
ABSTRACT

Embryonic stem cells have been a popular research topic in regenerative medicine owing to 
their pluripotency and applicability. However, due to the difficulty in harvesting them and 
their low yield efficiency, advanced cell reprogramming technology has been introduced as 
an alternative. Dental stem cells have entered the spotlight due to their regenerative potential 
and their ability to be obtained from biological waste generated after dental treatment. 
Cell reprogramming, a process of reverting mature somatic cells into stem cells, and 
transdifferentiation, a direct conversion between different cell types without induction of a 
pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in 
their regenerative potential. Furthermore, the potential of these cells to return to their original 
cell types due to their epigenetic memory has reinforced the need to control the epigenetic 
background for successful management of cellular differentiation. Herein, we discuss all 
available sources of dental stem cells, the procedures used to obtain these cells, and their ability 
to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and 
transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone 
modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using 
dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, 
which are used in regenerative medicine and tissue engineering.

Keywords: Cellular reprogramming; Epigenetics; Regenerative medicine; Stem cells;  
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INTRODUCTION

Stem cells are undifferentiated cells that have the potential to differentiate into other types 
of functional cells present in an organism and possess the ability to self-renew. Therefore, 
stem cell therapy has received attention as a promising tool for regenerative medicine and 
tissue engineering [1]. Stem cells are classified as totipotent, pluripotent, multipotent, 
and unipotent based on their differentiation potential [2]. Embryonic stem cells (ESCs) 
are pluripotent and theoretically capable of differentiating into more than 200 cell types; 
however, various biological limitations and controversies such as the difficulty of obtaining 
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ESCs, ethical aspects related to destruction of the embryo, risks of immune rejection, and 
teratoma formation have necessitated the search for other alternatives [3]. Somatic stem 
cells, which originate from autologous cells, have been introduced as alternatives to ESCs. 
Lineage-specific multipotent stem cells are referred to by their sources of origin, such as 
skeletal stem cells, muscle stem cells, endothelial stem cells, adipose-derived stem cells, 
and dental stem cells [4]. Dental stem cells have recently entered the spotlight due to their 
regenerative potential and their ability to be obtained from biological waste generated after 
dental treatment [5]. Concepts such as identifying the differentiation potential or “stemness” 
of cells and cell reprogramming of somatic cells into pluripotent stem cells involving 
the generation of ESC-like cells through ectopic expression of specific genes have been 
introduced [6]. Dr. Shinya Yamanaka investigated induced pluripotent stem cells (iPSCs) 
using 4 transcription factors (Oct4, Klf4, Sox-2, and c-Myc) and demonstrated the conversion 
of somatic cells into stem cells [7]. However, the generation of iPSCs has limitations such as 
low efficiency, slow kinetics, and difficulty in the recovery of epigenetic markers. Therefore, 
transdifferentiation, a direct lineage conversion from one specialized somatic cell to another 
cell without induction of the pluripotent state, has been introduced most recently. In this 
review, we outline in detail all available sources of dental stem cells, the procedures used to 
obtain these cells, their ability to differentiate into the desired cells, and their translational 
application for tissue regenerations. We also introduce the concepts of cell reprogramming 
and transdifferentiation in epigenetics, including DNA methylation, histone modification, 
and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived 
cells as stem cells, iPSCs, and transdifferentiation in regenerative medicine.

CELL-FATE COMMITMENT AND THE WADDINGTON 
LANDSCAPE MODEL
Conrad Waddington explained cellular differentiation during development using the 
“epigenetic landscape model” [8]. In the model of Waddington’s epigenetic landscape, 
the impact of epigenetics on cell reprogramming can be easily explained, and this model 
enables the identification of another route, transdifferentiation, for obtaining desired cells 
(Figure 1). The process of cellular differentiation is depicted by illustrating the concept 
with the example of hills and marbles. The theory can be explained as “the marble at the 
top of the hill is the pluripotent stem cell state, and there are several ways for the marble 
to roll down to the bottom of the hill, and each final destination can be defined as a fully 
differentiated cell.” This model depicts stem cells as differentiating into specialized cells 
by undergoing epigenetic changes such as DNA methylation and histone modification. It is 
based on the idea that the normal developmental process is unidirectional and irreversible 
and demonstrates that stem cells differentiate into specialized mature cells and lose their 
stemness (Figure 1A). Based on this concept, many studies to find stem cell sources have 
been conducted for tissue regeneration. However, a series of ground-breaking studies, such 
as the discovery of iPSCs (Figure 1B) and direct conversion (Figure 1C), have shown that the 
cell fate could be flexible and reversible, and research trends have changed to modulate cell 
fates via reprogramming and transdifferentiation using ectopic expression of transcription 
factors or pharmacological agents. In this model, pluripotent stem cells act as a hub 
connecting with other cellular lineage paths at the top, and the already differentiated cells at 
the bottom can switch with each other outside the context of pluripotency [9].
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DENTAL STEM CELLS

