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Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5

(IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor

and/or multiple TLRs located either on plasma or endosomal membranes. Activated

IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially

required for the production of proinflammatory cytokines in the innate immune response

to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the

induction of the signature cytokines and chemokines of the hyperinflammatory state

associated with severe morbidity and mortality in COVID-19. Here a case is made for

considering IRAK4 or IRF5 inhibitors as potential therapies for the “cytokine storm”

of COVID-19.
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INTRODUCTION

Effective treatments are required for COVID-19 hyperinflammatory syndrome, occurring
characteristically 7–14 days after first symptoms (1) and variously described as “macrophage
activation syndrome” (2), “cytokine storm” (3) or “acute respiratory distress syndrome” (4). Its
immunological hallmarks are excessive elevation of predominantly proinflammatory cytokines,
chemokines (5), and other bioactive molecules, such as HMGB1 (6) and reactive oxygen species (7).
Upregulated cytokines include IL-6, TNF-α, IFN-γ, IL-1β, IL-15, IL-23, and IL-10, and chemokines,
CXCL8(IL-8), CXCL9(MIG), CXCL10(IP10), CCL2(MCP-1), CCL3(MIP-1α), CCL5(RANTES),
CCL7(MCP-3), CCL8(MCP-2), CCL11(eotaxin-1), and CCL20(MIP-3α) (1, 2, 8–11). This review
examines the role of IRAK4 and IRF5 in the evolution and modulation of the immune response
to SARS-CoV-2 and whether IRAK4 or IRF5 inhibitors could have a role in treating the
hyperinflammatory phase (12–14).

OVERVIEW OF IRAK4 AND IRF5 SIGNALING

IRAK4, recruited with other binding partners toMYD88 (Figure 1) forms themyddosome (14–16),
which is activated by ligands of the IL-1 receptor or TLRs that bind MYD88 (13, 17, 18).
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FIGURE 1 | Overview of the IRAK4-IRF5 signaling axis and some ligands of possible relevance to SARS-CoV-2 immunopathogenesis.

Frontiers in Immunology | www.frontiersin.org 2 April 2021 | Volume 12 | Article 638446

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stoy COVID-19 IRAK4 IRF5 Inhibitors

IRAK4 is recruited to the complex with IRAK1 and TRAF6
(19). On receptor activation IRAK4 homodimerizes,
autophosphorylates and subsequently phosphorylates IRAK1
(20–22). These kinases are ultimately responsible for activation
of IRF5, requiring phosphorylation of critical C-teminal
serines (23, 24). Another component of IRF5 activation is
its K63polyubiquitination by TRAF6 (25, 26). The inducible
(and IRAK1-phosphorylated) ubiquitin ligase Pellino-1, with
E2-conjugating enzymes (27), reciprocally K63polyubiquinates
both IRF5 and IRAK1/4 but, conversely, kinase-active IRAK1/4
mediates degradative polyubiquitination of Pellino-1 (27–29).

Distal to themyddosome the signaling pathway bifurcates into
IRF5- and NF-κB-activating branches (30). At commencement
of the IRF5 branch, activated IRAK4/IRAK1 phosphorylates
the kinase TAK1 (31), which in turn phosphorylates IKKβ

(24, 32); finally, IKKβ phosphorylates IRF5 (33, 34) facilitating
its dimerization and translocation to the nucleus (35).
Whereas, IKKβ is the archetypal kinase activator of NF-κB
by phosphorylating IκBα, it is important to appreciate that
kinase activity of IRAK4 is not essential for NF-κB activation by
the myddosome route (35); however, this does not preclude an
IRAK4 scaffolding function (20). Crucially, therefore, blocking
IRAK4 with a specific kinase inhibitor abolishes IRF5 activation
but still permits NF-κB activation by other means, either by IKKβ

itself via this or other signaling pathways (31), or using other
kinases such as a MEKK3-dependent pathway (17, 30, 35, 36).
Speculatively, endosomal TLR3, responsive to dsRNA, may
signal independently of MYD88 to IRF5 through TRAF6 using
the adaptor TRIF (as well as to IRF3/7 via TRAF3) and may
synergise with other TLRs (37, 38, 183); TLR4, translocated
to endosomes, may also signal using TRAM-TRIF instead of
MYD88 (19, 39–41, 183). IRF5 homodimers complex with
CBP/p300 to initiate the IRF5 transcriptome synergistically with
NF-κB (42, 43).

