
Citation: Zapała, D.; Augustynowicz,

P.; Tokovarov, M. Recognition of

Attentional States in VR Environment:

An fNIRS Study. Sensors 2022, 22,

3133. https://doi.org/10.3390/

s22093133

Academic Editor: Steve Ling

Received: 2 March 2022

Accepted: 18 April 2022

Published: 20 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Recognition of Attentional States in VR Environment: An
fNIRS Study
Dariusz Zapała 1,2,* , Paweł Augustynowicz 1,2 and Mikhail Tokovarov 3

1 Department of Experimental Psychology, The John Paul II Catholic University of Lublin,
20-950 Lublin, Poland; augustynowicz@kul.pl

2 Cortivision sp. z o.o., 20-803 Lublin, Poland
3 Institute of Computer Science, Faculty of Electrical Engineering and Computer Science,

Lublin University of Technology, 20-618 Lublin, Poland; m.tokovarov@pollub.pl
* Correspondence: dzapala@kul.pl; Tel.: +48-668-548-184

Abstract: An improvement in ecological validity is one of the significant challenges for 21st-century
neuroscience. At the same time, the study of neurocognitive processes in real-life situations requires
good control of all variables relevant to the results. One possible solution that combines the capability
of creating realistic experimental scenarios with adequate control of the test environment is virtual
reality. Our goal was to develop an integrative research workspace involving a CW-fNIRS and
head-mounted-display (HMD) technology dedicated to offline and online cognitive experiments. We
designed an experimental study in a repeated-measures model on a group of BCI-naïve participants
to verify our assumptions. The procedure included a 3D environment-adapted variant of the classic n-
back task (2-back version). Tasks were divided into offline (calibration) and online (feedback) sessions.
In both sessions, the signal was recorded during the cognitive task for within-group comparisons of
changes in oxy-Hb concentration in the regions of interest (the dorsolateral prefrontal cortex-DLPFC
and middle frontal gyrus-MFG). In the online session, the recorded signal changes were translated
into real-time feedback. We hypothesized that it would be possible to obtain significantly higher
than the level-of-chance threshold classification accuracy for the enhanced attention engagement
(2-back task) vs. relaxed state in both conditions. Additionally, we measured participants′ subjective
experiences of the BCI control in terms of satisfaction. Our results confirmed hypotheses regarding
the offline condition. In accordance with the hypotheses, combining fNIRS and HMD technologies
enables the effective transfer of experimental cognitive procedures to a controlled VR environment.
This opens the new possibility of creating more ecologically valid studies and training procedures.

Keywords: fNIRS; BCI; virtual reality; n-back; head-mounted display; DLPFC; MFG

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is one of the newest and fastest-growing
functional neuroimaging techniques. The fNIRS uses infrared light (650–950 nm) to measure
the hemodynamic response of the neocortical brain regions [1]. There are several variations
of the fNIRS method used in neuroscience research, such as time-domain (TD-fNIRS),
or frequency-domain (FD-fNIRS) methods. However, the most common commercially
available systems use a continuous wave (CW) NIR light emitted by a laser or LED [2].
This method uses a modified Beer–Lambert law to estimate changes in the concentration of
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) based on measuring the difference
in the ratio of the injected to the output light after passing through the tissue [3].

The CW fNIRS is appreciated for its: non-invasiveness, relatively high resistance to
motion artifacts, higher spatial resolution than electroencephalography (EEG), better tem-
poral resolution than functional magnetic resonance imaging (fMRI), and easy integration
with other measurement devices [4] For these reasons, fNIRS is gaining popularity as a
research tool in studies on children [5], neurofeedback [6], neurorehabilitation [7], sport [8],
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brain-computer interfaces [9] and social neuroscience [10]. On the other hand, fNIRS has a
worse signal-to-noise ratio and spatial resolution than fMRI [11], limiting its application in
the medical field.

