Gangloff et al., 2004; Shiota et al., 2006). Later in life, however,
active mTOR drives senescence and increases risk of diseases
(Kapahi et al., 2010).

mTOR is an evolutionary highly conserved serine/threonine
protein kinase of the PI3K-related kinase family. It forms the
catalytic subunit of two distinct protein complexes; mTOR
Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2)
(Saxton and Sabatini, 2017). mTORC1 consists of three major
components – mTOR, Raptor (regulatory protein associated
with mTOR), and mLST8 (mammalian lethal with Sec13 protein
8, also known as GßL) (Hara et al., 2002; Kim et al., 2002,
2003). Raptor binds to the TOR signaling motif on several
mTORC1 substrates (such as S6 kinase, 4E-BP1, and NPRL2,
as described later), therefore facilitating substrate recruitment
to mTORC1 (Nojima et al., 2003; Kwak et al., 2016). mLST8,
however, is associated with the catalytic domain of mTORC1
and may stabilize the kinase activation loop (Yang et al., 2013).
Additionally to the three core components, mTORC1 further
contains the two inhibitory subunits PRAS40 (proline-rich Akt
substrate of 40 kDa) and DEPTOR (DEP domain containing

mTOR interacting protein) (Vander Haar et al., 2007; Peterson
et al., 2009). The naturally occurring drug and mTOR name
giver rapamycin directly inhibits mTORC1, whereas mTORC2 is
insensitive to acute rapamycin treatment. Similar to mTORC1,
mTORC2 also comprises of mTOR and mLST8, but instead
of Raptor it contains Rictor (rapamycin insensitive companion
of mTOR), an unrelated protein that potentially serves an
analogous function (Sarbassov et al., 2004). Furthermore,
mTORC2 contains DEPTOR and the regulatory subunits mSin1
and Protor1/2 (Yang et al., 2006; Pearce et al., 2007; Peterson et al.,
2009). mTORC1 and 2 regulate different cellular processes in
response to environmental clues, however, mTORC1 controls the
balance between anabolism and catabolism, most notably in this
context autophagy, and will therefore be the focus of this review.

The mTOR pathway is activated by hormones, growth
factors, and nutrients such as glucose, amino acids, and
fatty acids. These stimuli, except for amino acids, activate
mTORC1 via the tuberous sclerosis TSC1–TSC2 complex
and the small GTPase Ras homolog enriched in the brain
(Rheb). Hormones such as insulin and growth factors including
insulin-like growth factors (IGFs) signal to mTORC1 through
the insulin receptor/phosphoinositide 3-kinase/AKT signaling
pathway, where mTORC1 is activated by AKT/protein kinase
B (Sarbassov et al., 2006). Amino acids promote mTORC1
translocation to the lysosomal membrane, where it becomes
activated upon conversion of RagA or RagB GTPases from a
GDP- to GTP-bound state with the help of the folliculin tumor
suppressor (Bar-Peled et al., 2012; Tsun et al., 2013).

Subsequently, the mTOR pathway regulates transcription
factors such as FOXO, FOXA, NRF, NF-κB, SREBPs, and TFEB,
and induces ribosome biogenesis, protein synthesis, cellular
growth and secretion of pro-inflammatory and mitogenic factors,
and inhibits autophagy when food is plentiful (Wullschleger
et al., 2006; Peterson et al., 2011; Zhou et al., 2018). In general,
under unfavorable conditions, mTOR is inhibited, leading to the
inhibition of global protein synthesis and major savings of energy.

There are two major downstream targets of mTORC1; the
eukaryotic initiation factor 4E-binding protein (4E-BP) and
the ribosomal subunit p70S6 kinase 1 (S6K). Both initiate
mRNA translation initiation and thereby protein synthesis
(Hay and Sonenberg, 2004; Sonenberg and Hinnebusch,
2009). mTORC1 directly phosphorylates S6K, leading to
subsequent phosphorylation and activation by PDK1. S6K then
phosphorylates and activates several substrates that promote
mRNA translation initiation, including a positive regulator of
the 5′cap binding eIF4F complex called eIF4B (Holz et al.,
2005). S6K also promotes the degradation of PDCD4, an
inhibitor of eIF4B, via phosphorylation, and increases translation
efficiency of spliced mRNAs (Dorrello et al., 2006; Max et al.,
2008). 4E-BP is unrelated to S6K and inhibits translation
by binding and sequestering eIF4E to prevent formation of
the eIF4F complex. mTORC1 phosphorylates 4E-BP to trigger
its dissociation from eIF4E, enabling 5′cap-dependent mRNA
translation (Gingras et al., 1999).