In dentistry, tissue engineering for regenerating oral tissues or replacing missing teeth with 
various biomaterials has been introduced [10], and various types of adult stem cells in dental 
tissues have been identified as a source (Figure 2).

Dental pulp stem cells (DPSCs)
Dental pulp is the soft connective tissue inside the tooth that contains nerves and blood 
vessels, which play an important role in tooth development. In 2000, human dental stem cells 
were first identified in the dental pulp of the third molars and were found to have properties 
similar to those of bone marrow-derived mesenchymal stem cells (BMSCs) [5]. Subsequently, 
DPSCs were isolated from exfoliated deciduous teeth [11], permanent teeth [12], and 
supernumerary teeth [13]. DPSCs have the potential of self-renewal and multi-differentiation, 
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Figure 1. Waddington’s epigenetic landscape model. Waddington’s epigenetic landscape model represents the 
process of cell differentiation (A), reprogramming (B), and transdifferentiation (C). The status of stem cells and 
somatic cells is depicted by rolling marbles from multipotency to unipotency.

SHED DPSC DFSC

TGSC
SCAP

PDLSC
BMSC

OMSC

Figure 2. Sources of dental-derived stem cells. Various types of dental tissue-derived stem cells have been 
identified as sources of tissue regeneration. 
OMSC: oral mucosa-derived stem cell, SHED: stem cell from human exfoliated deciduous teeth, DPSC: dental 
pulp stem cell, DFSC: dental follicle stem cell, BMSC: bone marrow-derived stem cell, PDLSC: periodontal 
ligament stem cell, SCAP: stem cell from the apical papilla, TGSC: tooth germ stem cell.
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including the odontogenic, osteogenic, neurogenic, chondrogenic, and myogenic lineages 
[14-18]. DPSCs regenerated the tooth structures forming the dentin-pulp complex when 
transplanted into immunocompromised mice [5]. DPSCs originate from the embryonic neural 
crest cells that migrate from the neural tube and produce multiple non-neural or neural cells, 
including glia and peripheral nervous system neurons [19]. Therefore, it is not surprising that 
DPSCs represent markers of neural systems; however, their heterogeneous properties can 
affect the differentiation efficiency [7], and many efforts have been made to obtain a more 
homogenous cell population than the whole DPSC population. An early marker of multiple 
MSC-like populations, stromal precursor cell surface marker (STRO-1), has been used to purify 
DPSCs; however, obtaining sufficient cell numbers was problematic [20]. DPSCs showed the 
expression of pluripotency markers (SOX2, MYC, and OCT4), and transplanted DPSCs did 
not form tumors, unlike ESCs and iPSCs [14,21]. These characteristics have made DPSCs a 
promising candidate for stem cell therapy, especially neurological diseases such as stroke due 
to their neural crest origin. DPSCs have been reprogrammed to iPSCs, and some studies have 
shown the conversion of DPSCs into neural stem cells (NSCs) using the neurosphere culture 
method [22]. DPSCs were differentiated into functional neurons in vitro via a 2-stage protocol, 
comprising stimulation of neurosphere formation, followed by a neuronal maturation [23]. 
The neurosphere culture technique was demonstrated by Pisciotta et al. [22], who reported 
prolonged expansion of the spheres while maintaining the properties of the neural crest. 
In addition, the injected DPSCs in an embryonic model followed the migratory pathway of 
cranial neural crest cells and differentiated into neuronal cells [24]. Although there is some 
evidence of the use of the neurosphere system for prolonged culture, the conversion to NSCs 
via transdifferentiation may be more efficient because DPSCs originate from the neural crest. 
In addition, Govindasamy et al., demonstrated the differentiation of DPSCs into pancreatic 
islet-like cells via a 3-step protocol: 1) activin A, sodium butyrate, and b-mercaptoethanol; 2) 
taurine (0.3 mM); and 3) taurine (3 mM), glucagon-like peptide-1 (100 nM), nicotinamide (1 
mM), and non-essential amino acids [25]. The characters of islet-like cells were confirmed by 
expression of C-peptide, Pdx-1, Pax4, Pax6, Ngn3, and Isl-1, as well as by dithizone-positive 
staining, and the functionality of islet-like cells was proven by showing glucose-dependent 
release of insulin and C-peptide.

