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Complete trajectory planning includes path planning, inverse solution solving and trajectory
optimization. In this paper, a highly smooth and time-saving approach to trajectory
planning is obtained by improving the kinematic and optimization algorithms for the
time-optimal trajectory planning problem. By partitioning the joint space, the paper
obtains an inverse solution calculation based on the partitioning of the joint space,
saving 40% of the inverse kinematics solution time. This means that a large number of
computational resources can be saved in trajectory planning. In addition, an improved
sparrow search algorithm (SSA) is proposed to complete the solution of the time-optimal
trajectory. A Tent chaotic mapping was used to optimize the way of generating initial
populations. The algorithm was further improved by combining it with an adaptive step
factor. The experiments demonstrated the performance of the improved SSA. The robot’s
trajectory is further optimized in time by an improved sparrow search algorithm.
Experimental results show that the method can improve convergence speed and
global search capability and ensure smooth trajectories.

Keywords: trajectory planning, inverse kinematics, configuration space, time optimization, improved sparrow
search algorithm

INTRODUCTION

Robots are one of the vehicles for replacing some of the work of humans, combining the strengths of
many disciplines and being used in a wide range of fields, such as mechanism (Yoshikawa, 1985;
Park, 1995), computer vision (Huang et al., 2020; Bai et al., 2022), intelligent control (Yang et al.,
2019; Yu et al., 2020; Yun et al., 2022a), artificial intelligence (Yu et al., 2019; Li et al., 2019; Sun et al.,
2020a), signal processing (He et al., 2019; Jiang et al., 2019; Ma et al., 2020; Sun et al., 2020b; Weng
et al., 2021), etc.. Time is the primary factor to be considered in engineering scenarios, and
optimizing time is of great research significance for improving the efficiency of robotic arms. Time
optimization aims to maximize the execution efficiency of the motor within the permissible limits.
Simply increasing the torque and power of the motor is not feasible, as it results in greater energy
consumption and inertia. Depending on the space in which the planning object is located, it can be
divided into trajectory planning in Cartesian space and trajectory planning in joint space. When
planning trajectories in Cartesian space, the position and pose of the robot arm end-effector (EE) are
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intuitive (Kant and Zucker, 1986; Xu et al., 2009; Zheng et al.,
2009), making it more suitable for scenarios with strict
requirements on the trajectory movement process, such as
machining (Sun et al., 2020c), welding (Hao and Wang, 2021),
rehabilitation robot (Liu et al., 2016; Sun et al., 2018; Li et al.,
2020; Luo et al., 2020), etc. However, inverse kinematic
calculation takes up significant computational resources during
the trajectory motion, and it is difficult to circumvent the
kinematic singularity problem. When planning a trajectory in
joint space (Chen and Zalzala 1997; Verscheure et al., 2009;
Stilman, 2010), the object of planning is the joint angles
corresponding to the target position, the whole process is done
in joint space, and the motion is fully accessible, avoiding a large
number of inverse kinematic calculations and eliminating the
need to consider the problem of singularities, thus making it
faster. After completing the planning in joint space, the trajectory
needs to be mapped back to Cartesian space. The mapping
process is highly non-linear, so the trajectory is unpredictable
without constraints (Liu et al., 2013). However, many scenarios
only require identifying several key points on the trajectory and
do not require tracking the movement between these points, such
as rigid body grasping (Miao et al., 2015; Hu et al., 2019; Jiang and
Zheng, 2019; Duan and Sun, 2021; Jiang et al., 2021; Liu et al.,
2022a), intelligent sorting, plant planting, etc. From a control
point of view, the motor drive system acts directly on the joint
angles of the axes so that the smoothness of the joint trajectory is
more important than the smoothness of the trajectory in
task space.

Time optimization is a single objective optimization problem
for trajectory planning. The minimum time for the trajectory
motion is calculated with the constraint that the velocity and
acceleration do not exceed a set maximum value, provided that
the trajectory and velocity are smoothly continuous and the
acceleration is continuous (Gasparetto et al., 2012). The
optimal time problem is generally solved by determining the
interpolation function of the trajectory and then determining the
coefficients of the interpolation function to ensure time is
optimal. Polynomials are widely used in the choice of
trajectory interpolation functions (Biagiotti and Melchiorri,
2008). The polynomials’ order grows larger to obtain more
accurate trajectories, which causes the Runge’s phenomenon.
Multi-segment polynomials are used in most scenarios in
order to eliminate this effect. However, this brings about the
creation of non-differentiable points within the interpolation
function, which has a negative effect on the normal operation
of the motor. The polynomial is at least third order derivable to
ensure smoothness of velocity and continuity of acceleration.
Higher orders provide more parameters and mean that the
calculation becomes difficult. Alternatively, B splines have
excellent performance in smoothing, and Thompson SE
developed a method for constructing joint trajectories using B
splines (Thompson and Patel, 1987). However, the properties of B
splines dictate that the trajectories are fitted and not interpolated,
and the absolute accuracy of the interpolated points cannot be
guaranteed.