mTOR furthermore enables cellular growth by providing
sufficient lipids for membrane formation and expansion. De
novo lipid synthesis is promoted by mTORC1 through activation
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of the sterol responsive element binding protein (SREBP)
transcription factors, which subsequently regulate expression of
genes involved in cholesterol and fatty acid synthesis (Porstmann
et al., 2008; Duvel et al., 2010). Furthermore, mTORC1 increases
the translation of the transcription factor HIF1α, thus facilitating
cell growth by inducing a shift in glucose metabolism from
oxidative phosphorylation to glycolysis, which has been shown
to incorporate nutrients into new biomass (Duvel et al.,
2010). Recent studies have found that mTORC1 also promotes
nucleotide biogenesis required for DNA replication and ribosome
synthesis in growing and proliferating cells by facilitating purine
synthesis (Ben-Sahra et al., 2016).

mTOR and Autophagy
As outlined above, mTOR promotes anabolic cellular processes
leading to growth. This is further facilitated by the suppression
of protein catabolism, most notably autophagy. Autophagy is
a basic catabolic process in the cell that degrades damaged
organelles or dysfunctional proteins to gain energy or free
amino acids. Three different types of autophagy have been
defined: microautophagy, chaperon-mediated autophagy and
macroautophagy, with the latter being the predominant form
(referred to as autophagy hereafter). During the first step of
autophagy, the cytoplasmic components that are to be degraded
are engulfed in a double membrane, building the so-called
autophagosome. Autophagosomes then fuse with lysosomes (or
vacuoles in plant and yeast cells), exposing their contents to
hydrolases, which catalyze degradation (Levine and Klionsky,
2004; Mizushima and Komatsu, 2011). Originally believed to
be stress-induced, it is now clear that a cell needs basal levels
of autophagy to maintain homeostasis, however, the process
is strongly activated upon stress. Particularly the absence of
nutrients and growth factors as in calorie restriction are strong
inducers of autophagy. Other forms of stress that induce
autophagy are DNA or protein damage, reactive oxygen species
(ROS), or pathogens. In eukaryotes, autophagy is a tightly
regulated process with mTOR being one of the most important
regulators (Neufeld, 2010). Upon stress, mTOR is inhibited,
leading to the induction of autophagy in yeast, C. elegans,
Drosophila, and mammals (Noda and Ohsumi, 1998; Ravikumar
et al., 2004; Hansen et al., 2008; Kenyon, 2010).

On a molecular level, autophagy induction is mediated by
activation of ULK1 (Atg1 in yeast, UNC-51 in C. elegans),
a serine/threonine kinase that forms a complex with ATG13,
FIP2000, and ATG101 (Chang and Neufeld, 2009; Nazio
et al., 2013). When nutrients are plentiful, mTOR-dependent
phosphorylation of ATG13 suppresses the ULK1 complex,
thereby preventing its activation by AMPK, a key activator of
autophagy (Kim et al., 2011). Hence, the relative activity of
AMPK and mTOR, which can be seen as counterplayers in the
cell, determine autophagy induction and activity. Under nutrient
deprivation or stress, mTORC1 is inhibited by various pathways,
increasing ULK1 activity, leading to autophagosome nucleation
and elongation, early activation steps in the autophagic process
(Rabinowitz and White, 2010). mTOR furthermore regulates
autophagy by phosphorylating and thus inhibiting the nuclear
translocation of the transcription factor TFEB, which shifts