Periodontal ligament stem cells (PDLSCs)
The periodontal ligament (PDL) is a specialized connective tissue fiber that connects the 
tooth and alveolar bone. In 2004, PDL stem cells were successfully isolated from impacted 
third molars, and their differentiation into cementoblast-like cells and collagen-forming 
cells proved their multipotency [26]. Various subsequent studies have reported the 
differential potential of PDLSCs according to tissue origin, donor age, culture method, and 
tooth condition and are still open to controversy [27]. Lee et al. [28] also demonstrated 
the transdifferentiation of PDLSCs into functional pancreatic islet-like clusters with 
3-dimensional cell clustering on Matrigel. PDLSCs have also been applied to regenerate 
retinal ganglion cells via transdifferentiation. Ng et al. identified the transdifferentiation 
process of PDLSCs into retinal ganglion-like cells. They induced transdifferentiation with a 
modified protocol of Noggin-Dkk1-IGF1 induction and determined the miRNA signature of 
the process. The transdifferentiated cells showed the characteristics of functional neurons, 
which expressed retinal ganglion cell markers, such as MAP2, TAU, POU4F2, ATOH7, and 
SIX3, and formed synapses that induced electrical activities; furthermore, VEGF, PTEN, and 
miR-132 were significantly upregulated during the process [29]. Similarly, several studies have 
revealed that PDLSCs can differentiate into other functional cells and that both genetic and 
epigenetic factors are involved in the process of transdifferentiation.
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Stem cells from human exfoliated deciduous teeth (SHEDs)
Deciduous teeth are naturally shed during the eruption of permanent teeth, and the 
exfoliated deciduous teeth are usually disposed of. The cells from these exfoliated deciduous 
teeth can differentiate into various useful cells with only a few ethical problems. SHEDs 
were first identified by Miura et al. [11] in 2003, and they have received attention as stem 
cell sources in regenerative medicine with high multipotency and proliferative capacities 
[30]. It has been reported that SHEDs have the ability of multilineage differentiation [31], in 
addition, they have a distinct property of inducing the formation of a bone-like matrix with 
a lamellar structure, which was explained by root resorption of deciduous teeth that occurs 
due to new bone formation around the root [32]. The multilineage differentiation capability 
of SHEDs was also confirmed in the study of Esmaeili et al. [33]. The neural-like cells derived 
from SHEDs produced neurotrophic factors, including BDNF, NGF, NT-3, and NT-4.

Tooth germ stem cells (TGSCs)
TGSCs have become a popular cell source with high differentiation potential into 
multilineage cell types. As a promising cell source for tooth regeneration, mesenchymal cells 
with endothelial and epithelial cells are strictly needed for tooth morphogenesis. Dogan et 
al. showed that human TGSCs successfully differentiated into endothelial and epithelial-like 
cells, which expressed cell-lineage markers for endothelial cells (vWF, VE-cadherin, CD31, 
and VEGFR2) and epithelial cells (vimentin, EpCaM, and cytokeratin) [34].

Dental follicle stem cells (DFSCs)
Stem cells are also found in the developing dental tissues, including the dental follicle, apical 
papilla, and tooth germ. The dental follicle is a developing dental sac, which contains loose 
connective dental tissue. DFSCs were first isolated in 2005 [35], and various studies have shown 
their multipotent nature, manifesting as an ability to differentiate into various types of cells 
[36,37]. In vivo transplantation of DFSCs into mice resulted in new PDL formation [38], salivary 
gland-like cells [39], and tooth-root-like tissues [40]. In recent research, DFSCs have been 
found to exert an immunosuppressive function in both innate and adaptive immune systems 
and have been applied for the treatment of inflammatory diseases in animal models [41].