Activation of IRF5 is tightly controlled. Inducible IRAK-M
inhibits assembly of the IRAK1-IRAK4-TRAF6 complex both
directly, and indirectly by induced negative feedback (44–46);
Lyn kinase, in dendritic cells (DCs), binds IRF5, inhibiting its
K63polyubiquitination and phosphorylation, but not affecting
the NF-κB branch (47); IRF8 competes with IRF5 at promoters,
blocking its action (48, 49); and KAP1/TRIM28 is an IRF5
transcriptional co-repressor (50). TLRS 7-9 require at least
two adapter proteins, TASL and SLC15A4, at the endosomal
membrane, to engage the IRAK4-IRF5 pathway (51).

In responding to viruses, activated IRF5 homodimers
bind with low affinity to “viral response elements” inducing
primarily IFNA type I interferons (52). However, IRF5 binds
strongly to the regulatory loci of other IRF5-targetted genes,
such as IFNB, CXCL10, IL-10 (52), IL-12, and IL-23 (53),
although in the case of anti-inflammatory IL-10, IRF5 is not
directly responsible for its elevation in “cytokine storm,” being
inhibitory at the IL-10 promoter (53, 54). Mechanistically,
a challenging complexity of variables influence IRAK4-IRF5
pathway activation outcomes (55): these include different IRF5
dimerization partners—including homodimerization and IRF7
(56); functionally different IRF5 isoforms, as investigated in
plasmacytoid DCs (pDCs) (57); IRF5 interacting with different

transcription factors (17), most critically the NF-κB subunits,
p50 (48, 58), and/or p65(RELA) (41, 59, 60); different cellular
localizations, notably monocytes, macrophages, pDCs, and B
cells (55, 58, 61); different triggers of pathway activation, for
e.g., viral infection or autoimmunity; inhibition of the IRF5-
mediated activation of IFN-β by the IKKα pathway (62);
and differences between murine and human cells (63)—all
beyond the scope of this review. Nevertheless, despite these
many complicating factors, the IRAK4-IRF5 axis consistently
polarizes monocytes/macrophages toward the proinflammatory
M1 (49, 53, 64) phenotype, displaying a similar innate
cytokine/chemokine profile as in “cyokine storm” and indicating
a potential therapeutic role for IRAK4 or IRF5 inhibition.

DEFICIENCY OR INHIBITION OF IRAK4 OR
IRF5 AND VIRAL INFECTIONS

A proinflammatory response is characteristic of the innate
immune system’s reaction to microbial infection. Endotoxin
tolerance in monocytes blunts this response by interfering
with recruitment and activation of IRAK4 at the MYD88
receptor complex, inhibiting K63polyubiquitination of IRAK1
and TRAF6, and compromising IRAK1-TRAF6 function and
TAK1 activation (65). Mice lacking IRAK4 exhibit deficient IL-
1 and TLR signaling, are resistant to LPS and cannot induce
TNF-α or IL-6 (17, 66, 67). The IRAK4 inhibitor, chlorogenic
acid, extracted from lonicerae flos, protects mice from endotoxic
shock: chlorogenic acid inhibits autophosphorylation of IRAK4
in peritoneal macrophages subjected to various activating stimuli,
including ssRNA, IL-1α, or HMGB1 (6, 68, 69). Inhibition
of IRAK4 or IRF5 downregulates the proinflammatory IRF5
transcriptome independently of NF-κB activation (35). In the
same way that endotoxic shock is abrogated by inhibiting IRF5,
“cytokine storm” in viral infection can also be suppressed by
IRF5 inhibition, as shown for influenza A (26, 70). Thus, IRF5
inhibition protects from hyperinflammation whether induced by
viral or bacterial infection, the latter a common complication
of acute respiratory distress syndrome, although its incidence in
COVID-19 is only just being investigated (71–73, 184).