gene expression toward lysosomal biogenesis and the autophagy
machinery (Martina et al., 2012; Roczniak-Ferguson et al., 2012;
Settembre et al., 2012). Additionally, AMPK has been found to
promote autophagy through mTOR-dependent TFEB activation
and increasing the levels of the arginine methyltransferase
(CARM1), an important cofactor for TFEB transcription (Shin
et al., 2016; Young et al., 2016). In the Drosophila larval fat
body, a functional homolog of vertebrate liver and adipose tissue,
starvation induces autophagy via inactivation of mTOR and its
upstream regulators phosphoinositide 3-kinase and Rheb (Scott
et al., 2004). Strikingly, the same study has found that S6K activity
is required to induce autophagy, contradicting the predominant
opinion that S6K acts solely as autophagy suppressor. In line
with these findings, rapamycin-induced inhibition of mTOR
enhances the kinase activity of ULK1, whereas mTOR activation
through Rheb overexpression represses ULK1 (Jung et al., 2009).
Moreover, it has been suggested that mTOR indirectly inhibits
autophagy through the phosphorylation of autophagy/Beclin-1
regulator 1 (AMBRA1), which prevents ubiquitination of ULK1,
causing ULK1 self-association, stabilization, and enhancement
of its kinase activity under starvation (Nazio et al., 2013).
A recent study has found that inflammation processes induced
by lipopolysaccharides activate mTOR and inhibit autophagy via
the upstream toll-like receptor 4 (TLR4) signaling pathway and
downstream NF-κB activation (Zhou et al., 2018). In addition
to these findings, several other mechanisms have been proposed
as to how mTOR impacts autophagy. These include mTOR-
dependent regulation of death-associated protein 1 (DAP1), a
suppressor of autophagy, and WIPI2, a mammalian ortholog of
Atg18 (a regulator of autophagosome formation in yeast), which
was identified as potential mTOR effector (Koren et al., 2010;
Hsu et al., 2011).

Underlying this classic example of a pleiotropic pathway,
mTOR-mediated autophagy regulation is prone to be a
pleiotropic process itself, and recent research strongly
suggests that activity of autophagy has various effects ranging
from beneficial to detrimental depending on the state of
development and aging.

mTOR-Independent Regulation of
Autophagy
Apart from the regulation of autophagy by mTORC1, various
mTOR-independent autophagy pathways have been described.
A major pathway in this regard is the inositol signaling
pathway, as elevation of intracellular inositol or Ins(1,4,5)P3
levels can inhibit autophagosome formation (Sarkar et al.,
2005). Ins(1,4,5)P3 acts as a second messenger and binds to
its receptors (IP3R) on the endoplasmatic reticulum, thereby
releasing Ca2+ into the cytoplasm that elicits a range of
cellular responses, including regulation of autophagy (Criollo
et al., 2007). It has been shown that elevation in intracellular
Ca2+ has complex effects in impairing autophagy, which affects
both autophagosome formation and autophagosome–lysosome
fusion (Williams et al., 2008; Ganley et al., 2011). A screen
of FDA-approved drugs also revealed several compounds that
regulate autophagy in an mTOR-independent manner via the
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modulation of cytosolic Ca2+ (Zhang et al., 2007). Furthermore,
several studies have shown that elevation of intracellular levels
of the second messenger cAMP inhibits autophagy (Noda
and Ohsumi, 1998), as well as the JNK1/Beclin-1/PI3KC3
pathway (Pattingre et al., 2005), within which the leucine rich
repeat kinase 2 (LRRK2) plays a major role in controlling
autophagy (Manzoni et al., 2016). Additionally, several small
molecules have been identified that regulate autophagy mTOR-
independently, many of them with an unknown mechanism of
action. For instance, trehalose, a disaccharide found in various
non-mammalian species, is a potent autophagy activator (Sarkar
et al., 2007). Furthermore, ROS have been reported as early
inducers of autophagy upon nutrient deprivation and other
circumstances, where the p62/Keap1/Nrf2 pathway is of major
importance (Ristow and Schmeisser, 2014; Filomeni et al., 2015).
Notably, ROS can regulate autophagy both mTOR-dependently
and independently.