This work aims to reduce the time of robot trajectory planning
in terms of both inverse solution calculation and trajectory

optimization. The algorithm used for trajectory optimization
can be extended to other configurations of robots. This paper
completes the trajectory planning of a UR5 collaborative robot
(cobot) in joint space by means of cubic spline interpolation and
obtains a time-optimal trajectory using an improved sparrow
search algorithm (SSA). The complete flow of the trajectory
motion is considered in this paper for the time optimization
of the trajectory and the optimization of the inverse solution
calculation method. The method of partitioning the joint space of
the UR5 cobot is discussed, and one-to-one correspondence with
the subspaces is obtained, significantly reducing the time required
for the inverse kinematics (IK) calculation. The smoothness of the
joint trajectory and the velocity is ensured by a cubic spline
interpolation method. The problem of its tendency to fall into
local optima is improved by improving the sparrow search
algorithm to obtain a time-optimal trajectory with maximum
velocity and acceleration as constraints.

This paper is organized as follows. Section 2 details other
studies relevant to the work in this paper. The mathematical
model for time-optimal trajectory planning is presented in
Section 3, and the problems and solutions in the various
processes of trajectory planning are discussed in detail. The
sparrow search algorithm and its improved methods are
shown in detail in Section 4. Section 5 shows the
experimental results of the algorithm. Some outlooks and
conclusions are given in Section 6.

RELATED WORKS

The time-optimal problem of trajectories has been actively
studied. Earlier proposed algorithms (Bobrow et al., 1985; Shin
and McKay, 1985) are based on the position-phase plane. These
algorithm’s transform the time-optimal problem into a function
of θ and v as parameters to find the optimal problem. In short, for
each point of the path, the minimum time to pass the entire path
is obtained by passing at the maximum speed. The maximum
velocity allowed for each point is found in the plane formed by θ
and v, and is made continuous when switching from point to
point. These methods do not consider the acceleration continuity,
which is not possible for an actuator moving in actual operation
to produce discontinuous acceleration. This approach of ignoring
actuator dynamics leads to two adverse effects: first, the
discontinuous acceleration causes the actuator motion always
to be delayed concerning the reference trajectory. This
significantly reduces the tracking accuracy of the trajectory. In
addition, constant switching can achieve discontinuous
acceleration, but this introduces high-frequency oscillations to
the actuator.

Solutions to these problems may be found in this literature
(Shiller, 1996; Constantinescu, 1998; Constantinescu and Croft,
2000). In these methods higher order derivatives are added for
finite control, which requires the establishment of third order
dynamic equations. However, building accurate kinetic models is
often challenging to accomplish.

Another approach that does not require a dynamics model is
to use a smoothing function to express the trajectory in joint
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space. The torque of the actuator is directly reflected in the joint
variation of the robot so that a smooth trajectory will result in a
smooth model. In the usual case, the spline interpolation function
is widely used. Three constraints need to be considered after
describing the joint trajectory using the spline function.

1) Speed limit;
2) Acceleration limit;
3) Jerk limit.

The third spline function has time as the horizontal axis and
joints as the vertical axis, and the third-order derivability ensures
that the acceleration is continuous. The calculation of the optimal
trajectory time is completed by finding the minimum value of
time under the satisfied constraints.

Tandem robots are generally made up of multiple joints, and
the motion of each joint is coupled, making it challenging to
complete the optimization process through numerical solutions.
Swarm intelligence search algorithms have shown great vitality in
such problems (Tian et al., 2020; Chen et al., 2021a; Chen et al.,
2021b; Chen et al., 2022). Swarm search algorithms are widely
used in robotics, such as inverse solution computation (Zhao
et al., 2022), control (Liu G et al., 2021; Wu et al., 2022), pose
recognition (Li et al., 2019a; Tao et al., 2022a) and other nonlinear
problems (Huang et al., 2019; Sun et al., 2020d; Hao et al., 2022).
Recently published optimisers (Ghafori and Gharehchopogh,
2012; Abedi and Gharehchopogh, 2020; Abdollahzadeh et al.,
2021a; Gharehchopogh et al., 2021a; Abdollahzadeh et al., 2021b;
Benyamin et al., 2021; Gharehchopogh et al., 2021b;
Gharehchopogh and Abdollahzadeh, 2021; Goldanloo and
Gharechophugh, 2021; Mohammadzadeh and Gharehchopogh,
2021; Zaman and Gharehchopogh, 2021; Gharehchopogh, 2022)
have achieved good performance but may not suit industrial
scenarios with high real-time requirements. The particle swarm
optimization algorithm (PSO) is used to search for the global
time-optimal trajectory of a spatial robot in conjunction with
robot dynamics (Huang and Xu, 2006). Huang uses a multi-
objective particle swarm optimization algorithm optimization
method for the multi-objective optimization of the motion
trajectory of a space robot (Huang et al., 2008). Liu and
Zhang (Zhang et al., 2018; Liu and Rodriguez, 2021) used a
quintuple polynomial for trajectory planning for the PUMA560
robot and proposed an improved genetic algorithm (GA) to
accomplish time-optimal trajectory planning.