Stem cells from the apical papilla (SCAPs)
SCAPs originate from the tooth apical papilla, including the precursor cells of the dental 
pulp, which are isolated from the wisdom tooth or the open apex of the tooth. In 2006, SCAPs 
were first isolated from the apical papilla of incompletely developed teeth [42]. Moreover, in 
vitro and in vivo studies have demonstrated that SCAPs can differentiate into osteoblasts, and 
odontoblasts; they have higher stemness due to their potential for tooth formation [43]. Many 
studies have demonstrated that SCAPs could differentiate into osteoblasts or odontoblasts. 
Growth factors, such as BMP [44], WNT [45], and IGF [46] promoted the osteogenic and 
odontogenic differentiation of SCAPs; however, sonic hedgehog [47], homeobox C10 [48], and 
microRNA hsa-let-7b [49] inhibited SCAP differentiation.

Oral mucosa derived stem cells (OMSCs)
The oral mucosa comprises the epithelium; connective tissue, including the lamina propria; 
and submucosa. Owing to the ease of obtaining the tissue from oral surgical sites or 
discarded samples, OMSCs have been the focus of stem cell studies. Various stem cells have 
been identified in the oral mucosa, namely, OMSCs, oral epithelial stem cells (OESCs), and 
gingiva-derived MSCs (GMSCs). OMSCs are isolated from the gingiva's lamina propria and 
can differentiate into other lineage cells [50]. OESCs are isolated from oral keratinocytes, 
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which are a small subpopulation of cells but can regenerate the oral mucosa and show an 
enriched quiescent cell population and long-term proliferative potential [51]. GMSCs have 
multipotency and high proliferation and self-renewal capacity [52].

BMSCs
The bone marrow is a semi-solid tissue located inside the cancellous bone, where 
hematopoiesis occurs (i.e., the production of blood cells, such as red blood cells, platelets, 
and white blood cells). BMSCs in dental tissue can be obtained from the orofacial bones 
[53,54]. BMSCs are mainly taken from the maxilla or mandible by aspiration during 
surgical procedures, such as tooth extraction, dental implant surgery, cyst enucleation, 
and orthognathic surgery [55]. It has been reported that the donor’s age does not have a 
substantial impact on the regenerative potential of BMSCs. Preclinical [56] and clinical 
[57] studies have shown excellent regenerative properties of orofacial-derived bone grafts 
in comparison with those of ex-orofacial grafts, such as those derived from the rib or the 
iliac crest [58]. In addition, Song et al. [59] demonstrated that fully differentiated cells from 
human BMSCs were capable of transdifferentiation or dedifferentiation into cells of another 
developmental lineage at the single-cell level. The results showed that fully differentiated 
osteoblasts from BMSCs helped to transdifferentiate into adipocytes and chondrocytes, and 
fully differentiated adipocytes and chondrocytes from BMSCs could transdifferentiate into 
other mesenchymal lineages.

Collectively, the most frequently targeted dental stem cells in previous studies were cells from 
dental pulp (DPSCs) and periodontal ligament (PDLSCs). SHEDs also have high stemness, 
but SHEDs are often not isolated and stored in childhood. Although DPSCs and PDLSCs have 
a lower potential for proliferation than SHEDs, they are obtained relatively easily from teeth 
selected for extraction or endodontic treatment and have high differentiation potential [60]. 
In addition, OMSCs have received extensive attention due to their convenient procurement; 
however, their stemness is lower than that of other cell types. Many in vitro pre-clinical and 
clinical studies have demonstrated promising results regarding dental stem cells for tissue 
engineering (Table 1) [61-72]. However, the first step is to define the differentiation capacity 
using validated in vitro and in vivo transplantation assays. More in-depth studies are necessary 
to establish a strategy for the clinical use of dental stem cells. Several recent studies have 
been conducted to obtain the desired cells, rather than stem cells, using new technologies.
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Table 1. Therapeutic potentials of dental tissue-derived stem cells
Target Outcome References
Neural system Differentiation of DPSCs into immature neuronal-like and oligodendrocyte-like cells. [61]
Cerebral ischemia Transplantation of human DPSCs in a rodent model of focal cerebral ischemia resulted in significant improvements in 

forelimb sensorimotor function.
[62]

Optic nerve regeneration Intravitreal transplants of DPSCs promoted significant neurotrophin-mediated retinal ganglion cell survival and axon 
regeneration after optic nerve injury.