AGE-RELATED CHANGES IN
AUTOPHAGY

It is now generally accepted that autophagic regulation
and maintenance underlies major changes during lifespan,
a phenomenon that has been studied mainly in model
organisms such as yeast, C. elegans and Drosophila, but also
rodent models and aged mammalian tissue. However, it is
not clear whether increases or decreases in autophagy are
causally related to aging and age-associated impairment of
cellular function and organismal health (Levine and Kroemer,
2008). There is considerable evidence that the efficiency of
autophagic degradation declines with age, which could lead to an
accumulation of dysfunctional organelles and damaged proteins
that contribute to cellular aging (Cuervo, 2008; Ghosh et al.,
2016; Ott et al., 2016; Zhang et al., 2017; Zhou et al., 2017; Li
et al., 2018). In contrast, it has been suggested that activation
of autophagy during aging leads to enhanced clearance of aged
cellular components, which improves health span (Escobar et al.,
2019; Miyamoto, 2019; Shi et al., 2019; Singh et al., 2019). In
general, it is suggested that autophagic processes are increased
in animals with a long lifespan, and that autophagy is essential
to mediate said lifespan extension (Chang et al., 2017; Arensman
and Eng, 2018). Vice versa, this suggests that impaired autophagy
activity causes rapid aging and age-related diseases, which
indeed may be the case for diseases like diabetes, cardiovascular
disease, neurodegenerative diseases and cancer (reviewed in Saha
et al., 2018). Furthermore, if autophagy is linked to antagonistic
pleiotropy, the beneficial effect of increased autophagy in later
life would insinuate that high autophagic activity is problematic
during development, or that low autophagy is beneficial during
development and detrimental in aging (Figure 1).

Methodological advancements in genetics and imaging
technology now allow for the study of autophagy in great
detail. A means of quantifying autophagy in different cell
types is monitoring autophagosome formation by expressing
fluorescently marked Atg8 (in yeast)/LGG-1 (in C. elegans),
which are orthologs of mammalian LC3 (Klionsky et al., 2016).

When not being employed in autophagy, Atg8/LGG-1 is
distributed evenly in the cytosol. When autophagosomes form,
Atg8/LGG-1 is cleaved, conjugated to phosphatidylethanolamine
and inserted into the vesicle double membrane. Autophagosomes
then occur as puncta and can be quantified. However, as this
only reports the steady-state and not the rate of autophagosome
formation and metabolization into autolysosomes, important
information could be lost. Therefore, a tandem-tagged
mCherry-GFP-Atg8/LGG-1 reporter has been developed
that monitors both autophagosomes (yellow [green/red] puncta)
and autolysosomes (red puncta as GFP fluorescence quenches in
the acidic autolysosome environment), the so-called autophagic
flux (Kimura et al., 2007; Manil-Segalen et al., 2014; Mauvezin
et al., 2014; Klionsky et al., 2016). Several studies have addressed
the autophagic flux at different stages during C. elegans lifespan.
It was suggested that autophagic functionality increases during
development until day 2 of adulthood (Chapin et al., 2015).
Another study found that autophagosome formation increases
up to day 10 of adulthood in different tissues, including neurons,
intestine, muscle, and pharynx (Chang et al., 2017). However,
it was observed that the flux became increasingly dysfunctional
with age and the observed increase in autophagic vesicles
was due to impaired degradation and accumulation. This was
confirmed by other researchers, who identified a blockage of the
late autophagic flux, leading to accumulation of autophagosomes
(Wilhelm et al., 2017). In a study using C. elegans in our
laboratory we found a similar phenomenon: Autophagosome
numbers increased up to day 9 of adulthood, and this cannot
be regulated by starvation, suggesting that autophagy is “out of
control” as the animals get older (Schmeisser and Parker, 2018).

