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Abstract: Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional
significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate
between the unfolded and the native state of a protein. Its experimental detection and investigation
in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the
MG-like state of some globular proteins arises from either their modifications or interactions with
protein partners or other cell components. This review summarizes such reports. In many cases,
MG was evidenced to be functionally important. Thus, the MG state is quite common for functional
cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between
two active states, rigid (N) and soft (MG), to work in solution or interact with partners.

Keywords: globular protein; rigid native state; molten globule; intrinsically disordered; functional
state; unfolded state; coil; post-translational modifications; membrane; chaperone

1. Introduction

The compact state of a protein molecule, characterized by a pronounced secondary
and fluctuating tertiary structure, was theoretically predicted by O.B. Ptitsyn [1] and exper-
imentally proved by his team [2–4]. Later, this state was called a “molten globule” [5–7],
and was in vitro observed for many proteins under moderately denaturing conditions
in vitro (see reviews [8–10]).

The last three decades demonstrated a significant progress in the theory of protein
folding [11–22] and intensive studies of a wide range of proteins [23–33]. The development
of experimental approaches and the use of new techniques, especially such as nuclear
magnetic resonance NMR (in some modifications) and fluorescence, made it possible to
follow changes in the protein structure under cell-like conditions [24–33]. Many studies
directly or indirectly imply the presence of molten protein globules under these conditions.

The discovery of intrinsically disordered (or natively unfolded) proteins (IDPs) com-
prehensively described by Tompa [34] (see reviews [35–37]) revealed that some of them
are in the MG state, while the structure of others is closer to the unfolded state. The latter
are sometimes referred to as “pre-MGs”. It has become clear that many protein functions
require the rigid N state of the protein, while the others require their more or less disor-
dered states. The latter have several properties similar to the MG state, but some properties
distinguish typical IDPs from typical MGs. (see Table 1 and [38–43]).

It is possible to distinguish the MG state of a protein (or, by the original definition,
“protein with fluctuating tertiary structure”) from IDP due to the differences in changes of
their properties under different impacts.

Here, we do not discuss natively unfolded proteins but focus on the MG of “normal”
globular proteins.
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Table 1. Differences in the properties of the MG state of proteins and IDP.

Impact Type
and Conditions

MG State,
Globular Proteins

IDP State, Natively
Unfolded Proteins

Unfolding by strong denaturants Global unfolding to the coil state Usually, no further global unfolding, but
disruption of local structures is possible

Heat effect Decrease in secondary structure content Structuring, heat resistance

Different behavior of normalized SAXS
curves (Kratky plots) [38,39]

Bell-shaped curves with a
pronounced maximum Monotonic curve rising (no maximum)

H/D exchange [40,41] Slightly elevated exchange as compared
to the N state

The exchange is orders of magnitude
higher than that for MG

Gel filtration, electrophoresis [42,43] Increase in hydrodynamic volume by
20–50% as compared to the N state

Hydrodynamic volume is 400–600%
larger when compared to the N state of

globular proteins with the same
molecular weight

There are three important issues to be addressed:

(1) Why proteins adopt the MG state;
(2) What impacts cellular proteins causing a change in their stability and transition to

MG;
(3) What functions the molten protein globule performs in the cell.

For convenience, we divide issue (2) into subsections by the impact type:

- Post-translational protein modifications: acetylation, phosphorylation, ubiquitination,
glycation, and others.

- Protein–protein interactions: substrate–receptor, multimers, modular proteins.
- Protein–membrane interactions.
- Protein–chaperone interactions.
- Protein interactions with specific adapter proteins.

2. Physics of the MG

Depending on ambient conditions, the most stable state of a protein chain may be
neither rigid (solid) nor completely unfolded (coil) but “molten”.

In the majority (but not all) of proteins, the MG in vitro arises either from the N state
under the effect of a moderate denaturant, with the further transition to the coil as the
denaturant concentration grows, or from the coil due to denaturant dilution [9]. The MG-
like state also results from heat denaturation (melting) of a rigid globule. The N-to-MG
transition is of the “all-or-none” type. Typically, MG does not undergo further “all-or-none”
melting or swelling; rather, its unfolding looks like a cooperative though broad S-shaped
transition observed by optical methods such as CD and fluorescence [9]. However, some
rigid proteins (especially small ones) unfold directly into coils without any intermediate
state [44].

MG is a “soft” [9] state that shows similarity to a rigid protein in many aspects.
Reinforced by hydrogen bonds, its secondary structure is a well-developed and stable until
the globule is “dissolved” by a solvent. However, the MG’s side chains lose their dense
packing but acquire freedom of movement (that is, they lose energy but gain entropy). The
liberation of the side chain rotational isomerization is the main driving force of protein
melting [45].