These works demonstrate the feasibility of the group search
algorithm for this problem, but accuracy and convergence speed
remains problematic. The sparrow search algorithm is an
algorithm proposed by Jiankai Xue (Xu et al., 2022) in 2020.
The algorithm outperforms PSO, GA, grey wolf optimization
algorithms (GWO). It is widely used other search algorithms on
uni-modal and multi-modal test functions and is widely used in
problems such as path planning for mobile robots (Liu et al.,
2022b), control of photovoltaic microgrids (Yuan et al., 2021) and
optimization of battery stack model parameters (Liu Y et al., 2022).
We find that SSA is suitable for time-optimal trajectory planning
problems and improves the initial population generation in the
original algorithm through the Tent chaotic mapping method. An

adaptive step size factor adjusts the individual update to improve
the global search capability. Time-optimal trajectory planning was
completed on the UR5 collaborative robot, and experimental
results demonstrate the effectiveness of the method.

A complete process includes trajectory determination, inverse
solution solving, and trajectory optimization in practical motion.
Depending on the scenario, the conditions for determining the
trajectory are different. Obtaining information about the
environment in these scenarios can be done by different
sensors, such as myoelectric signals (Li et al., 2019b; Cheng
et al., 2020; Cheng et al., 2021; Yang et al., 2021; Liu et al.,
2022c), visual sensors (Jiang and Li, 2019; Jiang and Li, 2021; Tan
et al., 2020; Huang et al., 2021; Liao et al., 2021; Liu X. et al., 2022;
Sun et al., 2021, 2022; Yun et al., 2022b), multi-sensor fusion (Li
et al., 2019c; Liao et al., 2020; Tao et al., 2022b), etc. The
theoretical time required for the robot to complete the motion
of a specified trajectory includes the motor execution time and the
kinematic computation time. Therefore, trajectory planning is
closely integrated with inverse kinematic solving. However, none
of the above methods takes into account the time taken up in the
trajectory planning by the inverse solution calculation. Based on
the work described above, this paper also combines the unique
domain theory to improve the computational efficiency of the
algorithm further when the trajectory is in motion.

TIME-OPTIMAL TRAJECTORY PLANNING

A complete trajectory planning process should include key point
selection, inverse solution calculation, trajectory function setting
and optimization. The coordinates of the key points on the
trajectory are generally known in a Cartesian coordinate
system. The inverse kinematics calculations allow the
conversion of Cartesian coordinates into joint space, and the
inverse kinematics of multi-joint robots is often multi-solvable.
The UR5 cobot has eight sets of inverse solutions for the same
pose. Assume that given a discrete sequence pi of n interpolated
sample points, the corresponding inverse solution of the joint
angles is Qi =[θi1, θi2,..., θi8] = IK(pi), where θij is a one-
dimensional vector of six elements corresponding to the angle
of each joint, i = 1, 2,..., n, j = 1, 2, ..., 8. It is necessary to filter the
inverse solution by a certain condition after the joint angle has
been found, which often follows the principle of minimum joint
variation between adjacent poses. As each joint has a different
influence on the EE’s trajectory, the amount of variation needs to
be weighted in the calculation. The joint angle qi corresponding to
the ith sample point, i.e. the ind-th set of solutions in Qi, can be
found from the following equation

