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a b s t r a c t 

Background: Augmented reality (AR) is a rising technology gaining increasing utility in medicine. By superim- 
posing the surgical site and the operator’s visual field with computer-generated information, it has the potential 
to enhance the cognitive skills of surgeons. This is the report of the first in man case with "direct holographic 
navigation" as part of a randomized controlled trial. 
Case description: A pointing instrument was equipped with a sterile fiducial marker, which was used to obtain 
a digital representation of the intraoperative bony anatomy of the lumbar spine. Subsequently, a previously 
validated registration method was applied to superimpose the surgery plan with the intraoperative anatomy. The 
registration result is shown in situ as a 3D AR hologram of the preoperative 3D vertebra model with the planned 
screw trajectory and entry point for validation and approval by the surgeon. After achieving alignment with the 
surgery plan, a borehole is drilled and the pedicle screw placed. Postoperativ computer tomography was used to 
measure accuracy of this novel method for surgical navigation. 
Outcome: Correct screw positions entirely within bone were documented with a postoperative CT, with an accu- 
racy similar to current standard of care methods for surgical navigation. The patient was mobilized uneventfully 
on the first postoperative day with little pain medication and dismissed on the fourth postoperative day. 
Conclusion: This first in man report of direct AR navigation demonstrates feasibility in vivo. The continuation of 
this randomized controlled study will evaluate the value of this novel technology. 
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Augmented reality (AR) is a rising technology gaining increasing ap-
lication in medicine. By superimposing the surgical site and the opera-
or’s visual field with computer-generated information, it has the poten-
ial to enhance the cognitive skills of surgeons. One crucial task in spine
urgery is pedicle screw placement, which bears the risk of neurovascu-
ar injury or insufficient screw hold in case of inaccurate screw place-
ent. In order to improve safety and accuracy of screw placement, nav-

gational tools such as optical navigation systems [1] , patient-specific
nstrumentation [2] , and even robotic-assisted pedicle screw placement
3] have been developed. 

In the last years, substantial efforts have been made to introduce AR
s a novel surgical navigation technology into spine surgery [4–14] . Al-
hough promising results have been achieved in feasibility studies, only
 few methods demonstrated efficiency in patients [ 6 , 14 ]. The aim of
ur research was to develop a method capable of visualizing the planned
crew trajectories by a computer-generated hologram directly on the
eal surgical situs, which would enable the surgeon to constantly rec-
ncile the surgical task with the navigation information in an intuitive
ay. 
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By leveraging surface digitization and inside-out-tracking, we devel-
ped a radiation-free approach for the registration of the preoperative
lan to the intraoperative anatomy with only an AR head mounted de-
ice (HoloLens 2, Microsoft, Redmond, USA) and a marker-equipped
ointer [7] . In this manner, expensive navigation systems with external
ameras may be replaced by an affordable surgeon-centered navigation
pproach, which does not suffer from line-of-sight issues. 

After completing pre-clinical validation, the first-in-man randomized
ontrolled trial for AR-based holographic surgical navigation of pedicle
crew placement in spine surgery could be started. In the following case
escription, we report on the case of the first patient treated with “di-
ect ” holographic spinal navigation. 

ase description 

Approval by the local ethics committees (NCT04610411) and the
ational agency for therapeutic products (Swissmedic; EUDAMED ref-
rence number: 19-02-027424)) for using the technology as a medical
evice within a clinical trial was obtained. 
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Fig. 1. Preoperative images: (A) sagittal fat suppressed MRI (turbo inversion 
recovery magnitude (TIRM)) and (B) sagittal MRI (T2 sequence) demonstrat- 
ing segment degeneration at L4/5 and L5/S1, (C) axial MRI (T2 sequence) at 
level L4/5 showing spinal stenosis, (D) lateral radiograph showing accentuated 
spondylolisthesis at L4/5 in standing position. 
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Fig. 2. : Preoperative CT reconstructions with planned screw trajectories (yel- 
low). 

Fig. 3. Navigation equipment: (A) 3D printed pointer with fiducial marker, (B) 
HoloLens 2, (C) drill sleeve guide with fiducial marker mounted on a 3D printed 
clamp. 
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A standard two-level lumbar fusion case was chosen for the first-in-
an application on a 57-year-old patient with severe refractory lumbar

ack and left leg pain due to L5 nerve root radiculopathy. MR and CT
mages showed degenerative spondylolisthesis at L4/5 with facet joint
ffusions, consecutive spinal stenosis, and bilateral foraminal stenosis.
dvanced degeneration was also detected at the level L5/S1 with almost
ompletely collapsed disc height, intervertebral osteochondrosis (Modic
ype 1), and facet joint osteoarthritis. Indication for fusion from L4 to
1 was given ( Fig. 1 ). The patient gave informed consent to be treated
ith AR-based holographic surgical navigation. 