THE IMMUNOPATHOGENESIS AND
CLINICAL CORRELATES OF SARS-CoV-2
INFECTION

Figure 2 summarizes how SARS-CoV-2 innate immune
activation is linked to specific T cell (cytotoxic and memory)
and B cell (antibody) adaptive immune responses, comprising
the substantive immunological reaction necessary for viral
elimination (53, 54). COVID-19 immunopathogenesis divides
conveniently into three overlapping interactive phases with
sequential involvement of epithelial cells, innate immune cells
and adaptive immune cells. Nasal and alveolar type II epithelial
cells express high levels of ACE2, the SARS-CoV-2 entry receptor,
and respond first. Epithelial immune activation is mediated by
IRF3 phospho-dimerisation, with a lesser contribution from
IRF5 phospho-dimerization, and NF-κB p65 as coactivator
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FIGURE 2 | With burgeoning knowledge of immune cell phenotypes in COVID-19, particularly from single-cell transcriptomics, and despite much heterogeneity

amongst T-cell clusters, it is now possible to attempt a broad generalization of (at least some) changes in innate and adaptive immunity during COVID-19 progression.

In this schematic representation, a suppressed type I interferon response in epithelial cells, IRF5-dependent proinflammatory macrophage and DC polarization, and an

(Continued)
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FIGURE 2 | inadequate adaptive response are three sequential major drivers of COVID-19 immunopathogenesis. The accompanying table is a tentative interpretation

of some of the (sometimes conflicting) features of the immune cell phenotypic landscape of “cytokine storm” (1, 2, 9–11, 157–163). SARS-CoV-2 can be taken up by

macrophages and DCs but does not proliferate, whilst the highly variable type I IFN response from each individual cell likely depends on temporal sequencing and

integration of inputs both from viral components and from other non-viral inputs (TLR and/or cytokine), either synergistic or separate (179–183). Key: +signs indicate

changes in immune cell parameters associated with “cytokine storm” and black vertical arrows indicate changes from the expected normal immune response. IRF5

appears to be widely expressed in most immune cells (164–166) and recently CD4+ and CD8+ intrinsic IRF5 activity has been demonstrated to be responsible for

increased secretion of Th1 and Th17 cytokines and for reduced Th2 and T reg cytokines, on T cell activation, as indicated by blue arrows and blue +signs in the table:

IRF5 upregulates chemokine receptors CXCR4/5 and CCR6/7/9, on stimulated CD4+ T cells (165, 166); the relevance of these observations to COVID-19

pathogenesis is as yet unknown. SLEC: short-lived effector cells; BALF: bronchoalveolar lavage fluid; GC, germinal center.

(59, 60, 75). Critically, the type I interferon component of the
epithelial cell proinflammatory response is selectively suppressed
by proliferating SARS-CoV-2 (74), so disrupting secondary
expression of interferon-stimulated genes (ISGs) including the
potent IRF3 dimerisation partner IRF7 (75). Epithelial cells favor
IFN-λ expression but this is a less effective inducer of ISGs than
type I interferons (76). The viral MDA5 RNA-sensor requires
kinases TBK1 or IKKε to activate IRF3 (77, 78); the same kinases
can activate IRF5. By contrast, IKKβ, a strong activator of IRF5,
fails to activate IRF3 (61) In phase two, epithelial chemokines
attract a large influx of innate immune cells comprising DCs,
natural killer (NK) cells and neutrophils (11, 79–81); IRF5
is considered the main orchestrator of this innate response
(61). DCs are pivotal in communicating with the adaptive
immune system to initiate phase three: programming of adaptive
immunity. Phase three culminates either in viral clearance and
COVID-19 resolution or complications such as “cytokine storm,”
clotting disorders, cardiovascular complications or multi-organ
failure. Involvement of adaptive immunity adds further cytokines
to the mix. IL-17, the product of Th-17 cells, is triggered by DCs
expressing IL-23 (increased with age). Induction of this and other
DC cytokines IL-1β, IL-6, IL-12, and TNF-α is again dependent
on IRF5, usually with NF-κB coactivators (53, 58, 59, 61, 82–84).
Indeed, recent evidence suggests IRF5 may even vie with IRF7
for the title ‘master regulator’, if not of type I interferons, at least
of most other DC cytokines (42, 52, 75, 85–88); furthermore,
there is mutual inhibition between these two IRFs (56). Th1 cells
are activated by the innate cytokine IL-12 from DCs and secrete
IFN-γ, as do NK cells. However, in COVID-19 multifunctional
activated T cells secreting two of the three cytokines IFN-γ, IL-2,
and TNF-α were reduced whilst T cells producing all three were
non-functional (89).