(Δθ, ind) � min⎛⎝∑6
m�1

wm

∣∣∣∣θij,m − qi−1,m
∣∣∣∣⎞⎠

qi � Qi(ind)
(1)

where qi-1 is the joint angle corresponding to the (i-1)-th sample
point, m is the ordinal number of the joint angle,m = 1,2,...,6. wm

is the weighting factor corresponding to the mth joint, Δθ is the
minimum variation, and ind is the ordinal number of the
minimum variation corresponding to in Qi.
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The calculation and filtering of the inverse solution can occupy a
lot of computational resources and waste much time, especially
when the number of sample points is large. The literature (Wenger,
1992; Wenger, 2019) analyzed in depth the method of partitioning
joint spaces and obtained the conclusion that the Jacobi matrix
equation (det(J) = 0) can partition the joint space into subspaces with
the same number of solutions as the inverse, and these subspaces are
called unique domains. However, they only provide a geometric
analysis and do not suggest specific applications. The determinant
of the Jacobi matrix for the UR5 cobot is

|J| � Pn1Pn2Pn3
Pn1 � a2a3s5
Pn2 � s3
Pn3 � a2c2 + a3c23 − d5s234

(2)

where c represents the function cos, s denotes the function sin,
subscript i denotes θi, subscript ij denotes θi+θj, subscript ijk
denotes θi+θj+θk. The rest of the paper uses expressions simplified
in this way.

Each unique domain corresponds to a unique inverse
resolution. It is shown that the choice of a suitable unique
domain ensures the uniqueness of the inverse solution analytic,
thus avoiding the problem of multiple solutions to the inverse
kinematics. The poseT of EE is already known in inverse kinematic
computing, and the general form of T can be expressed as follows

T � [ �n �o �a �p
0 0 0 1

] �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where �n is the normal lapse, �o is the direction vector, �a is the
approach vector, and �p is the position vector.

The unique domain corresponding to the inverse solution of
the trajectory does not change when the robot’s configuration
does not change throughout its motion. Therefore only one
unique domain corresponding to the inverse solution can be
used when doing trajectory planning. The inverse solution has
only one set of analytic solutions when the unique domain is
determined (Liu Y et al., 2022). Combined with the method
proposed by Xiao (Xiao et al., 2021), the calculation method of
inverse kinematics of UR5 cobot is obtained. The IK analytical
expression is

θ1 � atan2(−d4px + Apy

−d2
4 − A2 ,

d4py + Apx

−d2
4 − A2 )

θ2 � atan2(−MP2 −NP2

−P2
1 − P2

2

,
−MP2 +MP1

−P2
1 − P2

2

)
θ3 � atan2(s3, c3)
θ4 � atan2(ozs5 + c5(nzc6 − azs6), azc6 + nzs6) − θ2 − θ3

θ5 � atan2(k2 ���������������
1 − (oyc1 − oxs1)2√

, oyc1 − oxs1)
θ6 � atan2((nxs1 − nyc1)/s5, (axs1 − ayc1)/s5)

(4)

where

A � k1
�����������
p2
x + p2

y − d2
4

√
c3 � N2 +M2 − a22 − a23/2a2a3, s3 � k3

�����
1 − c23

√
N � d1 − pz − d5c234, M � k3

�����������
p2
x + p2

y − d2
4

√
+ d5s234

P1 � a3s3, P2 � a2 + a3c3

(5)

and a2, a3, d4, d5 are the DH parameters of the robot and the exact
values can be obtained in Table 1. k1, k2 and k3 as 1 or −1.

The inverse solution calculation leads to values of k1, k2, and k3
that are not unique, which is why the joints have multiple
solutions. There are eight sets of solutions in total. As the
robot’s configuration does not change when the trajectory is in
motion, it is not necessary to consider all cases of k1, k2, k3, and
only a set of values needs to be chosen. According to the unique
domain theory, we let k1 =1, k2= −1, k3= 1.

The inverse kinematic solution of the UR5 robot can be
completed from Eqs. 4 and 5. The trajectory between sample
points is generally done by interpolation. Assuming that the time
corresponding to sample point pj is ti, the whole trajectory s(t) can
be expressed as

s(t) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s1(t), t ∈ [t0, t1]
s2(t), t ∈ [t1, t2]

..

.

sn(t), t ∈ [tn−1, tn]
sj(t) � uk,jt

k + uk−1,jtk−1 + . . . + u1,jt + u0,j

(6)

where uk,j, uk-1,j, ..., u0,j are constant coefficients and k is the order
of sj(t), j = 1, 2, ..., n.

A spline curve is a special function defined by a polynomial
segment. In engineering applications, spline interpolation is more
reliable than polynomials. The interpolation error is small even if
the order of the spline curve is not high, thus avoiding Runge’s
phenomenon. In order to balance the smoothness of the
trajectory with the speed of the calculation, we use cubic
splines, which guarantee the continuity of the acceleration.
Thus the trajectory sj(t) can be written

sj(t) � u3,jt
3 + u2,jt

2 + u1,jt + u0,jt j � 1, 2, . . . , n (7)
The value of sj(t) at each interval endpoint is equal to the

value at the sample point, i.e. sj (tj-1) = qj-1, sj (tj) = qj. The
derivatives of sj(t) at the endpoints of each interval are
continuous, i.e. sj′(tj -0) = s′j (tj +0). The second-order
derivatives of sj(t) at the endpoints of each interval are
continuous, i.e. sj′′(tj -0) = sj′′(tj +0).