urgical planning 

Preoperative lumbar CT data with a slice thickness of 1 mm (SO-
ATOM Edge Plus, Siemens Healthcare GmbH, Erlangen, Germany)
ere acquired, from which a 3D triangular surface model of each ver-

ebra was generated using commercial segmentation software (Mimics
9.0, Materialise NV, Leuven, Belgium). An in-house developed surgical
lanning software was used to plan pedicles screw insertion points and
rajectories in 3D. The screws were visualized as cylindrical primitives,
hich were manually placed on the 3D vertebra models by a surgeon.
he trajectories were planned along the anatomic pedicle axis, with the
ntry point at the intersection between the transverse process and su-
erior articular facet ( Fig. 2 ). The insertion points and trajectories were
hen parameterized as 3D locations and direction vectors, and used as
avigation information. 

urgical procedure 

The surgical planning data was stored locally on the Hololens de-
ice, which was then prepared for surgery following a validated cleaning
rocedure. A trackable pointer and a clamp for fixation of a marker on
 drill sleeve guide were additively manufactured using biocompatible
olyamide PA2200 and sterilized in our institution using steam pressure
 Fig. 3 ). The surgical procedure was performed under general anesthe-
ia with the patient in the prone position. The dorsal structures of the
pine, such as the spinous process, lamina, and transverse process, were
xposed from the midline in a subperiosteal manner as usual. 
2 
egistration of the bony anatomy 

After exposure, the pre-calibrated HoloLens device was placed on
he surgeon’s head. The surgeon controlled the navigation process with
estures and voice commands ( Fig. 4 ). The pointing instrument was
quipped with a sterile fiducial marker (Clear Guide Medical, Baltimore,
D, USA) and used to generate a digital representation of the intraop-

rative bony anatomy. To this end, the surgeon carefully followed the
ontours of the spinous process, lamina, and transverse process with the
racked pointer. Marker tracking was implemented using the Aruco li-
rary, which was adopted work with Hololens 2. After acquisition of
he 3D point cloud of the bony surface, a previously validated and pub-
ished [7] registration method was applied to superimpose the surgery
lan with the intraoperative anatomy. The registration result was pre-
ented in-situ as a 3D hologram of the preoperative 3D vertebra model
ith the planned screw trajectory and entry point for validation and
pproval ( Fig. 5 ). Registration was done separately for each vertebra. 
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Fig. 4. Surgeon with augmented reality head mounted device during naviga- 
tion. 

Fig. 5. 3D hologram of the preoperative 3D vertebra model with the planned 
screw trajectories projected in situ after registration in order to be validated by 
the surgeon. 
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Fig. 6. Surgeon’s view during navigation showing current deviation of entry 
point (3 mm) and trajectory (2°) in real time (for safety reasons shown here 
only in a cadaver sample). 

Fig. 7. Postoperative images: (A) axial CT at L5 and (B) axial CT at L4 showing 
adequate position of navigated screws without pedicle perforation, (C) antero- 
posterior and (D) lateral radiographs showing final spinal fusion construct. 
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The L4 and L5 screws were placed using an AR-based holographic
urgical navigation without any fluoroscopic control. A conventional
rill sleeve guide with a depth limit ( ∅ 3.2 mm No. 03.614.010, Synapse
ystem, DePuy Synthes, J&J) was turned into an AR-trackable instru-
ent by mounting it to a sterile fiducial marker using a sterile 3D-
rinted clamp ( Fig. 3 ). The navigation was performed visually based
n the drill sleeve’s position and orientation, which was acquired in
eal-time with the HoloLens camera and Aruco marker detection [15] .
he current Euclidean distance from the planned entry point and the
ngular deviation from the planned trajectory was in-situ visualized in
illimeters and degrees, respectively. 

Furthermore, the direction of trajectory deviation was visualized by
hree points forming a triangle: the first lying on the entry point, the sec-
nd on the planned trajectory, and the third on the current trajectory
 Fig. 6 ). After achieving alignment with the surgery plan, a borehole was
rilled limited to 40 mm depth. The borehole was checked for pedicle
all perforation with a ball tip probe, before inserting blunt k-wires. Fi-
ally, cannulated 7 × 45 mm pedicle screws were inserted under K-wire
uidance. S1 screws were inserted in a standard manner under anatomic
rientation and lateral fluoroscopic control at the end of the screw in-
ertion procedure to limit the experiment to only four screws, as this
as a first-in-man procedure. The final screw position was checked by
uoroscopy, showing a satisfying result. Further steps, like decompres-
ive laminotomy and intervertebral cage insertion, were done in a usual
anner. 
3 
utcome 