Innate immunity is relatively preserved during aging and
constitutively upregulated in many comorbid conditions
exacerbating COVID-19, albeit stimulating a defective adaptive
response. In aging, pDCs retain most of the proinflammatory
phenotype, but type I and type III interferons are impaired (90),
as are interactions with T and B cells for antigen presentation,
primarily due to T and B cell dysfunction, exacerbated by SARS-
CoV-2 (91). IRF5 is constitutively expressed by pDCs, especially
in females who produce more IFN-α on TLR stimulation than
males, making dysregulation of immune responses in COVID-19
in females less likely (92, 93). IRF5-dependent IFN-β expression
in DCs is demonstrated in IRF5-knock-out mice, which exhibit
poor interferon responses to TLR stimulation or microbial
infection (49, 94). Overall, DCs adopt a proinflammatory

phenotype on contact with SARS-CoV-2, a tendency exacerbated
by increasing age (91, 95). Cellular correlates of poor outcome
in COVID-19 are neutrophilia (3), low CD4+ and CD8+ T cells
and general lymphopenia (96, 97), combined with increased
markers of T cell exhaustion (PD-1 and TIM-3) and senescence
(CD57) and a specific cytokine signature (10, 73, 98–100).

B cells depend on IRF5-induced Blimp-1 for differentiation
into plasma cells, responsible for long-lasting antibody immunity
(101). In SARS-CoV-2 “cytokine storm,” B cell function is
compromised by reduced total circulating B cells, reduced class
switching from IgM to IgG and increased plasmablasts and
transitional cells, suggestive of rapid B cell proliferation and
exhaustion, probably related to excessive IL-6 and TNF-α (102).

Platelets are integral components of the immune system.
Viruses can enter platelets, activate endosomal TLRs
(TLR7/TLR9) and downstream MYD88-IRAK4-IRAK1-IKKβ

(and presumably IRF5), possibly contributing to COVID-19
thrombocytopenia and clotting irregularities (103, 104).

THE METABOLIC DIMENSION AND
COVID-19 COMORBIDITIES

Maintaining the M1 phenotype is energy-consuming and
achieved by a “metabolic switch” from oxidative to glycolytic
metabolism during M2-to-M1 polarization (41). Viral infections
increase glucose metabolism in macrophages, involving
activation of the hexosamine biosynthesis pathway and
associated enzyme O-GlcNAc transferase, as already proposed
for SARS-CoV-2 (105). Thus, increased activation of IRF5 by
K63polyubiquitination may turn out to provide an important
link between so-called “metabolic inflammation” and increased
severity of the cytokine response in COVID-19 (105, 106).
Infection with influenza virus markedly increases GlcNAcylation
of IRF5 at serine 430 in human macrophages, which is essential
for K63polyubiquitination of the same residue that activates
IRF5, thus promoting proinflammatory cytokine expression and
possibly increased viral replication (26). Inflammation is a well-
recognized driver of the metabolic syndrome, manifest clinically
in obesity, type II diabetes and other conditions in which insulin
resistance occurs. Blood sugar instability associates with IRF5
upregulation and M1 phenotype in adipose tissue macrophages,
including elevation of the cardiovascular risk factor, matrix
metalloproteinase-9. TLR4 is also upregulated and it has even
been hypothesized that increased proinflammatory cytokines
could be triggered by endogenous TLR4 ligands, presumably
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through IRAK4-IRF5 signaling (41). IRF5 knock-out mice
exhibit improved glucose tolerance and reduced excess body fat.
The M1 macrophage cytokine and chemokine profile of adipose
tissue in obesity and diabetes, signifying chronic inflammation,
is in many respects similar to a muted version of cytokine
storm. Thus, adipose IRF5 transcripts in obesity correlate
positively with TNF-α, IL-1β, IL-6, CXCL8/IL-8, CXCL9/MIG,
CXCL10/IP10, CCL2/MCP1, CCL5, and CCL7/MCP3, all of
which can be elevated in COVID-19 “cytokine storm” (107, 108);
positive correlations with IL-2 and IL-12 have been reported by
the same group. TLR4, TLR7, and TLR8 are increased in obesity
and correlate with IRF5 expression, but whether this occurs in
SARS-CoV-2 infection is unknown (109, 110).

