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ABSTRACT
Background: Adults with childhood trauma exposure may exhibit brain changes typically associated with aging and
neurodegeneration (e.g., reduced tissue volume or integrity) to a greater degree than their unexposed counterparts, suggesting
accelerated brain aging. Machine learning methods that predict a person’s age based on their magnetic resonance imaging (MRI)
brain scanmay be useful for investigating aberrant brain aging following childhood trauma exposure. Emerging evidence indicates
altered brain aging in adolescents with childhood trauma exposure; however, this association has not been examined in healthy
adults.
Methods:We investigated the associations between childhood trauma exposure, including abuse and neglect, and brain-predicted
age in psychiatrically healthy adults. “Brain age” predictions were generated from T1-weighted structural MRI scans using a pre-
trained machine learning pipeline, namely brainageR. The differences between brain-predicted age and chronological age were
calculated and associations with childhood trauma questionnaire scores were investigated using linear regression.
Results: The final sample (n = 153; mean age 46 ± 16 years, 70% female) included 69 adults with childhood trauma exposure
and 84 unexposed adults. Childhood sexual abuse was associated with an average increased brain age of 3.2 years, adjusting for
chronological age and age-squared, sex, and scanner site; however, this finding did not survive correction formultiple comparisons.
Conclusions: To our knowledge, this study represents the first published investigation of brain age in adults with childhood
trauma using a machine-learning-based prediction model. Our findings suggest a link between childhood trauma exposure,
specifically sexual abuse, and accelerated brain aging in adulthood, but this association should be replicated in future work.
Accentuated brain aging in adulthoodmay increase the risk of age-related cognitive and neurodegenerative decline and associated
disorders later in life.
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1 Introduction

Childhood trauma exposure, including experiences of abuse and
neglect, is associated with an increased risk of psychopathology,
including anxiety, depression, and substance abuse (Carr et al.
2013, Curran et al. 2018, Mclaughlin et al. 2012, McLaughlin
and Lambert 2017, McCrory et al. 2017). It has also been linked
with poorer cognitive performance (Petkus et al. 2018) and
neurodegenerative disorders later in life (Corney et al. 2022,
Xie et al. 2023, Subramanian et al. 2023). This elevated risk
may be underpinned by stress-induced HPA-axis dysregulation
and brain changes which endure throughout life (Teicher and
Samson 2016a, Teicher and Samson 2016b). Excessive exposure
to stress hormones during childhood may disrupt crucial pro-
cesses underlying healthy neurodevelopment, such as synaptic
pruning, myelination, and neurogenesis (Gunnar and Quevedo
2007). Growing evidence suggests that the deleterious impact
of stress on brain development may also have downstream
negative effects on neurophysiological processes linked with
brain aging, including telomere erosion, impaired DNA repair,
mitochondrial dysfunction, oxidative stress, and neuroinflam-
mation (Chaudhari et al. 2022, Mattson and Arumugam 2018).
These neurodevelopmental and physiological aging aberrations
may influence trajectories of brain tissue (i.e., grey and white
matter) maturation and degeneration across the lifespan, and
manifest as brain structural or functional changes in individuals
with childhood trauma.

Substantive literature has demonstrated an association between
childhood trauma exposure and altered structure, connectiv-
ity, and function of stress-susceptible brain regions or systems
(McCrory et al. 2017, Teicher and Samson 2016b, Teicher and
Samson 2016a, McLaughlin et al. 2014). Neuroimaging studies
have reported smaller global and regional grey and white matter
volumes (Begemann et al. 2023, Teicher et al. 2012), greater
cortical thinning (McLaughlin et al. 2014), and reduced fractional
anisotropy in specific white matter tracts in individuals with
childhood trauma (Hendrikse et al. 2024, Cunha et al. 2021,
Tendolkar et al. 2018, Lim et al. 2020). These brain changes
are consistent with commonly described age-related neurodegen-
erative brain changes in older adults (Bethlehem et al. 2022),
and may be indicative of accelerated brain aging in individuals
exposed to childhood trauma. Depending on the severity and rate
of deterioration, accelerated brain aging may lead to increased
morbidity and premature mortality (Cole et al. 2018, Cole and
Franke 2017). Studies have reported an increased prevalence or
earlier onset of neurodegenerative disorders such as Alzheimer’s
disease (Corney et al. 2022), Parkinson’s disease (Subramanian
et al. 2023), and dementia (Xie et al. 2023) among individuals with
a history of childhood trauma.