TABLE 1 | DH parameters of UR5 cobot, including link offset di, link length ai, twist
angle αi and joint angle θi.

No di (m) ai (m) αi (rad) θi (rad)

1 0.1625 0 π/2 θ1
2 0 -0.425 0 θ2
3 0 -0.3922 0 θ3
4 0.1333 0 π/2 θ4
5 0.0997 0 -π/2 θ5
6 0.0996 0 0 θ6
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Noting that sj′′(t) is a first-order polynomial on the closed
interval [tj-1, tj], one can assume that the values of sj′′(t) at the
endpoints of the interval are known, i.e. sj′′(tj-1) = Mj-1, sj′′(tj) =
Mj. Then

s″j (t) �
(tj − t)Mj−1 + (t − tj−1)Mj

hj
(8)

where hj = tj - tj-1.
By computing the integral of Eq. 8, we are able to obtain a

general expression for the cubic spline at any moment t in the
closed interval [tj-1, tj]

sj(t) �
(tj − t)3Mj−1 + (t − tj−1)3Mj + (tj − t)(6wj−1 −Mj−1h2j) + (t − tj−1)(6wj −Mjh2j)

6hj
(9)

From Eq. 8, we can obtain that there are (n+1) unknown
variables in the whole trajectory s(t) (M0, M1, ..., Mn). In order to
find out all the parameters, it is necessary to construct independent
equations for M0, M1, ..., Mn of independent equations

μjMj−1 + 2Mj + λjMj+1 � γj (10)
where μj = hj/(hj+hj+1), λj = 1-μj, γj = 6 [(wj+1-wj)/hj+1-(wj-wj-1)/
hj]/(hj+hj+1).

For n cubic polynomials consisting of s(t), there are (n-1)
internal knots to obtain (n-1) equations in Eq. 8. In order to solve
for the (n+1) unknown variables, we still need two other
constraints. Noting that the velocity at the start and end of the
whole trajectory is zero, i.e. sj′(0) = 0, sj′(tn) = 0. This leads to
(n+1) independent equations

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 1
μ1 2 λ1

μ2 2 λ2
1 1 1

μn−1 2 λn−1
1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0

M1

M2

..

.

Mn−1
Mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ0
γ1
γ2
..
.

γn−1
γn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

where μi, λi are known quantities and Mi are unknown variables.
The solution of Eq. 11 determines the display equation for the

cubic polynomial, so the time-optimal problem can be described as
solving for theminimumof the sum of hjwithin the constraints, i.e.

f(t) �∑n
j�0
tj

s.t.

⎧⎪⎪⎨⎪⎪⎩
∣∣∣∣∣max(s′(t))∣∣∣∣∣≤Vmax∣∣∣∣∣max(s″(t))∣∣∣∣∣≤Amax∣∣∣∣∣max(s‴(t))∣∣∣∣∣≤ Jmax

(12)

IMPROVED SPARROW SEARCH
ALGORITHM

Sparrow Search Algorithm
The sparrow search algorithm models the behaviour of the
sparrow as it forages for food and escapes predation. As with
other heuristics, the sparrow population can be understood as a

randomly generated variable. The algorithm defines the different
identities of individuals in the population: producers and joiners.
The process of sparrow foraging is, in fact, an algorithmic search
for optimal performance. According to a certain ratio, individuals
with good energy are defined as producers during each foraging
session and the remaining individuals as joiners. The joiner
moves closer to the producer. The fitness function measures
the magnitude of the energy. In addition, a certain percentage of
individuals (typically 10–20% of the entire population) are
randomly selected from the entire sparrow population to sense
danger. These sparrows act like variant individuals in GA,
preventing the population from falling into a local optimum.
Their position shifts when certain conditions are triggered. This
increases the diversity of the population and improves the
possibility of individuals escaping the local optimum.

In the Tth foraging action, the producer’s position is updated
as follows

xT+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xT
i,j exp( − i

α · itermax
), R2 < ST

xT
i,j + Q · L, R2 ≥ ST

(13)

where T is the current number of iterations, i is the sequence of
individual sparrows in the population, and xi,j denotes the
coordinate position of the jth dimension of the current ith
producer. Random factor α∈(0,1], itermax represents the
maximum number of iterations, Q is a random value that
follows a normal distribution, L is a vector of the same
dimension as the individual sparrow, random numbers
R2∈[0,1], ST∈[0.5, 1].