Postoperatively, the patient showed a complete reduction of leg pain
nd no further signs of radiculopathy. Correct screw positions entirely
ithin bone were documented with a postoperative CT ( Fig. 7 ). The 3D

valuation of the surgical accuracy based on a comparison between pre-
perative planning and postoperative CT revealed a mean 3D-summed
ngular deviation of 7.3 ± 3.6° for the trajectories and 3.5 ± 1.9 mm
or screw entry points. The patient was mobilized uneventfully on the
rst postoperative day with little pain medication, and dismissed on the

ourth postoperative day. 

iscussion 

This is the report of the first-in-man application of a new fluoroscopy-
ree direct holographic surgical navigation technique with in-situ trajec-
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ory guidance. This is an essential step for the implementation of AR as
he next-generation surgical navigation in surgery. Although surgical
ccuracy and user-friendliness have to be investigated with more cases,
his case report proves the feasibility of direct holographic surgical nav-
gation in an in-vivo setting. 

State-of-the-art navigation technologies in spinal surgery have su-
erior accuracy than the free hand technique [ 2 , 16–20 ]. However, the
ain limitations of such navigation systems are high set-up and main-

enance costs, even if these systems might be cost neutral in the long-
erm in high volume centers [ 21 , 22 ]. This assumption is supported by
 survey by Härtl et al., who revealed that surgeons cited high costs as
ne of the main reasons for not to use navigation systems [23] . Newer
obotic assisted navigation systems are associated with even greater
osts [ 24 , 25 ]. From technical viewpoint, a considerable limitation of
traditional ” optical navigation systems is the dependence to an exter-
al camera system, which make it more difficult to have a clear view to
he fiducial markers on the anatomy and surgical tools. According to a
ecent study, line-of-sight problem occurs multiple times in nearly every
avigated neurosurgical procedure [26] . 

Another known limitation is the attention shift, which occurs when
he surgeon is obligated to fix the gaze on a remote screen during naviga-
ion [ 27 , 28 ]. The approach presented here overcomes such limitations
y combining a small, portable, and affordable device with computer
ision software ( Fig. 3 ). 

However, the here reported novel method of navigation introduces
ew limitations: First, the operator needs previous training in order to
e able to use the system reliably. In our experience, user-dependency
eems to be higher at this stage compared to current standard navi-
ations systems. Second, accuracy is dependent on the quality of the
egistration process and absence of patient motion. Accuracy is high in
adaveric experimental setting with up to 97.5% (unpublished data),
omparable to current computer based navigation techniques (96%
16] ) or even robotic assisted navigation (95-98% [ 17 , 29 , 30 ]) and cer-
ainly surpassing the conventional free-hand technique (43% to 86%
 16 , 31 , 32 ]). 

Compared to other navigation techniques, the here presented
ethod seems advantageous, as the surgeon remains the last instance

f quality control: He should be able to notice if the projected holo-
ram is not aligned with the anatomy. Eventually, the currently run-
ing RCT will provide quantification of accuracy. Third, another poten-
ial limitation for broad clinical usage is the potential inconvenience
ssociated with wearing a head mounted device. Further studies evalu-
ting experience and surgeon’s acceptance using this navigation are in
rogress. 

So far, we found only a few clinical studies evaluating similar naviga-
ion technologies in humans [ 6 , 14 ]. Elmi-Terander and his group uses a
ophisticated AR technology based on a video system with four-cameras,
ermitting fusion of 3D CT information with live video images of the
urgical field [ 6 , 33–35 ]. Charles et al. investigated the same system and
onfirmed applicability in minimal invasive procedures [36] . However,
he system of Elmi-Terander et al. is burdened with some degree of atten-
ion shift, since the surgeon is still obligated to fix his gaze on a remote
creen for navigation. Molina et al. uses a Food and Drug Administra-
ion (FDA) approved AR navigation system with a head mounted device
hich projects navigation information directly into the operator’s retina
sing a transparent near-eyedisplay [14] . In this way, the surgeon sees
 3D segmentation of the spine, overlaying the anatomy, and all navi-
ation information displayed aside. Their approach is promising in re-
ucing attention shift, but their registration method requires to acquire
n intraoperative CT [14] . General application of such systems is lim-
ted due to the necessity of additional costly equipment. Therefore, we
im to provide an intraoperative image-free method of registration of
natomy. However, our approach without an anchored marker is yet
rone to failure in case of position changes of the patient. We believe
owever that such an error can be noticed by the operator as an obvious
ffset of the hologram overlay on anatomy. 
4 
onclusion 

This case report presents the first in man application of a portable,
uoroscopy free AR based in situ navigation system. While this innova-
ion overcomes some important disadvantages of the current navigation
ystem, it introduces new challenges that need a careful incremental
mprovement process. 
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uired for this case report. This work is part of «SURGENT», a flagship
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