Since most of the protein chain degrees of freedom relate to the small-scale side chain
movements, it is their liberation that can make the MG thermodynamically advantageous.
The liberation of small-scale side chain rotational isomerization does not require the com-
plete unfolding of the globule; slight swelling would be enough. This swelling, however,
leads to a significant decrease in the van der Waals attraction, which strongly depends
on the distance, and even a slight increase in the globule’s volume is enough to reduce
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it greatly. Generally, all of this is like the melting of a crystal, where a slight increase in
volume reduces van der Waals interactions and liberates the motion of the molecules.

Unlike common polymer globules, the protein chain covered with different side chains
cannot unfold by gradual swelling, because these side chains cannot change their positions
independently; the rigid protein chain controls the positions of many side chains sitting at
it, and this entire “forest” of side chains has to move as a whole.

Before the discovery of the MG state, protein denaturation was considered as com-
plete unfolding of the protein structure; that is, as the transition to the coil. After this
discovery [46–48], it became clear that the denatured protein can be either dense or loose,
depending on the solvent’s strength and the hydrophobicity of the protein chain [2,45–49].

The pores in the MG (i.e., the vacant space necessary for side chain movements) are
usually “wet”; that is, they are occupied by the solvent [45,50] because a water molecule
inside the protein is still better than the vacuum. Experimentally, the “wetness” of the
MG is proven by the absence of a visible increase in the protein partial volume [30] after
denaturation of almost any type. A “dry” state of the pores is thermodynamically less
stable [51,52], yet it is observed in some kinetic processes [26,51].

The MG compactness is maintained by residual hydrophobic interactions that are at
least three times weaker than those within the native protein [31]; the fact that even these
residual contacts are absent for some side chains emphasizes the heterogeneity of MG [9].

3. Cellular Events Causing Changes in Protein Structure Stability and Leading to the
Transition to the MG
3.1. Post-Translational Modifications

In terms of protein structure, post-translational modifications can be equated to muta-
tions. Most of them occur on the surface of a protein globule and do not have a significant
effect on the protein structure. The result of some other modifications is the loss of the
dense packing and transition to the MG-like state. Modifications of certain protein activities
are known to require a change in ambient conditions [52] or local unfolding of the sites
of the modifications [53–55], or (sometimes) partial denaturation [56], i.e., transition to a
“softer” state.

For example, the tumor suppressor protein p53 is susceptible to a variety of mod-
ifications that change its functions in response to cellular stress, including acetylation,
methylation, phosphorylation, and ubiquitination [56]. Specifically, p53 is the prime ex-
ample of a protein whose acetylation requires partial denaturation. As another example:
the peptidyl prolyl isomerase Pin1 can be modified by phosphorylation, ubiquitination,
sumoylation, or oxidation, depending on the function that it will perform in the cell [57].

3.1.1. Acetylation

Acetylation (mainly at Gln or Lys) is a reversible post-translational protein modi-
fication crucial for the regulation of gene expression [53,56,58]. It mainly affects large
macromolecular complexes, such as chromatin remodeling, cell cycle, splicing, nuclear
transport, actin nucleation, and others [53,54,57,59,60]. For histones, acetylation is critical
because it triggers DNA transcription [61,62]. Moreover, acetylation can reduce interactions
dependent on phosphorylation [61]. The acetylated N-terminus of a protein chain can
create a specific signal for chain degradation [63].

Acyl groups that recognize elements of protein–protein interactions can vary from
simple acetate to modified long-chain fatty acids required for the interaction with mem-
branes and affecting signal transduction. They attach to various amino acids (Lys, Cys,
and Ser/Thr), which can change the hydrophobicity of a protein and modify its functions.
Myristoyl- and palmitate-induced modifications of Cys residues increase the protein affinity
for membranes [64]. Thus, acylation is one of the key regulators of cellular pathways.
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3.1.2. Phosphorylation

Phosphorylation is the main mode of external signal transduction. ATP was shown to
induce a conformational transition in proteins [65]. Signal transduction is associated with
the modification of proteins that receive a signal from outside. These proteins interact with
a large class of molecules known as adapter proteins and organizing centers (hubs) (SH2,
SH3, 14-3-3, AKAPs), where the bound proteins undergo modification by phosphatases
and kinases, and move within the cell and elsewhere [54,55,66].