To study the effect of aging on autophagy in humans,
several human tissues have been examined. Studies in human
skin fibroblasts found that the number of autophagosomes and
amount of LC3 is not significantly different between young
and old cells (Demirovic et al., 2015; Kim et al., 2018), but
that autophagic degradation is impaired (Tashiro et al., 2014).
Furthermore, human skeletal muscle has been shown to be robust
to changes in autophagy markers during aging, in contrast to
several studies in mice and rats where a divergent regulation
of autophagy with aging was reported (Garcia-Prat et al., 2016;
Fan et al., 2017; Zhou et al., 2017; Dethlefsen et al., 2018).
For instance, autophagosome accumulation and dysfunctional
degradation have been reported repeatedly in aging muscle; a
phenomenon that had also been observed in post-mortem brain
samples from old tauopathies patients (Piras et al., 2016). Other
studies in brain tissue from mammalian models and humans have
found conflicting results and further research is needed to shed
light on this topic (reviewed in Loeffler, 2019). Autophagy has
also been shown to play a major role in physiology, development,
and aging of the eye, and many eye diseases that mostly occur
with aging display alterations in autophagic pathways (reviewed
in Boya et al., 2016). In cardiac tissue, autophagy dysfunction has
been reported in aging rodent models and in a limited number of
human studies (reviewed in Linton et al., 2015).

Some of the effects of inefficient or dysfunctional autophagy
during aging might be mediated by rubicon (Run domain Beclin-
1 interacting and cysteine-rich containing protein), which is
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FIGURE 1 | (A) Autophagy levels have to be tightly regulated, and both too high or too low levels can be detrimental for the cell and the organism. (B) Autophagy
demand changes during aging. During development and early life, when less dysfunctional proteins and organelles occur in the cell, low levels of autophagy are
beneficial. An intervention increases the autophagy, such as mTOR inhibition, can be detrimental. In late life, high autophagy levels are beneficial, and an intervention
that in early life would be deleterious can become beneficial.

a highly conserved negative regulator of autophagy. Rubicon
expression is upregulated during aging in worms, flies, and mice,
leading to decreased autophagy via inhibiting autophagosome-
lysosome fusion and endocytic trafficking (Matsunaga et al., 2009;
Nakamura et al., 2019).

mTOR-DEPENDENT AUTOPHAGY IN
DEVELOPMENT AND AGING − A BAD
START COMPENSATES FOR LATER

A classic inhibitor of mTOR is rapamycin (Sirolimus), which
is used as immunosuppressor and antiproliferative drug in
human medicine. Inhibition of mTOR by rapamycin and other
interventions, which potently induces autophagy, has been
shown to improve healthy aging and lifespan throughout various
species, however, at the cost of development. Vice versa, active

mTOR is beneficial in development at the cost of aging. Classic
antagonistic pleiotropy of mTOR inhibition was first described
in C. elegans (Vellai et al., 2003): Mutants of LET-363 (LET
for lethal), the nematode ortholog of mTOR, arrest before they
become fertile as L3 larvae but have a strikingly extended
lifespan. A similar pleiotropic phenotype had been described
in mutants of the insulin/IGF-1 receptor DAF-2: while their
fertility is reduced, they show remarkable longevity (Tissenbaum
and Ruvkun, 1998). Interestingly, the lifespan of DAF-2 animals
cannot be further extended when mTOR is inhibited, suggesting
a common mechanistic pathway (Vellai et al., 2003). A direct
interaction between insulin and mTOR signaling was shown by
Jia et al. (2004). Later studies found that autophagy is essential
for both the longevity caused by DAF-2 mutation and mTOR
inhibition (Melendez et al., 2003; Hansen et al., 2008; Toth
et al., 2008). In other species, mTOR inhibition resembles the
pleiotropic phenotypes observed in C. elegans, and it is now
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clear that autophagy is a major mediator of longevity due to
mTOR inhibition in yeast (Alvers et al., 2009; Matecic et al.,
2010), Drosophila (Kapahi et al., 2004; Bjedov et al., 2010) and
mice (Harrison et al., 2009). On the other hand, however, this
longevity again comes at the price of early developmental caveats:
In budding yeast, the deletion of six genes implicated in the TOR
signaling pathway extended lifespan, however, some deletion
mutants were slow growing and deletion of both paralogs could
be lethal (Kaeberlein et al., 2005). In Drosophila, a homozygous
mutation in S6K leads to developmental delay and a reduction
in body size (Montagne et al., 1999; Um et al., 2006), while
overexpression of the constitutively active form of S6K caused
significant shortening of the lifespan with no developmental
constraints (Kapahi et al., 2004). Rapamycin treatment in female
flies caused potent lifespan extension, but significant reduction
of brood size (Bjedov et al., 2010). Furthermore, mTOR has been
established in mammals as a central developmental regulator of
cell, organ, and organismal size in mammals (reviewed in Saxton
and Sabatini, 2017). Conversely, mice with a constitutively active
allele of RagA that prevents mTORC1 inhibition by nutrient
starvation develop normally, but do not survive starvation
periods because they cannot switch from an anabolic to a
catabolic state (Efeyan et al., 2013).