Magnetic resonance imaging (MRI) can be used in a variety
of ways to study brain structure. Common methods include
voxel-based morphometry, cortical parcellation or subcortical
segmentation, and white matter tractography. These methods
have provided valuable insights into the potential impact of
childhood trauma on specific structural properties of whole
brain or predefined regions of interest. In recent years, machine
learning techniques have emerged that can be used to estimate
a person’s age based on their MRI brain scan (Cole et al. 2017,
Cole et al. 2019). These methods analyze brain structural features

in a cumulative manner across the brain. By comparing these
features against age-labelled datasets, the algorithms learn to
predict age with a high degree of accuracy. Notably, a person’s
brain-predicted age may differ substantially from his or her
chronological age. This discrepancy is often termed the ‘brain-
predicted age difference’ or ‘brain-PAD’. Brain age predictions
show promise as a potential biomarker for accelerated aging
and risk of neurodegenerative diseases (Soumya Kumari and
Sundarrajan 2024).

Few studies have used machine-learning-based brain age predic-
tion methods to investigate aberrant brain aging in individuals
exposed to early-life adversity, including childhood trauma. The
majority of these studies have been in child/adolescent samples
with mixed findings depending on the type of early adversity
or trauma studied. For example, a cumulative measure of early-
life environmental adversity has been linked to ‘older’ brain
age (i.e., positive brain age gap) in adolescents (Drobinin et al.
2022). Another study found an association between childhood
abuse and a ‘younger’ appearing brain, specifically in emotion
circuitry, in contrast to brain-wide increased brain age seen
with physical neglect (Keding et al. 2021). A recent longitudinal
multimodal MRI study reported younger-looking brains in ado-
lescents exposed to emotional neglect and older-looking brains
in adolescents exposed to other adverse exposures, including
caregiver psychopathology and family aggression (Beck et al.
2025). Despite discrepant findings, these studies provide evidence
of an association between childhood trauma and altered patterns
of brain maturation during adolescence. With the exception of
a single unpublished study which found an association between
certain sensitive periods of exposure to childhood trauma and
increased brain age in adult women (Fleming et al. 2024), the
influence of childhood trauma on brain aging beyond adoles-
cence, as determined with machine learning methods, has not
been examined.

Using a validated brain age predictionmodel (Cole et al. 2017), we
investigated brain age in adults with childhood trauma exposure.
Considering that distinct forms of childhood trauma, such as
abuse and neglect, may have differential effects on neurodevelop-
ment (McLaughlin et al. 2014) and brain aging, as demonstrated
in the adolescent literature (Beck et al. 2025), we also examined
brain age associations with different dimensions (e.g., abuse
and neglect) and subtypes (e.g., physical and sexual abuse) of
childhood trauma. Our sample included psychiatrically healthy
adults only in comparison to prior studies that have examined
brain aging in patient samples with psychiatric disorders (Jha
et al. 2023, Clausen et al. 2022). We hypothesized that overall
childhood trauma exposure, or specific trauma dimensions or
subtypes, would be associated with increased brain age (Fleming
et al. 2024).

2 Materials andMethods

2.1 Study Design and Participants

Participants were drawn from the healthy control group (n =
310) of a cross-sectional study (Grant Number: MRC-RFA-IFSP-
01-2013/SHARED ROOTS). Approval for the study was obtained
from the Health Research Ethics Committee of the Faculty
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FIGURE 1 Flowchart of participant exclusions.

of Medicine and Health Sciences at Stellenbosch University
(Ethics Approval Number: HREC N13/08/115). Participation in
the study was voluntary, and all participants provided written
informed consent. Clinical assessments and brain imaging were
performed between 2014 and 2017. Figure 1 presents a flowchart
of participant exclusions which resulted in a final sample of 153
adults (72% female, aged between 20 and 81 years).