As a result of these capabilities and limitations, CW-fNIRS remains one of the few brain-
recording methods that are feasible for use in motion and outside the laboratory [12]. These
features are particularly relevant to research approaches such as neuroergonomics [13],
real-life neuroscience [4], and UX/UI studies [14]. At the same time, the fNIRS developers
create more devices that are fully mobile, wireless [15], and designed to work with head-
mounted displays (HMD) [16] or training apps [17]. VR technology has been used in
the research and training of attentional skills due to its ability to isolate the subject from
external distractions [18]. For example, ref. [19] showed that users′ workloads could be
detected from the fNIRS signal during the n-back task implemented into the VR scene.
The highest classification accuracy (from 62% in person-dependent analysis to 66% in
person-adaptive analysis) was obtained for the binary discrimination between 1-back vs.
2-back task performance. However, there were significant individual differences in the
results. In other studies, Luong et al. [20] proved that complex VR cognitive training can
modulate users′ mental workloads by customizing scenarios to individual cognitive states.

Moreover, Hudak et al. [21] have created fNIRS-based neurofeedback training in a VR
environment to reduce impulsive behavior in a group with ADHD. After eight training
sessions, a significant reduction in commission errors on the no-go task and a decrease in
reaction time variability on the stop-signal tasks for the experimental group was achieved;
at the same time, an increase in prefrontal oxygenated hemoglobin concentration was ob-
served in the same group. In a study by Salski et al. [22], an experiment was conducted on a
group of children with ADHD comparing the effectiveness of hemoencephalographic-based
neurofeedback (HEG-NF) training in three visual modes (standard 2D HEG-NF, simple
VR HEG-NF, complex VR HEG-NF). The results showed that children in the VR HEG-NF
have better results in cognitive assessment after training than children with standard 2D
HEG-NF. This effect occurred together with a larger cerebral blood oxygenation slope in
frontal areas. Overall, the mentioned studies demonstrate the feasibility of combining
VR and fNIRS technologies to recognize attentional states and modulate them through
training procedures.

Recognizing attentional states can be used to monitor subject engagement in the task.
In fMRI studies [23], in a state of intense focus on the performed action, the activity of
areas such as the dorsolateral prefrontal cortex (DLPFC), dorsal anterior cingulate cortex
(dACC), superior and inferior parietal lobe (SPL and IPL) and anterior insula (AI) was
observed to increase. In contrast, the anterior medial frontal gyrus (aMFG), posterior
cingulate cortex (PCC), and some parts of the lateral parietal cortex (LPC) are more active
during mind wandering, attention drifts, or relaxation. The first group of structures is
referred to as a “task-positive network” and the second as a “task-negative network”
due to their association with involvement in the performed activity. As demonstrated
by Harrivel et al. [23], it is possible to effectively recognize the activity of these two brain
networks based on the signal from DLFPC and MFG areas recorded using fNIRS.

An important aspect of evaluating the usefulness of neurotechnology is the user′s sub-
jective experience of the interaction with the system. In conclusion, there have been many
studies focused on the efficiency of classifying brain states, which omit the user′s attitude
towards the use of the system. Therefore, user-centered design (UCD) in evaluating the
usability of BCI and other neurotechnologies has been postulated [23]. In this model, one of
the assessable dimensions is satisfaction measured by visual scales and questionnaires [24].
The same factor is also a subcomponent of usability in the Usability, afFEct, Ergonomics,
and quality of Life (uFEEL) framework for User-BCI System measurements [25].

This paper aims to evaluate the applicability of a mobile CW-fNIRS system to the
recognition of task-positive/task-negative network activity during the performance of
the n-back task in the immersive VR environment. We hypothesize that discrimination
between the enhanced attention engagement (n-back task) and the relaxation state based on
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hemodynamic activity (HbO/HbR concentration changes) from the DLFPC and MFG areas
will be significantly higher than the level-of-chance threshold in the study group. We have
used the method described in the paper by Müller-Putz et al. [26] as a measure to determine
the random threshold, which considers the number of trials and categories in analyzed
datasets. Furthermore, we assume that the user experience of interaction with the system
(fNIRS + HMD) will be rated above the mean values for the satisfaction assessment scales.
Confirmation of the hypotheses would provide evidence for the feasibility of using mobile
CW-fNIRS systems to detect and train attentional states in an attractive VR environment.