R2 is a random number and ST is a constant in the domain of
definition. R2 determines how the producer updates and this
random setting allows for more variation in the producer’s
position, increasing the possibility of optimization seeking. For
joiners

xT+1
i,j �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q exp( − xworst − xT

i,j

i2
), i> n

2

xT+1
p +

∣∣∣∣∣xT
i,j − xT+1

p

∣∣∣∣∣A+L, i≤
n

2

(14)

where xworst is the individual sparrow with the weakest current
energy, n is the number of joiners, xT+1

p is the sparrow with the
highest energy in Equation 10; A is a vector of the same
dimension as the individual sparrow, with internal elements 1
and -1, A+ = AT (AAT)A−1.

The accessions are renewed in two ways, preserving the
distribution of the sparrow population. For the sparrow
responsible for early warning

xT+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xT
best + β

∣∣∣∣∣xT
i,j − xbest

∣∣∣∣∣, fi >fg

xT
i,j +K( xT

i,j − xworst(fi − fw) + ε
), fi � fg

(15)

where xbest is the globally optimal individual in the current
action, fi is the fitness value of the individuals, and fg, fw are the
optimal fitness and the worst fitness, respectively, that the
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sparrow population can achieve in this action. β, K are step
coefficients. ε is a minimal value that prevents the denominator
from being zero.

The sparrow responsible for the warning is at the edge of the
population when fi > fg and should move closer to the position
where the globally optimal sparrow is located. The sparrow
responsible for sensing danger chooses to update its position
towards the centre of the group in order to reduce the risk of
predation when fi = fg. This setup aims to avoid too many
individuals reaching a local optimum, and the algorithm stops
iterating and falling into a local optimum.

Initial Population Optimization Based on
Tent Chaotic Mapping
In the original algorithm, the authors compared the performance
of SSA and GSA, PSO, GWO on nineteen tested functions. SSA
has a robust global search capability and yields high accuracy,
outperforming other algorithms in multi-modal search problems.
The distribution of the initial population is closely related to the
performance of the algorithm. A uniformly distributed initial
population can enrich the diversity of the population and thus
improve the search efficiency of the algorithm. However, this
consideration was not made in the original SSA, and the
implementation of the algorithm relied on pseudo-random
numbers to complete the initial population take. Tent chaotic
sequences are stochastic and ensure the diversity of populations
(Liu et al., 2016). Tent mapping can produce a uniformly

distributed initial population, which effectively prevents
individuals from approaching the local optimum too early.
The expression for the Tent chaos mapping is

xi+1 � { 2xi, 0≤xi ≤ 0.5
2(1 − xi), 0.5<xi ≤ 1

(16)

In order to avoid the sequence of Tent chaotic mappings
falling into small and unstable periodic points during iteration, a
random variable δ/N is introduced into the original Tent mapping

FIGURE 1 | Comparison of two kinds of random number generators.

FIGURE 2 | Variation of step size factors with the number of iterations.
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xi+1 �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2xi + δ/N − xmin

xmax − xmin
, 0≤xi ≤ 0.5

2(1 − xi) + δ/N − xmin

xmax − xmin
, 0.5<xi ≤ 1

(17)

where the random variable δ ∈ [0,1], N is the number of elements
in the individual sparrow, and xmin, xmax are the smallest and
largest elements in the individual sparrow.

To further compare pseudo-random numbers and Tent
chaotic sequences, 1,000 sets of random numbers with values
in [0,1] were generated by twomethods. The intervals were evenly

divided into 10 parts, and the frequency of occurrence of the
numbers in each interval was counted. Figures 1A,C visualize the
location of the random numbers generated in the two ways, while
Figures 1B,D count the number of occurrences of the random
numbers in each interval. It can be seen that the improved Tent
mapping produces a more uniform distribution of chaotic
sequences of random numbers.

Adaptive Step Factor
The function of Eq. 15 is to avoid that too many individuals reach
the optimum, and the algorithm stops iterating, thus falling into
a local optimum. However, its effect is weakened because the
step factor in Eq. 15 is random. The sparrows should approach
the individual with the best position more quickly when fi > fg,
thus achieving accelerated convergence. The cosine annealing
algorithm is widely used in deep learning and has excellent
conditioning effects. The cosine annealing algorithm was used
to adjust the step size factor β. In early searches, sparrow
populations were more widely distributed, global search
capacity was more robust and local search capacity needed to
be increased. Using Eq. 19, the value of K is adjusted to increase
in the early period and decrease rapidly in the later period. Such
an adaptation ensures that the algorithm maintains a robust
global search capability in the early stages, and accelerates
convergence in the later stages. The variation of the two step
factors with the number of iterations is shown in Figure 2.
Equations 18 and 19 are defined as adaptive step factors, which
we refer to uniformly as ADF in the rest of the section

β � βmin + 0.5(βmax − βmin)(1 − cos(itercur/itermax)) (18)

K � (itercur/itermax) exp(sin( itercur
itermax

π)2

−Kmin)/Kmax (19)

where βmin and βmax are the minimum and maximum values of β.
Kmin and Kmax are the lower and upper limits of the value of K.
itercur and itermax are the current number of iterations and the
total number of iterations respectively.