2.2 Clinical Assessments

Participants were screened for major medical (e.g., HIV, can-
cer) and psychiatric disorders and concomitant medications by
completing a general medical questionnaire, recording previous
and concomitant medications, and a diagnostic interview with
the MINI International Neuropsychiatric Interview, version 6.0
(Sheehan et al. 1997). Metabolic syndrome status was determined
based on the harmonized joint interim statement (JIS) criteria
described elsewhere (Alberti et al. 2009). Briefly, three of the
following risk factors are required for a positive diagnosis: hyper-
tension, elevated triglycerides, abnormal cholesterol, abnormal
fasting glucose or diabetes, and elevated waist circumference.
Metabolic syndrome status was compared between groups since
obesity (Ronan et al. 2016) and certain lifestyle factors, such as
less physical exercise (Steffener et al. 2016), have been linked with
increased brain age; moreover, being overweight has been linked
with brain structural changes (Cole et al. 2013).

2.3 Childhood Trauma Assessment

Childhood trauma was assessed with the 28-item version of the
Childhood Trauma Questionnaire (CTQ; Bernstein et al. 2003).
The CTQ is a widely used and reliable self-report scale measuring
early-life exposure to five trauma subtypes including physical,
emotional, and sexual abuse and physical and emotional neglect
(Bernstein et al. 2003). A CTQ total scale score (ranging from 25 to
125) and five subscale scores (ranging from5 to 25)were calculated

for each participant. Composite scale scores were also derived for
overall abuse (sum of the abuse-specific subscales, ranging from
15 to 75) and overall neglect (sumof the neglect-specific subscales,
ranging from 10 to 50).

The total CTQ scale, composite, and subscale scores were used in
the main statistical analyses for brain age. However, for descrip-
tive and interpretive purposes, participants were additionally
categorized by the level of exposure to each childhood trauma
subtype according to established subscale-specific thresholds
(Bernstein and Fink 1998, Bernstein et al. 2003). The presence of
childhood trauma exposure overall was defined as a score above
the “moderate” threshold on any one of five CTQ subscales.

Internal consistency of the CTQ and subscales was generally
good in this sample (Cronbach’s alpha: overall trauma = 0.904,
emotional abuse = 0.838, physical abuse = 0.840, sexual abuse
= 0.916, emotional neglect = 0.871). The physical neglect sub-
scale had the lowest Cronbach’s alpha of 0.460, consistent with
previous studies in other populations (He et al. 2019, Petrikova
et al. 2021). It is possible that the interpretation of some of the
items on this scale (e.g., ‘I did not have enough to eat’, ‘I had to
wear dirty clothes’) were confounded by experiences of extreme
poverty. Nevertheless, pooling the emotional and physical neglect
subscale items, as has been previously done (Peng et al. 2023),
resulted in an acceptable Cronbach’s alpha of 0.860. Therefore,
these subscales were combined into a broader ‘overall neglect’
category in subsequent analyses.