3.1.3. Ubiquitination

Ubiquitin (Ub) participates in many cellular events [67–79] including cell division,
cell differentiation, signal transduction, movement of proteins within the cell, quality
control, signaling, and endocytosis. Additionally, ubiquitin controls protein degradation
and participates in DNA repair, endocytosis, autophagy, transcription, and immune system
support. Ubiquitin binds to partners either as a single protein or in the form of Ub chains
and interacts with Ub-receptors. The attachment of one to three Ub molecules affects the
movement of proteins within the cell, and the addition of four or more (up to 16) Ub
molecules directs the protein to degradation [69–71].

3.1.4. Glycation

Glycation is another modification that affects the protein structure [80]. The addition
of sugars manifests as early as during biosynthesis. Attachment of any type of sugar to
in-protein residue results in the surface localization of this residue where it stays during
the folding process. When the folding is completed, a specific enzyme removes the sugar
molecule, but the labeled amino acid residue remains on the surface of the protein and
participates in further events.

3.2. Protein–Protein Interactions

The interaction of protein ligands with protein receptors is a common event in the
cell; one of the most studied interacting pairs is insulin and its receptor [81–90]. Using this
system, it was demonstrated that during the interaction changes occur in the structures
of both the hormone and the receptor. Both insulin and its receptor are water-soluble
proteins. Independent experiments showed that in appropriate conditions, the denaturant-
affected structures of these proteins undergo the N-to-MG transition. Surprisingly, when
in a complex, the structures of both insulin and its receptor remain similar to their MG in
solution. This is direct evidence that these proteins change their rigid structure to a softer
one capable of interaction.

Similar changes were observed for the relaxin protein family related to insulin [91].
Importantly, during protein–protein interactions, a part of the surface that was in

contact with water appears in a hydrophobic environment, which can cause rearrangement
of the structure [81–90]. During the formation of multimeric and modular proteins, changes
in their structures also result in more stable complexes [92,93].

3.3. Protein–Membrane Interactions

In 1988 we suggested that the membrane surface can influence the structure of pro-
teins. Because of the proximity of a poorly (compared to water) polarized membrane, our
experiments were performed at low dielectric permittivity and low pH. They evidenced
the actual membrane impact on the protein structure (see reviews [25,94–96]). The study of
apomyoglobin showed that in the presence of phospholipid vesicles at neutral pH, both
its native and unfolded forms bind to the vesicle surface, showing properties similar to
those of MG, i.e., both forms undergo conformational changes upon interaction with the
membrane. For myoglobin the effect of membrane proximity is not so pronounced, but
it is still significant. This influence is of decisive importance for the myoglobin-induced
exchange of oxygen and carbon dioxide near the mitochondrial membrane.
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3.4. Protein–Chaperone Interactions

Chaperones (specific assisting proteins) play a very important role in cell life. They
bind to both native and unfolded proteins, providing their transition to the MG state and
protecting them from random interactions, aggregation, and degradation [97–102].

Chaperones bind kinetic intermediates during protein folding, thereby shielding them
from aggregation and side interactions. They ensure the correct folding of both monomeric
proteins and oligomeric subunits, and the formation of oligomeric proteins [103]. Chaper-
ones can transport newly synthesized proteins from the place of biosynthesis to the place
of functioning. Their main role is to prevent non-specific interactions between proteins and
keep them in a state competent for various processes in the cell. The binding of proteins to
chaperones and their release consumes ATP energy [103]. Chaperones are also involved in
protein quality control [72,104] and protein degradation [105].

3.5. Protein Interactions with Specific Adapter Proteins and Organizing Centers

Signal transduction within the cell requires precise work of the cellular regulatory
system; to meet this requirement, specific protein domains interact with each other and
different components of the cell. The modular nature of these domains allows their con-
current interaction with a variety of proteins [106,107]. They are known to recognize
post-translational modifications [108–113], but because many of them are natively unfolded
proteins they are not considered here.

However, among the adapters, there is at least one compact system that includes
proteins of the 14-3-3 family [106,107,114–116]. The system received the strange name
“14-3-3” due to the technique of isolation on chromatographic columns and testing by
electrophoresis. For its main isoform (ζ), the crystal structure was deciphered back in
1995 [117,118]. It is a dimer consisting of two chains, each of which contains nine antiparallel
helices; they form a horseshoe-like region between two structures where the substrate binds.
There are nine isoforms of this protein, the combination of which allows the binding of
multiple proteins. These isoforms recognize substrate proteins phosphorylated at Ser or
Thr and can bind them by one or by two, depending on the cellular process. Such binding
changes the conformation of the partner and brings the substrate proteins closer to one
another, thus facilitating their interaction. It can also open an active site of the bound
substrate, while other regions of this substrate can be shielded from currently unnecessary
and even dangerous interactions with the main part of the protein [119–121].

