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DNase I hypersensitive sites (DHS) associated with a wide variety of regulatory DNA elements. Knowledge about the locations
of DHS is helpful for deciphering the function of noncoding genomic regions. With the acceleration of genome sequences in the
postgenomic age, it is highly desired to develop cost-effective computational methods to identify DHS. In the present work, a
support vector machine basedmodel was proposed to identify DHS by using the pseudo dinucleotide composition. In the jackknife
test, the proposed model obtained an accuracy of 83%, which is competitive with that of the existing method. This result suggests
that the proposed model may become a useful tool for DHS identifications.

1. Introduction

DNase I hypersensitive sites (DHS) are regions of chromatin
which are sensitive to cleavage by the DNase I enzyme. Since
the discovery of DHSs in 1980s [1], they have been used as
markers of regulatory DNA regions. In general, these specific
regions are generally nucleosome-free and associate with a
wide variety of genomic regulatory elements, such as pro-
moters, enhancers, insulators, silencers, and suppressors [2–
4]. Therefore, mapping of DHS has become an effective
approach for discovering functional DNA elements from the
noncoding sequences.

Although the traditional Southern blotting technique is
a gold-standard approach for identifying DHS, obtaining
information from Southern blot approach is a tricky, time-
consuming, and inaccurate task [5]. Recently, the DNase-
seq technique (combination of DNase I digestion and high-
throughput sequencing) has been proposed [6] and this tech-
nique allows for an unprecedented increase in resolution.
However, methodologies for the analysis of DNase-seq data
are relatively immature [7].Therefore, computational models
will be an important complement to experimental techniques
for identifying DHS.

Based on nucleotide compositions, a support vector
machine model for identifying DHS in K562 cell line was

proposed [8]. This method yielded quite encouraging results
and did play a role in stimulating the development of this
area. However, further work is needed due to the following
reasons. First, the sequences in their dataset share high
sequence similarities. Second, the DNA structural properties
were ignored. To solve these problems, we proposed a new
model for identifying DHS, which is trained on a high quality
benchmark dataset. In the new model, each DNA sample is
encoded by using the pseudo dinucleotide composition, into
which the DNA structural properties are incorporated.

2. Materials and Methods

2.1. Benchmark Dataset. The experimentally confirmed 280
DHS and 731 non-DHS sequences were obtained from
http://noble.gs.washington.edu/proj/hs/, which have been
used to train DHS prediction models [8]. As elucidated in
[9], a predictor, if trained and tested by a dataset containing
redundant samples with high similarity, might yield mislead-
ing results with an overestimated accuracy. To get rid of the
redundancy and avoid bias, the CD-HIT software [10] was
utilized to remove those DNA fragments that have ≥60%
pairwise sequence identity to each other.
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Finally, we obtained 247 positive and 710 negative samples
for the benchmark dataset S, as can be formulated by

S = S
+

⋃S
−

, (1)

where the subsetS+ contains 247DHS sequences andS− con-
tains 710 non-DHS sequences, while⋃ represents the “union”
in the set theory. The detailed sequences in the benchmark
datasetS are given in Supplementary Information S1 available
online at http://dx.doi.org/10.1155/2014/740506.

2.2. DNA Sequence Representation. In order to integrate the
sequence-order effects and DNA physicochemical properties
together, the pseudo nucleotide composition was proposed
in 2011 [11]. Since then, the concept of pseudo nucleotide
composition has penetrated into many branches of com-
putational genomics, such as predicting the recombination
spots [12], predicting promoters [13], predicting nucleosome
positioning sequences [14], and identifying splice sites [15].
Because of its wide and increasing usage, recently, a flexible
web-server, called “pseudo 𝐾-tuple nucleotide composition
(PseKNC),”was developed [16], which can be used to generate
various kinds of pseudo 𝐾-tuple nucleotide compositions.

Encouraged by the success of introducing pseudo
nucleotide composition to computational genomics, in the
current study, the pseudo dinucleotide composition was used
to representDNA sequences in the benchmark dataset, which
can be expressed as [12, 16]
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In (3), 𝑓
𝑢
(𝑢 = 1, 2, . . . , 16) is the normalized occurrence

frequency of the dinucleotides in the DNA sequence. 𝜆 is
the number of the total counted ranks (or tiers) of the
correlations along a DNA sequence, and 𝑤 is the weight
factor. The concrete values for 𝜆 and 𝑤 as well as 𝑘 will be
further discussed in Section 3.1, while the correlation factor
𝜃
𝑗
represents the 𝑗-tier structural correlation factor between

all the 𝑗th most contiguous dinucleotide 𝑅
𝑖
𝑅
𝑖+1

at position 𝑖.

2.3. Support Vector Machine (SVM). SVM is a supervised
learning algorithm and has been widely used in computa-
tional genomics and proteomics [17–23]. The basic principle
of SVM is to transform the input vector into a high dimension
space and then seek a separating hyperplane with the maxi-
mal margin in this space by using the decision function
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where 𝛼
𝑖
is the Lagrange multipliers, 𝑏 is the offset, �⃗�
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the 𝑖th training vector, and 𝑦
𝑖
represents the type of the 𝑖th

training vector. 𝐾(�⃗�, �⃗�
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) is a kernel function which defines

an inner product in a high dimensional feature space, and
sgn is the sign function. Due to its effectiveness and speed
in nonlinear classification process, the radial basis kernel
function (RBF) 𝐾(�⃗�
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) was used in
the current study.