2.4 Assessment of Lifetime Exposure to Stressful
Events

Apart from childhood trauma, exposure to additional stressful
or traumatic events in childhood or later life (i.e., cumulative
lifetime traumas) may augment lifetime psychopathology risk
and influence brain outcomes (da Silva et al. 2024). Therefore,
some past studies examining the associations between childhood
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trauma exposure and brain outcomes have excluded participants
with multiple unrelated forms of adversity, including natural
disasters, motor vehicle accidents, house fires, near drownings,
combat or war exposure, gang violence or murder, assault with a
weapon, etc. (Andersen et al. 2008, Teicher et al. 2012, Teicher
et al. 2018). Cumulative lifetime trauma exposure was not an
exclusionary factor in the present study, as this would have
resulted in amuch smaller sample size. Therefore, the Life Events
Checklist for DSM-5 (LEC-5; 48) was used to assess lifetime
history of potentially traumatic events, for example, natural
disasters, serious accidents, physical or sexual assault, combat or
war-zone exposure, or sudden, unexpected loss of a loved one.
The average number of types of LEC-5-events experienced was
compared between CT-exposed and -unexposed participants. To
examine the impact of the cumulative lifetime traumas on the
associations between childhood trauma and brain-PAD, post hoc
sensitivity analyses were conducted which additionally adjusted
for the total number of types of LEC-5-events experienced.

2.5 Neuroimaging Data Acquisition

High-resolution T1-weighted MEMPRAGE brain scans were
acquired on one of two research-dedicated MRI scanners: a 3T
Siemens Allegra situated at the Cape Universities Brain Imaging
Centre (CUBIC) Tygerberg, or a 3T Siemens Skyra situated at the
CUBIC, University of Cape Town. Ninety-one participants were
scanned on the Allegra scanner with sequence parameters: TR
= 2530 ms, TE1 = 1.53 ms, TE2 = 3.21 ms, TE3 = 4.89 ms, TE4
= 6.57 ms, flip angle = 7 degrees, FoV = 256 mm, 128 slices, 1
mm isotropic voxel size. Sixty-two participants were scanned on
the Skyra scanner with sequence parameters: TR = 2530 ms, TE1
= 1.63 ms, TE2 = 3.47 ms, TE3 = 5.31 ms, TE4 = 7.15 ms, flip
angle = 7 degrees, FoV = 280 mm, 128 slices, 1 mm isotropic
voxel size. All scans were screened for intracranial pathology
by a radiologist and neurologist. Participants with clinically
significant intracranial pathology were appropriately referred for
furthermedical examination or treatment and excluded from this
analysis.

2.6 Brain Age Prediction

All scans were visually inspected for sufficient quality before
generating brain-predicted age values. Quality exclusions were
performed in a blinded manner and did not result in a childhood
trauma exposure difference between participants with usable
scans versus participants with unusable scans. We used a pre-
trained machine learning pipeline, brainageR version 2.1, to
generate brain-predicted age values from participants’ raw T1-
weighted MRI scans (Cole et al. 2017). The brainageR model was
trained on 3377 healthy adults between the ages of 18 and 92
years and is freely accessible online (https://github.com/james-
cole/brainageR). BrainageR uses a Gaussian processes regression
and is implemented in R. It invokes SPM12 for initial segmen-
tation of cortical and subcortical grey matter, white matter, and
cerebrospinal fluid, and normalization steps. The pipeline steps
have been described previously (Biondo et al. 2022). Notably,
brainageR applies a voxel-wise method to parcellate grey matter,
white matter, and CSF. This approach has been shown to predict
brain age with comparable, or in some cases improved (Clausen

et al. 2022) accuracy compared with other methods (Bacas et al.
2023).

2.7 Model Validation

As the brain age prediction model was not trained on our own
data, we assessed the performance of the model in our sample.
We calculated the mean absolute error (MAE) and Pearson corre-
lation coefficient between predicted brain age and chronological
age, along with the proportion of the variance explained by the
model for the final sample (n = 153) (Han et al. 2021).