The involvement of an adapter protein in the stabilization of the active site structure
increases both the substrate binding and the yield of the reaction product, and this directly
indicates the regulation of the catalytic activity of the bound substrate protein [117,122].

The structural basis for the interaction of 14-3-3 proteins with their substrates is
described in [119–121]. As discovered, even disordered regions of the bound substrate
protein acquire a well-structured shape upon interaction with a 14-3-3 protein [120,121,123].
Thus, it can be assumed that binding/release with 14-3-3 proteins can lead to the transition
of the protein structure from rigid to soft and vice versa.

4. Functions of the Molten Protein Globule in the Cell

The development of new, more sensitive, and accurate research methods leads to the
revision of some of the kinetic and equilibrium data, so the interpretation of these data may
change [124,125]. For example, several proteins whose folding was previously believed
to be a 2-state process were found to have compact folding intermediates with properties
like those of MG [123,124]. This was observed for some cold shock proteins [126], the B1
domain of the G protein [127], single-chain monellin [128], RNase A [129], and the bacterial
immune protein Im7 [130].

The experimental discovery of a “dry” MG as an unstable kinetic folding intermediate
has presented some new data [26,52]; initially, the “dry” MG was predicted by Shakhnovich
and Finkelstein [45,50] along with the much better known “wet” MG which is a stable
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folding intermediate. The presence of both the “dry” and “wet” MG was detected in
monellin [26], the villin headpiece subdomain [131], E. coli DHFR [132], and RNase A [133].

Because some steps of enzymatic catalysis require structural flexibility, the biologically
active conformational states other than fully folded structures may be more frequent than
it was thought previously. For example, according to [134], the “non-native” state of
acylphosphatase from Sulfolobus solfataricus shows enzymatic activity.

It was found that sometimes MGs occur outside the folding pathway in proteins with
substituted amino acids, as exemplified by apoflavodoxin. Since MG are generally prone
to aggregation, their presence outside the folding pathway increases the risk of protein
accumulation, which can adversely affect the organism [134,135]. In 2003, Dobson compre-
hensively investigated how MG formation and aggregation can cause protein misfolding
and aggregation, which results in numerous pathologies [136]. Later, he detected the other
associations between the observed abnormalities in protein folding and diseases [136,137].

Surprisingly, the complex of human milk protein α-lactalbumin (αLA) with oleic acid
(HAMLET) can kill cancer cells. In this complex, αLA is neither active nor “native” but
preserves the MG state [138,139].

A similar complex with lysozyme also shows bactericidal activity, causing DNA
fragmentation [139,140].

To date, ample evidence for the functional significance of many MG-like proteins
has been reported [141]. This is true for the protein p53 [98], ferredoxin [142], alpha-
mannosidase [143], melanogaster crammer [144], glycated serum albumin [80], and others.
Some of them were reviewed by Bychkova et al., 2018 [10]. Moreover, the functional signifi-
cance of such protein states is shown for the monomeric form of chorismate mutase [145],
dihydrofolate reductase [146], ubiquitin [147], periplasmic binding proteins [148], staphylo-
coccal nuclease [148], and α-galactosidase (cicer α-galactosidase) [149] (of course, we do
not claim that a functional MG-like state is mandatory for all proteins).

An interesting observation concerning the metmyoglobin (MetMb) structure was
reported back in 1998, although its altering conformation was not the focus of this study. The
conformation changed during the transition of non-active MetMb to its active form capable
of O2 binding. The transition pathway included an intermediate allowing further relaxation
of the protein to form active deoxyMb, as was observed by the changing Soret band. This
transition was catalyzed by MetMb reductase [150], which suggests that enzymes interacted
with proteins in an intermediate state facilitating the reaction.

5. Conclusions

Summing up this review, we can state the fact that in the cell, some active proteins can
have both the rigid structure typical of enzymes and that of an MG. In one of his re-views,
Oleg B. Ptitsyn put forward a hypothesis that there could be two types of the “native”
protein state, hard and soft. Since the “native state of a protein” usually implies the state that
allows protein functioning, this prediction is apparently true for many proteins that display
activity when their structure is MG-like. The experimental data obtained for different
proteins speak for the proposed hypothesis that the transition of a protein to the state of an
MG in a cell is not something extremely rare and exceptional. At least for some proteins, the
state of the MG is necessary for the performance of their functions. This situation suggests
the need to consider the conformational state of the protein when studying its activity both
in the cell and in vitro, especially when projecting research results from one condition to
another. The cell is a storehouse for unexpected phenomena and discoveries. Hopefully,
the development of new and more sensitive methods or the improvement of those already
in use will lead to the discovery of novel proteins functioning in the MG state.
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