[63]

Myocardial infarction DPSCs improved ventricular function, inducing angiogenesis and reducing infarct size in rat model. [64]
Muscle regeneration Clones of DPSCs improved muscle regeneration through dystrophin and myosin heavy chain. [65]
Bone regeneration DPSC-containing scaffolds had the potential to ameliorate the bone regeneration process. [66]
Socket preservation (Clinical trial) Clinical application of a DPSC-collagen sponge complex restored mandibular bone defects. [67]
Irreversible pulpitis (Clinical trial) Transplantation of DPSCs with atelocollagen transplanted regenerated the pulp. [68]
Periodontal disease (Clinical trial) Transplantation of PDLSCs into intrabony defect improved periodontal conditions. [69]

(Clinical trial) Safety and efficacy of autologous PDL-derived cell sheets were evaluated in a clinical setting. [70]
Gingival recession (Clinical trial) The application of autologous fibroblasts resulted in a significant gain of gingiva in terms of root 

coverage.
[71]

(Clinical trial) Autologous fibroblasts on a collagen matrix were effective in the treatment of gingival recession. [72]
DPSC, dental pulp stem cell; PDLSC, periodontal ligament stem cell.



CELL REPROGRAMMING

Considerable efforts have been devoted to obtaining adult stem cells, and various studies 
have shown the possibility of cell reprogramming due to advances in genetic engineering. 
Despite the thought that somatic cells are fully differentiated, have a specific molecular 
pattern that determines cellular function and physiology, and remain permanent or stable 
throughout life, somatic cells can also be used for tissue regeneration through their induction 
into pluripotent stem cells (Figure 1B) or direct conversion to another cell type (Figure 1C).

iPSCs
iPSCs were first discovered in 2006 by Dr. Shinya Yamanaka, who showed that mouse skin 
fibroblasts can be reprogrammed to an embryonic stem cell state using defined factors, 
Oct3/4, Sox2, Klf4, and c-Myc, which were named the Yamanaka factors [73]. In 2007, human 
iPSCs were produced by Yamanaka’s and Thomson’s labs from human fibroblast [73,74]. The 
basis of iPSCs is that dedifferentiation is induced in adult somatic cells to a pluripotent stem 
cell state and then cells are redifferentiated to the desired cell lineages. With great potential 
for clinical application, this research program has expanded the scope of regenerative 
medicine and supported personalized medicine using individual cells. In dentistry, iPSCs 
have been efficiently generated from gingival fibroblasts, mucosal fibroblasts, and various 
oral stem/progenitor cells, including those from the PDL and deciduous teeth (Table 2) [75-
78]. The factors of c-Myc/Klf4/Oct4/Sox2 or Lin28/Nanog/Oct4/Sox2 were used to reprogram 
dental stem/progenitor cells into iPSCs [75]. Dental pulp cells from extracted teeth and 
oral mucosa fibroblasts obtained from biopsy effectively established iPSCs [76,77]. Dental 
tissue-derived cells showed a high reprogramming efficiency [78], and differentiation of 
iPSCs into ameloblasts and odontogenic mesenchymal cells indicated the possibility of tooth 
regeneration [79]. This revolutionary discovery has made it possible to obtain pluripotent 
stem cells as an alternative to ESCs, overcoming the ethical concerns associated with them 
and bringing forth a novel method of dedifferentiation. In addition, the cell reprogramming 
technology to produce iPSCs has provided the potential for tissue regeneration for clinical 
use, and several studies have demonstrated the differentiation of iPSCs into various functional 
cells, and therapeutic effects of delivered iPSCs in animal disease models (Table 3) [80-91].