2.8 Statistical Analysis

Statistical analysis was performed in SPSS. Descriptive statistics
were run to characterize the sample socio-demographics and
assess potential group differences between childhood trauma-
exposed versus-unexposed participants (two-tailed independent-
samples t tests for continuous variables and two-sided Pearson
chi-square tests for categorical variables). Thereafter, the total,
composite, and CTQ subscale scores were used in linear regres-
sion models to investigate the associations of overall childhood
trauma and distinct trauma types with brain aging. The depen-
dent variable in all models was brain-predicted age difference
(brain-PAD), calculated as the difference between the predicted
brain age and chronological age for each participant. A negative
brain-PAD value represents a ‘younger’ appearing brain, whereas
a positive brain-PAD value represents an ‘older’ appearing brain.
Covariates in allmodelswere chronological age, age-squared, sex,
and scanner site. Chronological age was included as a covariate to
correct for residual age effects on the brain-PADvariable, whereas
quadratic age was included as the model tends to overestimate
brain-PAD at older ages and underestimate brain-PAD at younger
ages in a non-linear manner (Le et al. 2018). Sex was included
as a covariate considering accumulating evidence showing a
differential impact of childhood trauma on stress-related biology
and brain structure in males and females (Tiwari and Gonzalez
2018). Scanner site was included as is the custom in multisite
neuroimaging studies (Clausen et al. 2022, Han et al. 2021). The
false discovery rate (FDR) method was applied to correct for
multiple comparisons.

3 Results

3.1 Sample Socio-Demographics

The final sample comprised 69 healthy adults with a history of
childhood trauma and 84 without a history of childhood trauma.
These groups were balanced in terms of age, sex, educational
level, income, scanner site, and metabolic syndrome status
(Table 1).

3.2 Overlap Between Childhood Trauma
Subtypes

Table 2 presents information about the composite and distinct
trauma categories for the childhood trauma group (n = 69).
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TABLE 1 Sample characteristics: Childhood trauma-exposed versus unexposed participants.

Final sample (N = 153)

Variablea
CT-exposed group

(n = 69)

CT-unexposed
group
(n = 84) Statistics

Age, years 45 ± 16
(21–81)

48 ± 16
(20–80)

t (151) = 1.213, p = 0.227

Sex, female 51 (74) 56 (67) X2 (1) = 0.946, p = 0.331
Educational level
Primary school (nearly) completed
Partial secondary school
Secondary school completed
Any tertiary education

5 (7)
42 (61)
14 (20)
8 (12)

5 (6)
39 (46)
31 (37)
9 (11)

X2 (3) = 5.171, p = 0.160

Monthly incomeb
< ZAR 3000
ZAR 3000–ZAR 6000
> ZAR 6000

29 (43)
18 (27)
20 (30)

32 (40)
21 (26)
27 (34)

X2 (2) = 0.273, p = 0.872

Scanner site X2 (1) = 2.781, p = 0.095
3T Siemens Allegra
3T Siemens Skyra

36 (52)
33 (48)

55 (65)
29 (35)

Metabolic syndrome status 17 22 X2 (1) = 0.048, p = 0.826

Abbreviations: CT, childhood trauma; ZAR, South African rand.
aValues for continuous variables are presented as: mean ± standard deviation (range). Values for categorical variables are presented as: number (%).
bMissing income data for n = 2 CT-exposed and n = 4 CT-unexposed participants.

TABLE 2 Overlap between childhood trauma subtypes and sub-sample characteristics.

n in final
sample

% in
CT-E
group % female Age, years

Brain age,
years

Correlation with additional trauma types
(p-values)

Trauma type
Emotional
abuse

Physical
abuse

Sexual
abuse

Overall
neglect

Composite trauma
categories
Any childhood
trauma

69 100 74 45 ± 16
(21–81)

45 ± 13
(24–78)

— — — —

Any abuse 60 87 75 43 ± 15
(21–79)

43 ±13
(24–78)

— — — —

Any neglect 29 42 76 49 ± 16
(23–81)

48 ± 14
(24–77)

— — — —

Distinct trauma
types
Emotional abuse 49 71 78 41 ± 15

(21–80)
42 ± 12
(24–78)

— < 0.001 < 0.001 < 0.001

Physical abuse 27 39 67 42 ± 14
(23–78)

43 ± 12
(24–67)

< 0.001 — 0.005 < 0.001

Sexual abuse 20 29 90 43 ± 15
(21–63)

46 ± 13
(26–68)

< 0.001 0.005 — < 0.001

Overall neglect 29 42 76 49 ± 16
(23–81)

48 ± 14
(24–77)

< 0.001 < 0.001 < 0.001 —

Abbreviation: CT-E, childhood trauma-exposed.
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Additionally, it presents the p-values for bivariate correlations
between subscale scores for the CTQ. As expected, exposure
to different trauma subtypes were highly correlated with each
other.