FIGURE 3 | Time-optimal algorithm flow for trajectories.

FIGURE 4 | The solid and structure of the UR5 robot.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8524087

Zhang et al. Time Optimal Trajectory Planing by ISSA

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Equations 13–15, derived from the original work of SSA (Xue
and Shen, 2020), specify how the sparrow is updated and
construct the basic flow of the algorithm. Based on the
idealization and feasibility of the above model, the basic steps
of the improved SSA can be summarized in the pseudo-code
shown in Algorithm 1. The algorithm flow for solving the time-
optimal trajectory can be obtained from the above work, as shown
in Figure 3. UDi in the figure is a shorthand for the unique
domain, i = 1,2,3,...,8.

Algorithm 1. The framework of the improved SSA

EXPERIMENTS BASED ON UR5 COBOT

Experiments were carried out on the UR5 cobot platform in order
to verify the validity of the work presented earlier. The solid and
structure of the UR5 robot are shown in Figures 4A,B, and the
DH parameters are shown in Table 1.

The task trajectory is a spiral line with a circle centre position
of (-200,100)mm, a radius of 60 mm and a pitch of 10 mm in a
Cartesian coordinate system. The trajectory of the helix in the
Cartesian system is shown in Figure 5 and the coordinates of the
sampling points are shown in Table 2.

FIGURE 5 | Task trajectory.

TABLE 2 | Positions of every sample points.

No x/mm y/mm z/mm

1 −140.000 100.000 0.000
2 −142.937 118.541 3.142
3 −151.459 135.267 6.283
4 −164.733 148.541 9.425
5 −181.459 157.063 12.566
... ...
19 −151.459 64.733 56.549
20 −142.937 81.459 59.690

TABLE 3 | The corresponding angle of the sampling point.

No θ1/rad θ2/rad θ3/rad θ4/rad θ5/rad θ6/rad

1 −1.5066 2.2871 −2.4364 −2.9923 1.5066 3.1416
2 −1.4931 2.2125 −2.4216 −2.9325 1.4931 3.1416
3 −1.4451 2.1280 −2.3985 −2.8711 1.4451 3.1416
4 −1.3785 2.0459 −2.3707 −2.8168 1.3785 3.1416
5 −1.3023 1.9726 −2.3418 −2.7724 1.3023 3.1416
... ...
19 −1.34683 2.2836 −2.5835 −2.8417 1.3468 3.1416
20 −1.46255 2.2808 −2.5912 −2.8312 1.4626 3.1416

FIGURE 6 | Time results for ten calculations of the two inverse solution
schemes.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8524088

Zhang et al. Time Optimal Trajectory Planing by ISSA

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


The efficiency of the inverse solution calculation during robot
motion is important and affects the efficiency of the overall
motion. A single calculation can derive the joint angles for all
sample points by Eq. 4 in Section 3. The joint angles
corresponding to each sample point are obtained by inverse
kinematics as shown in Table 3. Since the pose did not
change during the motion along the trajectory, no motion
occurred for joint 6, no trajectory planning was required for
joint 6.

Compared to the method of calculating eight sets of inverse
solutions and then filtering them by the principle of minimum
displacement (known as calculation method 1), the method of
joint space division (known as calculation method 2) is more
time-efficient. The two inverse solution calculation methods
were run ten times in Matlab 2019b, and the calculation time
results are shown in Figure 6. The average time for ten runs of
the two methods was 2.6149 and 1.5752 ms respectively, with
the joint space division based method able to save 39.76% of

the time. This proportion increases linearly with the number of
sampling points.

The maximum velocity and maximum acceleration constraints for
each joint are shown inTable 4. We did controlled experiments in the
same environment to further investigate the advantages of the two
improvements to SSA in this paper. The maximum number of

TABLE 4 | Constraint conditions of each joint.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Vmax (rad/s) 1.7453 1.6581 1.7453 2.6180 2.2689
Amax (rad/s

2) 0.7854 0.6981 1.3090 1.2217 1.5708
Jmax (rad/s

3) 1.0472 1.0472 0.9599 1.2217 1.3090

FIGURE 7 | Comparison of the results of the improved SSA with the
original algorithm.