Although mounting scientific evidence has shown that dental-derived cells are useful 
somatic cell sources for iPSC generation, a number of problems remain to be solved. The key 
challenge of iPSCs in clinical application is the risk of carcinogenesis because the Yamanaka 
factors are protooncogenes and their expression is high in cancers, and incomplete 
differentiation and reactivation of Yamanaka factors also accelerate carcinogenesis [92]. In 
addition, further insights are needed to reconsider their capability and characteristics based 
on the fact that all iPSCs are not equivalent. IPSCs derived from different types of cells may 
have differential regenerative capacity based on their inherited epigenetic memory. Some 
studies have demonstrated that iPSCs have epigenetic memory of previous tissue types, 
which can affect the reprogramming potential of iPSCs [93]. IPSCs from blood cells and 
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Table 2. Dental tissue-derived iPSCs
Types Outcome References

Dental tissue-derived iPSCs

Dental pulp cells were useful for iPSCs. [75]
Oral mucosa fibroblasts had high potential for iPSCs. [76]
Gingival fibroblast and periodontal ligament were identified as an excellent cell source for iPSCs. [77]
Stem cells from dental pulp, apical papilla, and deciduous tooth served as an excellent source for iPSC generation. [78]

iPSC, induced pluripotent stem cell.
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skin fibroblasts show distinct patterns of differentiation potential; blood cell-derived iPSCs 
easily transform into hematopoietic colonies, but iPSCs from fibroblasts form osteogenic 
colonies readily. These studies suggested that some specific features could be acquired during 
reprogramming, or some remnants of the epigenetic pattern and sequential gene expression 
could remain from the donor tissue. These residual signatures of epigenetic factors and 
transcription of the origin cells were termed epigenetic memory [93]. Therefore, the 
successful formation of iPSCs through reprogramming requires adjustment of the epigenetic 
landscape to change the epigenetic state.

Epigenetics and epigenetic memory
Epigenetic memory is defined as the inherited modifications of chromatin, which can alter 
gene expression and affect the phenotypes and properties of cells [94]. This memory could 
be inherited from ancestor cells by processes such as genomic imprinting and changed 
by environmental factors [95]. Genetics plays a crucial role in cellular development and 
physiology; however, epigenetics plays an essential role in the regulation of gene expression. 
Typical types of epigenetic changes include DNA methylation, histone modification, and 
production of non-coding RNAs, and these changes affect gene expression in different ways 
(Figure 3) [96].

DNA methylation
DNA methylation mostly occurs at the C-5 position on the cytosine residue in CpG 
dinucleotides by the addition of a methyl group catalyzed by methyltransferases [97]. In 
contrast, DNA demethylation is carried out at 5-methylcytosine (5mC) by DNA glycosylase or 
deaminase. This action of DNA methylation induces a change in the chromatin structure and, 
along with other epigenetic components, turns gene expression on or off.

Histone modification
Histones are proteins that associate with each other to form the core of nucleosomes, 
around which chromatin is wrapped and condensed [98]. Histone modifications are an 
example of post-translational modifications (PTMs), which include acetylation, methylation, 
ubiquitylation, phosphorylation, and sumoylation. These PTM processes induce the 
alteration of chromatin structure, which affects diverse biological processes such as 
transcriptional activation and repression. Among PTMs, acetylation and methylation are 
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Table 3. The therapeutic potential of iPSCs for tissue regeneration
Target Results References
Cardiomyocytes Murine iPSCs differentiated into functional cardiomyocytes. [80]

Human iPSCs differentiated. into functional cardiomyocytes. [81]
Endothelial cells Endothelial cells derived from human iPSCs increased capillary density and improved perfusion in a mouse model of peripheral 

arterial disease.
[82]

Neural cells Neurons derived from iPSCs functionally integrated into the fetal brain and improved symptoms of Parkinson’s disease in a rat 
model.

[83]

Neural differentiation of iPSCs in a mouse model of spinal cord injury. [84]
iPSCs from patients with Parkinson’s disease differentiated into dopaminergic neuron. [85]

b-cells Human iPSCs differentiated into insulin-producing cells in a chemical defined culture system. [86]
b-like cells derived from iPSCs secreted insulin in a mouse model of diabetes [87]

Bone cells Differentiation of osteoblasts and osteoclasts from human iPSCs. [88]
iPSCs could be successfully differentiated to osteoblast lineage cells. [89]
Osteoblasts were generated from human pluripotent stem cells under fully defined xeno-free conditions with small-molecule 
inducers.