3.3 Lifetime Exposure to Stressful Events

As expected, the CT-exposed group reported significantly higher
rates of lifetime physical or sexual assault exposure (both p
< 0.001), as well as a significantly higher average number of
types of LEC-5-events experienced (CT-exposed group:M = 6.03;
CT-unexposed group:M = 4.04; p < 0.001).

3.4 Brain Age Prediction Model Performance

The brain age prediction model predicted chronological age with
a MAE of 6.34 ± 5.07 years in the final sample (n = 153), which
is consistent with other studies (Han et al. 2021). Moreover,
predicted brain age and chronological age were highly correlated
in the final sample (r= 0.860, p< 0.001,R2 = 0.74), demonstrating
adequate model performance.

3.5 Childhood Trauma Exposure and Brain Age

Overall childhood trauma (i.e., CTQ total score), overall abuse,
and overall neglect were not associated with altered brain-PAD
(childhood trauma: β = 0.023, SE = 0.042, p = 0.592; abuse:
β = 0.091, SE = 0.069, p = 0.190; neglect: β = 0.074, SE =
0.088, p = 0.403). In a post-hoc linear regression model, we
examined the unique associations of distinct childhood trauma
subtypes (i.e., physical abuse, sexual abuse, emotional abuse,
and overall neglect) with brain-PAD, similarly adjusting for age,
age-squared, sex, and scanner site. The CTQ subscale scores for
these trauma types were entered simultaneously in the model as
done previously to determine the specific effect of each individual
trauma type (Hendrikse et al. 2024, Hendrikse et al. 2022).
Childhood sexual abuse had a statistically significant positive
effect on brain-PAD (β= 0.325, SE= 0.139, p= 0.021, 95%CI 0.050,
0.601); however, this finding did not survive FDR correction for
multiple comparisons (adjusted p = 0.084). Sensitivity analysis
additionally adjusting for the number of types of LEC-5-events
experienced did not alter the significance of this finding (β =
0.358, SE = 0.140, p = 0.011, 95% CI 0.082, 0.635). The full results
are reported in the Supporting Information.

Notably, 15 out of 20 (i.e., 75%) participants with a history of child
sexual abuse—compared with 65 out of 133 (49%) participants
without a history of child sexual abuse—exhibited positive brain-
PAD values, suggesting accentuated brain aging (Figure 2).
Moreover, the average brain age of participants with a history of
childhood sexual abuse was 3.2 years greater than their average
chronological age. The overall model explained a significant
portion of the variance in brain-PAD (R-square = 0.34, i.e., 34%,
p < 0.001). Except for age and age squared which exhibited high
collinearity in all models, the assumption of linearity was not
violated.

4 Discussion

This study represents the first published investigation of brain age
in adults with childhood trauma using a machine-learning-based
prediction model. The applied model was found to predict age
with a high level of accuracy in our sample, lending support to the
validity of our findings. We found an association between child-
hood sexual abuse and a positive brain-PAD in psychiatrically
healthy adults, indicating increased brain age of approximately
3 years. While this association did not survive correction for
multiple comparisons, it is consistent with the previous reports
of altered brain aging in adolescents with childhood trauma
or adversity (Drobinin et al. 2022, Beck et al. 2025, Keding
2021), as well as the evidence that distinct forms of childhood
trauma differentially impact brain aging (Beck et al. 2025, Keding
2021). Moreover, recent meta-analytic evidence also points to
an association between accelerated biological aging in terms of
cellular aging and earlier pubertal timing in children with a
history of abuse specifically (Colich et al. 2020).