2. Materials and Methods
2.1. Participants

Twelve right-handed subjects (10 females) aged 21–34 years (M = 24.82; SD = 4.38)
participated in the experiment. Written informed consent was obtained from all participants
in the experiment. They also declared that they were neither permanently taking medication
nor taking psychoactive substances. At the end of the experimental procedure, participants
were paid a remuneration of 100 PLN. The study was conducted in compliance with
the Declaration of Helsinki and approved by the Ethics Committee of the Institute of
Psychology at the John Paul II Catholic University of Lublin (No. KEBN_48/2021).

2.2. Apparatus

Optical signals were recorded on a two-wavelength (760 and 850 nm) continuous-wave
Photon Cap C20 system (Cortivision sp. z o.o., Lublin, Poland) with 16 LED sources and
10 SiPD detectors. Data processing in online mode was conducted in OpenViBE 3.1.0 (Inria
Hybrid Team, Rennes, France) with custom Python scripts. VR scenarios were developed
using the Unity3D engine and displayed on an all-in-one HMD Oculus Quest (Facebook
Technologies, Menlo Park, CA, USA) (Figure 1). Statistical analysis of the results was
conducted using JASP v0.15 (JASP Team) software.
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2.3. Subjective Satisfaction Assessment

An electronic version of the Visual Analogue Scale (VAS) [27] was used to assess overall
subjective satisfaction after both sessions (Question: “What is your overall satisfaction with
participating in this experiment?”). The evaluation was performed using an 11-point scale,
where 0 means “not satisfied at all” and 10 means “very satisfied”. Then, a modified version
of the Quebec User Evaluation of Satisfaction with assistive Technology (eQUEST 2.0) [28]
was used to measure participants′ satisfaction regarding the seven aspects of using the
system: Dimensions, Weight, Adjustment, Safety, Reliability, Ease of use and Comfort
(Question: ‘’How would you rate the features of the device you came in contact with?
Dimensions/Weight/Adjustment/Safety, Reliability/Ease of use/Comfort”). Subjects
responded by choosing one of five possible answers by assessing each aspect: 1 = not
satisfied at all, 2 = not very satisfied, 3 = more or less satisfied, 4 = quite satisfied and
5 = very satisfied.

2.4. Procedure

The study consisted of three parts (Figure 2). In the first stage (tutorial), written
instructions were given: “You will see different fruits in this game. Each fruit is shown
for a few seconds. You need to decide whether you saw the same fruit two fruits ago. If
you saw the same fruit two fruits ago, you press the LEFT TRIGGER. If not, you press the
RIGHT TRIGGER. If you do this correctly, the fruit will fall into the basket. The fruit will
fall into the fire if you press the wrong trigger. Occasionally, the Wizard will throw a ball of
energy instead of fruit in your direction. Then it will get darker and your task will be to
relax and look at the fire”. Then, ten training trials with information on correctness were
presented to the participants. If they felt confident enough to perform the task, a second
part (calibration) began. The calibration session had the same elements as the tutorial
(10 objects in a row) except for the information on correctness. In the last part (online),
participants were given the following instructions: “Do the same task, but only in your
mind. Try to get all the fruits into the basket. If you focus and relax at the right time, the
fruit will fall into the basket”. During the online session, the movement direction of objects
(“basket” or “fire”) was directly controlled by the classification output signal. In all parts of
the experiment, participants saw a virtual Wizard character in front of them. In the “2-back”
blocks, the character threw fruit toward the participant, while the character remained at
rest in the “relax” block. Each part of the study started and ended with the “relax” block,
with conditions alternating sequentially. During each “2-back” block, a list of fruits was
randomized with 3 targets, 7 non-targets, and no lures.