[90]

Lineage-specific differentiation of osteogenic progenitors from human iPSCs revealed the FGF1-RUNX2 association in neural 
crest-derived osteoprogenitors.

[91]

iPSC, induced pluripotent stem cell.



tightly involved in chromatin dynamics catalyzed by histone acetyltransferases (HATs), 
deacetylases (HDACs), and methyltransferases (HMTs) at certain lysine residues.

Non-coding RNAs (ncRNA)
Unlike coding RNA, which encodes proteins, ncRNA does not encode functional proteins 
and regulates gene expression at the post-transcriptional level. The category of ncRNA 
is divided into two groups: short-chain ncRNAs—including microRNA (miRNA), small-
interfering RNA, and piwi-interacting RNA—and long non-coding RNA (lncRNA) [99]. As 
previous studies did not elucidate the mechanism of alteration of gene expression without 
changes in the DNA sequence, epigenetics has emerged as an active research field to shed 
light on this phenomenon. Epigenetic changes may be induced as a response to our living 
environment, foods we eat, exposure to pollutants, and even our social interactions. 
Moreover, epigenetic changes may be caused by the use of long-term medication, nutrient 
intake, and other environmental factors, and may affect susceptibility to diseases, response 
to treatment, and prognosis [100].

TRANSDIFFERENTIATION

Transdifferentiation is the direct conversion between different cell types without induction of 
the pluripotent cell state (Figure 1C). It is known to occur naturally by cell injury or artificially 
under experimental conditions. The fundamental difference between cell reprogramming 
and transdifferentiation is that in cell reprogramming, full reversal into the pluripotent 
state occurs, whereas, in transdifferentiation, it does not. Eguchi [101] reported a natural 
transdifferentiation phenomenon during Wolffian lens regeneration from iris-pigmented 
epithelial cells in newts. Cartilage regeneration from fibroblasts during urodele amphibian 
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Figure 3. The mechanism of epigenetics. Unlike genetic changes, epigenetic changes do not involve changes in 
DNA sequences; rather, they change how transcription factors read these DNA sequences. The main epigenetic 
mechanisms are DNA methylation, histone modification, and regulation by ncRNA. DNA methylation induces 
a compact structure of DNA and histone proteins; therefore, transcription factors are unable to bind to the 
promoter region, and gene expression is suppressed. In contrast, histone acetylation induces a loose structure of 
the DNA and histone complex, and transcription factors bind to the promoter, activating gene expression. 
ncRNA: non-coding RNA.
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limb regeneration also showed transdifferentiation [102]. In addition, a number of studies 
have reported that dental-derived cells may have the capacity to differentiate into desired 
cells such as cardiac cells, neuronal cells, and pancreatic cells [28,103-105], and various 
experimental studies have indicated the potential of transdifferentiation (Table 4) [28,103-
106]. By forced ectopic expression of specific genes using transfection of transcription factors, 
B cells could become macrophages [107], and fibroblasts could become neurons [108], cardiac 
cells [109], and hepatocytes [110]. Additionally, miRNA, episomal vectors, proteins, and 
small molecules have also been used to generate desired cells by bypassing the pluripotent 
state [111,112]. Similar to iPSCs, in the early days, transdifferentiation was induced by a 
transgene method using transcription factors. The use of a viral vector such as a retrovirus 
or lentivirus to overexpress transgenes could cause cancer by transgene inactivation and 
insertional mutagenesis; therefore, a non-integrating viral approach with an adenovirus, and 
another method using an episomal vector and excisable vector could be alternatives to reduce 
the risk of carcinogenesis [92]. Epigenetic memory, which is a limitation of reprogramming, 
should be correctly erased in the original cells, and memory should be newly adapted to 
target cells. It seems that transdifferentiation would be a better alternative to iPSCs for 
reducing the effort needed for dedifferentiation and the risk of carcinogenesis; however, this 
possibility has yet to be clearly established due to the epigenetic changes that could occur 
in the process of transdifferentiation. In this context, several studies have reported changes 
in the epigenetic landscape during transdifferentiation procedures [113-115]. The shift in 
DNA methylation is also involved in transdifferentiation from B cells to macrophages [116], 
adipocytes to osteoblasts [117], and gingival fibroblasts to osteoblasts [118]. Treatment with 
a DNA methyltransferase inhibitor, 5-aza-2’-deoxycytidine (5-aza-dC), changed the level of 
DNA methylation on the promoter of peroxisome proliferator-activated receptor gamma and 
alkaline phosphatase, and sequential Wnt3a treatment induced transdifferentiation from 
adipocytes to osteoblasts [117]. In a similar way, pre-treatment of 5-aza-dC and sequential 
BMP2 induced direct conversion from gingival fibroblasts to osteoblasts [118]. Histone 
modification also induced transdifferentiation. Transient expression of reprogramming 
factors induced transdifferentiation from fibroblasts to cardiomyocytes with decreased 
H3K27me3 and increased H3K4me3 at the Oct3 promoter. The level of H3K4me2 was 
changed during transdifferentiation, and increased in the muscle-specific miR-1-2/miR-
133a-1 cluster [119,120]. Additionally, several studies have also addressed the possibility of 
transdifferentiation into cardiomyocytes or neurons through modulation of miRNA or lncRNA 
[121-123]. As such, various in vitro and in vivo pre-clinical trials to induce transdifferentiation 
have been performed (Table 5) [117,118,124-131]; however, well-designed and controlled 
practical protocols should be established for the next step, clinical application.
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Table 4. Trials of transdifferentiation using dental-derived cells
Target Outcome References
Cardiac muscle Co-culture of dental pulp cells with cardiomyocytes induced the nuclear translocation of cardiac-specific transcription factors 