A way around the negative effects of antagonistic pleiotropy in
mTOR-dependent autophagy was tested in Harrison et al. (2009),
when mice were given rapamycin to inhibit mTOR only from
the advanced age of 600 days, which in human resembles about
60 years, and they still showed enhanced lifespan with no major
side effects. Notably, the lifespan could not further be increased
when rapamycin treatment started at a younger age of 270 days
(Harrison et al., 2009).

PLEIOTROPIC EFFECTS OF
mTOR-DEPENDENT AUTOPHAGY IN
NEURODEGENERATION

Neurons are particularly vulnerable to dysregulated autophagic
processes because they are post-mitotic cells and unable to
undergo cytokinesis, so damaged organelles and aggregated
proteins are not being diluted by cell divisions (Nixon, 2013).
A common hallmark for many neurodegenerative diseases are
aggregated and dysfunctional proteins, which would be degraded
by normal autophagy. Indeed, impaired autophagy has been
reported for many major neurodegenerative diseases such as
Alzheimer’s disease (Boland et al., 2008), Parkinson’s disease
(Michel et al., 2016), Huntington’s disease (HD) (Martinez-
Vicente et al., 2010), and amyotrophic lateral sclerosis (Chen
et al., 2012). Whereas neurodegenerative diseases usually occur
later in life, impaired autophagy also plays a key role in
neurodevelopmental or early onset psychiatric disorders, such
as autism spectrum disorder and schizophrenia (Bowling and
Klann, 2014; Merenlender-Wagner et al., 2015; Kim et al., 2017).
In all the mentioned disorders, it is not clear if increased or
decreased autophagy activity is the culprit of disease initiation
or progression, and we propose that there might be a role
for antagonistic pleiotropy in autophagy underlying neuronal

disease. Our previous research has shown that increased neuronal
autophagy leads to lifespan extension and lower levels of neuronal
cell loss in old C. elegans (15 days, which in humans may resemble
an age of around 65 years), however, at the cost of reduced fertility
and behavioral abnormalities in young animals (Schmeisser and
Parker, 2018). The molecular pathway that is responsible for
autophagy comprises of a leucine carboxyl methyltransferase
(LCMT1), which methylates and thus activates the catalytic
subunit of protein phosphatase 2A (PP2A). Methylated PP2A
subsequently dephosphorylates the NPR2-like GATOR1 complex
subunit that is part of a complex that controls autophagy via the
regulation of mTOR (Sutter et al., 2013; Laxman et al., 2014).
A recent study in tissue culture has found that dependent on
the phosphorylation status of NPRL2 and amino acid availability,
NPLR2 binds either to Raptor, which will activate mTORC1 when
there are plentiful amino acids and NPRL2 is phosphorylated.
When NPRL2 is dephosphorylated and amino acids are scarce, it
will bind to RagGTPases, which will inhibit mTORC1 leading to
activation of ULK1 and therefore autophagy (Kwak et al., 2016).
Furthermore, we and others have found an important role for
S-adenosyl-methionine (SAM) in this regard, as SAM is used
as methyl group donor in the methylation catalyzed by LCMT1
(Sutter et al., 2013; Schmeisser and Parker, 2018). We speculated
that SAM serves as nutrient sensor in the cell, because we found