However, meaningful interpretation of the current results is
challenging due to a lack of peer-reviewed studies on the effects of
childhood trauma on brain age in psychiatrically healthy adults.
Nevertheless, the findings from animal studies may provide
some insight. The animal literature points to key physiological
processes that may influence the trajectory of brain aging,
including mitochondrial and oxidative stress, proteostatic and
epigenetic changes, and neuroinflammation (Chaudhari et al.
2022). It should be noted, however, that the preponderance of
literature in this area has been correlational, with very few
lifespan or longitudinal studies (Chaudhari et al. 2022). To our
knowledge at the time of writing this paper, no other published
study has used machine learning to predict brain age in adult
participants with childhood trauma. However, one unpublished
study, reported as conference proceedings, provided evidence
that certain sensitive periods during adolescence were associated
with an impact of childhood trauma on accelerated brain aging
in adult women (Fleming et al. 2024). Specifically, parental
physical and verbal abuse and witnessing sibling abuse during
pre- and/or early-adolescence were associated with increased
brain age. Their findings highlight an important limitation of the
present study, namely that we did not investigate the impact of
timing of exposure to childhood trauma on brain age. Past studies
concerning brain morphological changes following childhood
traumahave also reported sensitive periods for augmented impact
of exposure (Teicher et al. 2018).

Incidentally, we observed that all participants with a history
of childhood sexual abuse in this study were under the age of
65 years. In typically-aging individuals, white matter volume
decreases and cerebrospinal fluid volume increases begin around
the age of 40 years and significantly accelerate after the age of
50 (Bethlehem et al. 2022, van Blooijs et al. 2023). Therefore,
our finding suggests that the potential accelerative effects of
childhood sexual abuse on brain aging may become evident
relatively soon after tissue-degenerative processes begin or accel-
erate. This may be because childhood trauma (i.e., excessive
stress hormone exposure) impacts neurophysiological processes
underlying patterns of brain maturation or aging soon after
exposure, as the adolescent literature suggests. Therefore, our
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FIGURE 2 Scatterplot of brain age predictions for participants with sexual abuse (red dots) and without sexual abuse (grey dots). The diagonal
line where the orange and blue triangles meet represents perfect prediction accuracy. Dots above the line (orange triangle) represent predicted brain age
older than chronological age. Dots below the line (blue triangle) represent predicted brain age younger than chronological age. Seventy-five percent of
participants with sexual abuse had a positive brain age gap (i.e., an ‘older’ appearing brain).

finding of older brain age among individuals with childhood
sexual abuse may represent a long-standing pathological pattern
of brain aging. Even though our findings preliminarily suggest a
potential enduring impact of childhood trauma on brain aging
in adulthood, further replication and longitudinal work are
needed to investigate trajectories of delayed or accelerated brain
maturation and aging across the lifespan following childhood
trauma, as well as how aberrant brain aging may be associated
with increased risk of neurodegenerative diseases. Moreover,
future work should elucidate how commonly reported structural
and functional brain changes in individuals with childhood
trauma (e.g., grey matter volumetric and functional changes in
cortico-striatal-limbic regions and white matter integrity changes
in fronto-limbic tracts; 10–11, 16–22) may contribute to patterns of
aberrant brain aging.

Moreover, the relatively young age of participants with a history
of childhood sexual abuse in our sample implies that there is
more time for severe degeneration and subsequent cognitive
decline and related comorbidities in older age. It is therefore also
plausible that the accentuated brain aging observed in individuals
with childhood sexual abuse in this sample might represent a
putative clinical biomarker for pathological brain aging and the
emergence or earlier onset of neurodegenerative disorders later
in life (Clausen et al. 2022). This is supported by previous reports
of increased prevalence of neurodegenerative disorders among
individuals exposed to childhood trauma (Corney et al. 2022, Xie
et al. 2023), including childhood sexual abuse (Widomet al. 2023).