The Libsvm 2.84 package [24] was used to perform
the SVM, which can be downloaded from http://www.csie
.ntu.edu.tw/∼cjlin/libsvm/. The regularization parameter 𝐶
and the kernel width parameter 𝛾 were optimized via an
optimization procedure using a grid search.The search spaces
for 𝐶 and 𝛾 are [215, 2−5] and [2−5, 2−15] with steps of 2−1 and
2, respectively.

2.4. Performance Evaluation. Three cross-validation meth-
ods, that is, independent dataset test, subsampling (or𝐾-fold
cross-validation) test, and jackknife test, are often used to
evaluate the anticipated success rate of a predictor. Among
the three methods, the jackknife test is deemed the least
arbitrary and most objective one [9, 25] and, hence, has been
widely recognized and increasingly adopted by investigators
to examine the quality of various predictors [26–30]. Accord-
ingly, the jackknife test was used to examine the performance
of the model proposed in the current study. In the jackknife
test, each sequence in the training dataset is in turn singled
out as an independent test sample and all the rule-parameters
are calculated without including the one being identified.

A set of parameters, namely, sensitivity (Sn), specificity
(Sp), Matthew’s correlation coefficient (MCC), and accuracy
(Acc), are used to evaluate the performance of the proposed
model and they are defined as follows:

Sn = TP
TP + FN

, (5)

Sp = TN
TN + FP

, (6)

MCC =
TP × TN − FP × FN

(TP + FN)×(TN + FN)×(TP + FP)×(TN + FP)
,

(7)

Acc = TP + TN
TP + FN + TN + FP

, (8)

where TP, TN, FP, and FN represent the number of the
correctly recognizedDHS, the number of the correctly recog-
nized non-DHS, the number of non-DHS recognized asDHS,
and the number ofDHS recognized as non-DHS, respectively.

3. Results and Discussions

3.1. Parameter Optimization. By analyzing the dinucleotide
composition of DHS and non-DHS sequences, we found
that the frequency of CC, CG, GC, and GG is higher
in DHS sequences, while the frequency of the remaining
dinucleotides is higher in non-DHS (Figure 1). This is self-
evident as to why the pseudo dinucleotide composition was
used for the current case.
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Figure 1: Comparative frequencies of 16 dinucleotides in DHS and
non-DHS sequences.

A series of evidences [12, 14, 31, 32] have demonstrated
that DNA local structural properties, that is, angular param-
eters (twist, tilt, and roll) and translational parameters (shift,
slide, and rise), are effective in identifying DNA attributes.
Therefore, in the present work, the six structural parameters
of dinucleotides were used to calculate the pseudo dinu-
cleotide composition by using the PseKNCweb-server, which
is available at http://lin.uestc.edu.cn/pseknc/default.aspx.

Aswe can see from (1) and (2), the presentmodel depends
on the two parameters 𝑤 and 𝜆. 𝑤 is the weight factor
usually within the range from 0 to 1 and 𝜆 is the global
order effect. Generally speaking, the greater the 𝜆 is, the
more global sequence-order information themodel contains.
However, if 𝜆 is too large, it would reduce the cluster-tolerant
capacity so as to lower down the cross-validation accuracy
due to overfitting or “high dimension disaster” problem [33].
Therefore, our searching for the optimal values of the two
parameters is in the range of 𝑤 ∈ [0, 1] and 𝜆 ∈ [1, 10] with
the steps of 0.1 and 1, respectively.

In order to reduce the computational time, the 5-fold
cross-validation approach was used to optimize the two
parameters together with the parameters𝐶 and 𝛾 of the SVM.
We found that when 𝑤 = 0.2 and 𝜆 = 6 with 𝐶 = 512 and
𝛾 = 0.0078125, a peak was observed for the Acc. Accordingly,
the two numerical values were used for the two uncertain
parameters in the following analysis.

3.2. Prediction Quality. The prediction quality measured by
the four metrics defined in (5)–(8) for the present model in
identifying DHS in the benchmark dataset S via the rigorous
jackknife test was listed in Table 1, where, for facilitating com-
parison, the corresponding results obtained by the previous
predictor [8] on the same benchmark data set are also given.
Aswe can see fromTable 1, the currentmethod outperformed
the existing model in all the four metrics, indicating that our

Table 1: Comparison of different methods for identifying DHS by
the jackknife test on the same benchmark dataset.

Predictor Sn (%) Sp (%) Acc (%) MCC
Our method 72.12 86.78 83.00 0.57
Noble et al.a 70.43 84.23 80.12 0.52
a From Noble et al. [8].

proposed method may become a useful tool in identifying
DHS sequences.

4. Conclusions

Since DHS associates with a wide variety of functional
elements, knowledge about the locations of DHS is helpful
for deciphering the genomes.However, strongDNAsequence
conservation is not observed amongDHS sequences, suggest-
ing that it is difficult to computationally identify DHS from
primary DNA sequence.

A series of recent studies have demonstrated that the
information coded by DNA structural properties is con-
tributable to the identification of regulatory elements in
genomes [12, 14, 31, 32]. Hence, in the present study, we
proposed a SVM based model for identifying DHS by using
the pseudo dinucleotide composition. In this model, we
integrate dinucleotide composition with DNA structural
properties.The predictive results of ourmodel are better than
existing methods. Therefore, it is anticipated that the pro-
posed method may become a useful tool for identifying DHS
sequences or, at the very least, it can play a complementary
role to the existing methods in this area.
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