There is increased Pellino-1 expression in adipose tissue
macrophages in obesity. Pellino-1 exacerbates glucose
intolerance in obese mice through K63polyubiquitination
of IRF5, promoting M1 macrophage polarization (106); the
adverse proinflammatory skewing of innate immunity is
further compounded by Pellino-1 inhibition of tolerogenic
M2 macrophages by K63polyubiquitination of IRAK1 (111).
Correspondingly, in acute viral respiratory infections, there is
an association between elevated Pellino-1 and proinflammatory
cytokines (112).

Chronic innate proinflammatory drive to the adaptive
immune system in metabolic inflammation leads eventual to T
cell exhaustion. Changes in T and B cell function in metabolic
inflammation, as well as in the elderly and, more acutely,
in COVID-19 are all broadly similar, in that innate function
is relatively preserved, but T cell and B cell compartments
exhibit features of “exhaustion” or “senescence” (73, 113, 114).
Therefore, pre-existing metabolic inflammation across a variety
of chronic conditions presages an unfavorable course and
outcome of COVID-19 (115, 116).

DISCUSSION

The well-established paradigm that innate immunity programs
adaptive immunity applies not only in microbial infection
(117) but also autoimmunity (118, 119) and cancer, being
generally tolerogenic in the latter. “Cytokine storm” of COVID-
19 illustrates the dangers of a fundamental mismatch between
increased proinflammatory innate signaling and a defective
adaptive response, insufficient to kill the virus or prevent
spread (105), thus failing to abort innate immune activation.
This review has presented evidence that IRF5 is a key “hub”
molecule determining the normal balance between innate and
adaptive immunity. In what clinical situations, therefore, could
IRAK4/IRF5 inhibitors have therapeutic benefit?

Many clinical consequences arise from immune system
dysregulation in COVID-19. Importantly, for proposed
treatment of “cytokine storm” with an IRAK4 inhibitor, timing,
and dose titration are critical—too early, too protracted or too
high a dose and the natural host immune response is further
blunted. It follows that reliable real–time (blood) biomarkers of
IRF5-driven immune activation would be essential to determine
the threshold for both commencement and termination of

treatment (120, 121). To avoid overdosage, the ideal IRAK4
inhibitor would be quick-acting with short half-life (122, 123).
Amongst candidate COVID-19 inflammation biomarkers is
IRF5 itself, raising the possibility of studying this key molecule
across the whole range of SARS-CoV-2 infection and associated
comorbidities (124, 125); already IRF5 is suggested as a novel
adipose marker in chronic metabolic inflammation (108) and
inflammatory bowel disease (125).

Another practical issue is management of patients on
long-term immuno-suppressants: these drugs could be viewed
simplistically as raising the threshold for effective adaptive
immune activation, particularly with drugs inhibiting T or B
cell function. Nevertheless, it is surmised that many patients
could reset their immune response appropriately and experience
symptomless or mild COVID-19, but in others, nearer the
tipping-point, the chances of hyperinflammatory syndome may
be significantly increased. As there is no a priori reason in
these patients to suppose increased viral uptake at the onset,
the advised management of COVID-19 has continued to be
on accepted lines and routine immuno-suppressants continued
unless “cytokine storm” becomes imminent (126, 127).

Similar reasoning may be applied to initial high viral
load or prolonged exposure, which could overwhelm adaptive
immunity and push the balance toward increased, but less
effective, innate immune activation and “cytokine storm.”
A related unresolved difficulty is management of chronic
COVID-19 symptoms, especially if associated with identifiable
chronic inflammation, including neurological sequelae (115).
Indeed, the predisposing conditions for hyperinflammatory
COVID-19 are likely to overlap with at least some of
those responsible for post-infection sequelae. Whether viral
persistence occurs is uncertain, but post-infection inflammatory
markers suggest ongoing low-grade innate immune activation
linked to adaptive immune dysregulation and/or exhaustion
(128). Chronic infection promotes the death of protective
CD4+ cells through TLR7 and IRF5 (129). Thus, in so-
called “long COVID” the perceived imbalance of innate and
adaptive immunity may be finely poised and potentially
amenable to favorable manipulation, conceivably using IRAK4 or
IRF5 inhibition.