TABLE 5 | Average of convergence after 10 runs of the four algorithms at the
terminal of Intel(R) i7-9750H CUP@ 2.60 GHz.

SSA T-SSA ADF-SSA TADF-SSA

Iterations at convergence 47.8 34.3 24.3 18.2
Fitness at convergence (s) 10.87 12.14 9.91 9.04

FIGURE 8 | Results of time-optimal trajectory planning for angle,
velocity, acceleration and jerk.
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iterations is 80, the population size is 100, and the number of
discoverers is 20% of the entire population. The sparrows
responsible for scouting were 10% of the population, and ST = 0.5
inEq. 13. To compare the effects of the two improvements on SSA, the
same trajectory is optimized with the same initial parameters. SSA
combined with Tent chaos mapping is referred to as T-SSA. SSA
combined with an adaptive step factor is referred to as ADF-SSA. The
SSA with both improvements is called TADF-SSA. To verify the
stability of the algorithms, the variations of the fitness functions of the
four algorithms are run ten times separately at the same hardware level.
The optimal performance of each algorithm is shown in Figure 7. The
results of the ten runs are averaged and recorded in Table 5.

From Figure 7, we can see that the best convergence result for
SSA is 10.83s after 46 iterations. T-SSA converges to a minimum
value of 12.07s after 34 iterations. ADF-SSA converges to a
minimum value of 9.85s after 23 iterations. TADF-SSA
converges to a minimum value of 8.99s after 18 iterations. As
can be seen from Table 5, the average results of the ten runs float
around the best results, and the algorithm’s performance is stable.
The results of T-SSA and SSA shows that using Tent chaotic
mapping alone does not improve the algorithm significantly. This
is since the Tent chaotic mapping reduces the effect of population
precocity, while the search capability of the SSA algorithm itself
causes this result. The results of ADF-SSA and SSA shows that the
adaptive step factor (ADF) can improve the global search capability
and efficiency of the algorithm. TADF-SSA performed best in all
results, which demonstrates the effectiveness of the improvements
to the SSA algorithm in this paper.

The initial time was set to 50s, and the trajectory obtained after
time optimization by the improved SSA is shown in Figure 8. The
movement time of the whole trajectory is 8.6618s (the average of 5
runs is taken as the final time to ensure the algorithm’s stability),
which is 82.68% shorter. The interpolation time for each segment is
shown in Table 6. The trajectory of each joint's angle (as shown in
Figure 8A) and velocity (as shown in Figure 8B) changes is very
smooth, and the maximum value is less than the constraint. The
acceleration profile is continuous, as shown in Figure 8C, and the
maximum value of the angular acceleration of each joint is less than
the constraint. The jerk of each joint angle is also much smaller thanT
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FIGURE 9 | The trajectory of EE.
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the constraint, as shown in Figure 8D, which ensures that the motor
is protected from large shocks.

The trajectory of the obtained joint angles is mapped by forward
kinematics to the trajectory of EE in a Cartesian coordinate system as

shown in Figure 9. It can be seen that the trajectory of EE in
Cartesian space is very smooth and passes through each sampling
point. The result is consistent with engineering applications and
practical requirements.

The variation of the components of the end trajectory mapped to
the three axes in Cartesian space is shown in Figures 10A-C
correspond to the trajectories of axes x, y, and z, respectively). The
trajectories are smooth and continuous in all three coordinates, which
indicates that the EE is moving smooth and stable in the set trajectory.

CONCLUSION

An optimal time trajectory planning method is proposed in terms of
both inverse kinematic solution and time optimization. Trajectory
planning is accomplished in the joint space through cubic spline
interpolation, and the joint space is refined to improve the inverse
solution calculation time. The sparrow search algorithm is optimized
for the initial population generation method and step factor update.
An improved tent chaotic mapping improves the rationality of the
initial population distribution. The global search capability of the
algorithm is improved by combining the step size factor of the cosine
annealing algorithm. A time-optimal trajectory was obtained by an
improved sparrow search algorithm. Simulation experiments were
carried out on theUR5 collaborative robot, and the results showed that
the time of the obtained trajectory was considerably optimized while
satisfying the constraints. The feasibility and effectiveness of the
algorithm were verified.

The method proposed in this paper for calculating time-
optimal trajectories is applicable to tandem robots of any
configuration. The method of calculating the inverse solution
when planning trajectories can improve the efficiency of robot
motion, but this method relies on the robot’s structure and has
not been generalized to robots of general configuration, which
requires further theoretical study.
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