Current brain age predictionmethods are notwithout limitations.
Notably, brain age predictions based on MRI scans may be

suboptimal or unreliable due to MRI-related artifacts in training
and/or testing data (Soumya Kumari and Sundarrajan 2024, Jha
et al. 2023). Additionally, in the present study, the use of a single
imaging modality is another limitation (Clausen et al. 2022),
as brain age predictions may be more accurate when multi-
modal imaging data are used (Cole 2020). For example, imaging
phenotypes or metrics could be derived from multimodal MRI
(e.g., T1-weighted MRI, diffusion-MRI, task fMRI) and used to
determine the relative informative value of different phenotypes
for predicting brain age, as in Cole (2020). Cole (2020) found
that, in 2205 healthy people with multimodal neuroimaging
data,multiple neuroimagingmeasureswere informative for brain
age prediction, however most measures related to grey matter
volume and white matter microstructure. Moreover, when single
modalities were investigated separately, T1-weighted MRI data
were the most accurate for predicting brain age. Nevertheless,
because the methodology for predicting brain age from MRI
scans is relatively new, there is currently limited understanding
or direct knowledge of the exact or most predictive brain mor-
phological features that inform the predictions (Soumya Kumari
and Sundarrajan 2024), that is, the “black-box” problem (Hassija
et al. 2024). Indeed, brain age predictions may be somewhat
non-specific and represent a single composite metric of many
features from regions across the entire brain and may differ
between each person (Franke and Gaser 2019). It is therefore
not currently possible to definitively determine the predictive
value (if any) of potential brain structural changes that have been
reported previously in individuals with a history of childhood
trauma, for example, grey matter volumetric changes of stress-
sensitive cortical and subcortical regions and/or white matter
integrity changes of fronto-limbic tracts (Teicher and Samson
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2016b, Teicher and Samson 2016a, Begemann et al. 2023, Teicher
et al. 2012, McLaughlin et al. 2014, Hendrikse et al. 2024, Cunha
et al. 2021, Tendolkar et al. 2018, Lim et al. 2020). While we
acknowledge the importance of future work to explore the most
predictive brain features of brain age estimations, this was beyond
the scope of the present study. Nevertheless, brain age prediction
may be useful in illustrating the negative effects of childhood
trauma on overall brain health and as a biomarker for disease risk
in clinical settings (Clausen et al. 2022).

A notable limitation of this studywas the small sizes of the groups
when the participants were stratified by exposure to trauma
subtypes.While we found a significant effect for childhood sexual
abuse exposure on brain-PAD, it should be noted that only 20
participants reported a history of childhood sexual abuse in our
sample, and this finding did not survive FDR correction for
multiple comparisons. The small group sizes may mean that
statistical power was limited in the current study. Nevertheless,
considering the critical lack of studies that have used machine
learning methods to study brain aging in adults with a history of
childhood trauma, this study is vital to illustrate the importance of
this topic and inspire future work with larger total and subgroup
sample sizes.

A strength of this study was the inclusion of psychiatrically
healthy participants. In contrast to prior studies that have linked
a range of psychiatric conditions with accelerated brain aging
(Clausen et al. 2022, Han et al. 2021, Constantinides et al. 2024),
the intentional exclusion of individuals with serious clinical or
psychiatric conditions in this study allowed us to investigate
the link between childhood trauma exposure and accelerated
brain aging, unconfounded by psychiatric illness. Our findings
therefore demonstrate aberrant brain aging even in apparently
resilient individuals with a history of childhood trauma, specif-
ically sexual abuse, which may have clinical implications for
healthy brain aging in older age.Moreover, our findings represent
a potential biological basis for studies reporting accelerated
cognitive decline in individuals with childhood trauma exposure.
However, it should be noted that since our findings do not survive
multiple comparisons correction, further replications are critical.
Moreover, future studies should investigate the clinical and
functional correlates of brain age in individuals with childhood
trauma, as well as examine othermetrics of accelerated biological
aging in conjunction with machine learning-based brain age
estimations. Understanding the impact of childhood trauma on
brain aging and health outcomes is essential for identifying
vulnerable populations and implementing early interventions
to promote healthy brain maturation and to mitigate adverse
outcomes later in life.
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