Dexamethasone, anakinra and tocilizumab are amongst
anti-inflammatory drugs already repurposed for treatment
of “cytokine storm.” Although the extent of dexamethasone
interaction with the IRAK4-IRF5 axis is not established,
IRAK4/IRF5 inhibitors are still likely to provide a more focused
approach than the generalized actions of steroids (130). On
the other hand, IRAK4/IRF5 inhibitors would have a wider
spectrum of action than the IL-1 receptor antagonist, anakinra
(131, 132) or IL-6 receptor blocker, tocilizumab. Predictably,
there is concern that overuse/prolonged use of steroids as
immuno-suppressants could suppress viral clearance (133): by
contrast, IRAK4 inhibition is potentially steroid-sparing (134).
Latest data indicates significant benefit in severe COVID-19
from tocilizumab, either alone or with dexamethasone (135–137).
CXCL8/IL-8 inhibitors are being trialed to reduce neutrophil
recruitment (138, 139). However, as proposed here, a better
option might be concurrent suppression by just one drug of
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multiple innate cytokines and chemokines, including IL-1, IL-
6 and neutrophil-attractant chemokines (CXCL8 and CXCL5),
as would be achievable by an IRAK4 or IRF5 inhibitor. Indeed,
in co-cultured RNA-stimulated pDCs and NK cells, IRAK4
inhibition reduced IL-6, CXCL8, CCL3, CCL4, TNF-α, and IFN-
γ (140), whereas, raised expression of IRF5 (but not IRF3 or
IRF7) in kupffer cells and neutrophils in experimental cholestatic
jaundice correlated with increased IL-6, TLR4, TLR7, TLR9,
HMGB1, CXCL8, and CCL2, with some evidence of steroid
reversibility (141).

Although developed recently, IRAK4 inhibitors are under
assessment in psoriasis, whilst in rheumatoid arthritis a
completed phase II clinical trial has demonstrated clinical
improvement (142). Interestingly, dimethyl fumarate, already
of proven clinical efficacy in treating both multiple sclerosis
and psoriasis, is not only a direct inhibitor of IRAK4 but
also suppresses innate proinflammatory cytokines in pDCs,
providing a strongmechanistic rationale for its recently proposed
repurposing for COVID-19 “cytokine storm” (143, 144). Low-
grade inflammation is common in autoimmunity (145), with
an inflammatory signature similar to COVID-19 (146). The
therapeutic usefulness of IRF5 inhibitors is yet to be determined
(13, 123, 145–148, 175).

Finally, in SARS-CoV-2 vaccine development, an adjuvant
stimulating the evolutionary-conserved, IRAK4-IRF5 pathway
should be an ideal partner for a SARS-CoV-2 vaccine. IRAK4-
IRF5 pathway activators could be included in multi-epitope
vaccines (149). Such formulations should promote optimum
immune responses and immunological memory (150). Suitable
targets would be TLR3, TL7, TLR8, or TLR9 (151–153).

Paradoxically, even with highly potent vaccines, the adaptive
immune system in vulnerable groups may still fail to respond
appropriately because risk factors predicting a poor adaptive
immune response to vaccination could be the same as those
predisposing to COVID-19 “cytokine storm,” although it is yet to
be determined whether this will account for a significant fraction
of vaccine failures.

In conclusion a caveat: given that IRF5 is essential for normal
immunity and that “cytokine storm” in SARS-CoV-2 infection
indicates a failure of adaptive immunity to respond appropriately
to enhanced (IRF5-mediated) innate signals, it follows that
attempts to stop “cytokine storm” by damping down innate
immunity should be combined with, or ideally replaced by,
effective SARS-CoV-2 virucidal drugs, another high priority in
COVID-19 research (154–156).
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