FIGURE 2 | Metabolic regulation of pleotropic autophagy. One mechanism
that may contribute to the differential effects of autophagy on aging
phenotypes is metabolism of S-adenosyl methionine (SAM). The enzyme
nicotinamide N-methyl-transferase (NNMT) methylates nicotinamide (NAM) to
N-methylnicotinamide (MNA) SAM as the methyl group donor. This reduced
cellular concentration of SAM precludes it from functioning in the
LCMT1/PP2A/NPRL2 pathway, that in turn regulates autophagy. Thus, the
relative expression levels of enzymes like NNMT during aging can influence
autophagy with have profound effects on neuronal function and survival.
Created with BioRender.com.
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that SAM levels are increased when C. elegans are starving and
that low SAM will induce autophagy in the cell (Figure 2). This
could also be mediated by the recently discovered SAMTOR, a
previously uncharacterized protein, which interacts with mTOR
and inhibits mTOR signaling when SAM concentration is low
(Gu et al., 2017). Furthermore, C. elegans with a deletion
mutation in S-adenosyl methionine synthetase (sams-1), the
enzyme responsible for bulk SAM production in the worm, show
significantly decreased SAM levels and increased autophagy,
which is accompanied by extremely reduced brood size, slow
growth, and longevity – classical antagonistic pleiotropy (Hansen
et al., 2005; Schmeisser and Parker, 2018).

Another example for this phenomenon in neurodegeneration
is found in patients of HD, a rare autosomal dominant
disease, with an onset in post-reproductive stages and a strong
involvement of autophagy (Son et al., 2012). Several decades ago
it was reported that individuals affected by HD have increased
reproductive fitness, even before the underlying molecular
mechanism of the intergenerationally increasing number of CAG
trinucleotide repeats in HD was known (Shokeir, 1975; Albin,
1993; MacDonald et al., 1993). Shokeir reported in 1975 that
HD patients have 39% more children than healthy controls
(Shokeir, 1975). Furthermore, HD patients have significantly
lower rates of some cancers, which was associated with higher
expression of the tumor suppressor gene p53. p53 induces
higher apoptosis rates, and high apoptosis could also be linked
to neurodegenerative episodes in HD (Sorensen et al., 1999;
Eskenazi et al., 2007). Strikingly, increasing autophagy via
rapamycin or genetic inhibition of mTOR has been shown
to be neuroprotective in cell, fly and mouse models of
HD as protein aggregates are degraded and polyglutamine
expansion toxicity is reduced (Ravikumar et al., 2004; Sarkar
et al., 2009; Martin et al., 2015). This could also be achieved
by activation of AMPK or small molecules, both of which
inhibit mTOR (Tsvetkov et al., 2010; Walter et al., 2016).
Interestingly, a recent study found that induction of neuronal
autophagy in a mouse model of HD could also be achieved by
intermittent fasting, an intervention known to inhibit mTOR
(Ehrnhoefer et al., 2018).

CONCLUSION

Given the number of remarkable new findings regarding
autophagy that are being published continuously (Ezcurra
et al., 2018; Saito et al., 2019), the future will show
whether the link between mTOR-mediated autophagy and
pleiotropic autophagy will be sustained. For now, many
studies suggest this may be the case. During reviewing
the current literature, we noticed that many researchers
studying the processes of autophagy focus on either the
developmental side, or on aging. This is understandable,
given the depth of research in both topics, but also the
technical demands of these fields. However, it makes it
difficult to draw a reliable conclusion when antagonistic
pleiotropic effects of autophagy are not being described within
the same study but have to be pieced together in a rather
uncontrolled fashion.

Even in model organisms like C. elegans that are relatively
easy to use as model for aging, technical difficulties can
occur. First, when a worm population starts to die at
around day 12 of adulthood, every study of the population
after that day involves dead individuals, and every study of
individuals is cherry-picking, leading to potential bias in the
results. Second, a strong background fluorescence especially
in the intestinal tract of C. elegans that increases with aging
limits the use of many fluorescence markers, and these are
the major tools we have available so far to visualize the
autophagy process in the cell. The generation and establishment
of better tools (and potentially models) could allow to
accurately monitor spatiotemporal regulation and functionality
of autophagy within different tissues in development and aging,
to gain deeper insights into the larger overall hypothesis of
antagonistic pleiotropy.
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