(NKX2.5 and GATA4) that regulate the appearance of cardiac markers.
[103]

Skeletal muscle 5-Aza-2′-deoxycytidine treatment induced skeletal myogenic differentiation in dental pulp stem cells. [105]
Endothelial cells DPSCs transplanted in mice with Matrigel enhanced angiogenesis by secreting VEGF ligands and associating with vessels 

resembling pericyte-like cells.
[106]

Neuronal cells DPSCs cultured under neuroinductive conditions differentiated into immature neuronal-like networks. [104]
Pancreatic cells PDLSCs cultured in Matrigel with differentiation-inducing agents could transdifferentiate into functional pancreatic islet-like 

cells.
[28]

DPSC, dental pulp stem cell; PDLSC, periodontal ligament stem cell.



CONCLUSION

Regenerative medicine using dental-derived cells has been gradually developing. Identification 
and isolation of stem cells, cell reprogramming, and transdifferentiation with dental-
derived cells are innovations in the field of tissue engineering to obtain the desired cells for 
regenerative medicine. Currently, stem cell therapies are applied as treatment modalities for 
potentially fatal diseases, including spinal cord injury, retinal regeneration, and heart failure. 
In addition, the generation of target cells from somatic cells via iPSCs or transdifferentiation 
using biomolecules such as chemical compounds, transcription factors, or growth factors 
have expanded the field of applications and opened new opportunities for cell therapy and 
disease modeling. The use and application of cell reprogramming with dental-derived cells have 
emerged recently and continue to be researched, and epigenetic studies related to epigenetic 
memory are being conducted. Dental tissue-derived cells should be an excellent cell source for 
all processes, as they are easy to procure and have a good proliferation or differentiation ability 
based on accumulated scientific evidence. However, considerable heterogeneity may exist 
between cells derived from the same source of dental stem cells, which can affect the clinical 
outcomes, and cell delivery methods are also likely to affect the success of clinical trials. Several 
clinical trials using autologous dental-derived stem cells for tissue regeneration have already 
been tried, but the long-term results of these studies have not been well reported. Therefore, it 
is necessary to understand the mechanism of how to control the fate and function of delivered 
cells, and more pre-clinical and clinical trials are required to ensure and optimize the efficacy 
of cell therapy and to apply cell therapy in clinical settings. Although more in-depth and careful 
research is needed to overcome obstacles, the valuable regenerative benefits of dental-derived 
cells for prolonging and improving human health can be ascertained.
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