2.5. fNIRS Data Acquisition and Analysis
2.5.1. Probe Design

Ten channels were composed of 9 sources and 4 detectors, covering MFG and bilateral
DLPFC. In addition, two short-separation channels were placed in positions F3 and F4 (see
Figure 3). The distance between sources and detectors was maintained at approximately
30 mm for all data channels and was fixed to 10 mm for short-separation channels. The
optode placement choice was based on predefined positions implemented in the fOLD
toolbox [29]. Three regions of interest (MFG, L-DLPFC, R-DLPFC) were automatically
translated from anatomical landmarks to 10-5 international system positions.

2.5.2. Signal Processing

The signal processing pipeline included several steps (Figure 4). In the first stage,
the raw light intensity was transformed to optical density via the application of the mod-
ified Beer–Lambert Law [3]. The baseline necessary for calculating optical density was
registered during the course of the first 5 s of the processed record. Optical density was
then transformed to the concentration of oxy-/deoxy-hemoglobin (HbO/HbR) and the
values for HbO and HbR concentrations were later processed separately. Stimulation-based
epoching was carried out afterward, which was based on the markers streamed from the VR
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applications. Each epoch was 8 s long and began 2 s after the respective marker appeared.
As temporal filtering, a 6th order Butterworth Low Pass Filter with a high cut frequency
equalling 0.6 Hz was applied.
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A generalized linear model (GLM) block was applied as a feature extraction step. A
sequence of Gaussian “bell”-shaped functions was used as the model function in GLM.
The standard deviation of the function was equal to 1 and the subsequent bell curves were
shifted by 1 s. The GLM block returns two signals: the values of the regressed signal
reconstructed from model functions and the parameters of the fit model functions (heights
of the bell curves). The latter were used as features in the further analysis [30].
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The obtained dataset containing extracted features was divided into five parts to
conduct a 5-fold cross-validation [31] experiment, in which each fold was used as a test set,
while the remaining four folds were used as a training set. Each repeat of cross-validation
included the following steps:

1. z-score normalization: the mean and standard deviation of separate features were
computed based on the training set; the values were used for z-score normalization of
the training and test datasets.

2. SVM classifier [32] has been used to distinguish between two classes: “relax” and
“2-back task”. The linear kernel was applied as this is less prone to overfitting than
other kernels.
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3. Results
3.1. Classification Accuracy

The results of the one-sample non-parametric Wilcoxon signed-rank test show that
classification accuracy in the calibration session (M = 88.58, SD = 8.49) is significantly higher
than the upper 95% confidence limit of chance calculated for two-class BCI according to
Müller-Putz et al. [26] (70%) (T = 78, p < 0.01, rrb = 1). However, we did not note a significant
difference for online conditions (M = 61, SD = 14.89, T = 6, p = 0.107). At the same time,
both conditions were significantly higher from the 50% chance level (calibration: T = 78,
p < 0.001, rrb = 1; online: T = 31, p < 0.05, rrb = 0.72). Table 1 presents the results of the
mean classification accuracy of all participants in calibration and online sessions. It has to
be noted that three results are missing from the online session due to errors during signal
recording. Figure 5 shows the distribution of outcomes in both parts of the study, referred
to as the level of chance.

Table 1. Results of classification for individual participants (n = 12).

Subject Calibration Session Online Session

A 80 50 *
B 88 -
C 83 42 *
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Table 1. Cont.

Subject Calibration Session Online Session

D 82 * 70
E 95 75
F 95 41 *
G 100 78
H 75 60 *
I 95 -
J 90 55 *
K 80 -
L 100 78

Group M = 88.58; SD = 8.49 M = 61; SD = 14.89
* Results below 95% confidence limits of chance.
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3.2. User Satisfaction

Users′ overall satisfaction with their interaction with the system averaged 6 sten,
which was close to the maximum rating of “very satisfied” on an 11-point scale (Table 2.
VAS). The highest-rated aspects of the interaction were found to be Safety and Ease of use.
An average rating above five sten was assigned to the remaining aspects of the system:
Adjustment, Dimensions, Reliability, Weight, and Comfort (Table 2. eQUEST 2.0).

Table 2. Satisfaction assessment during the session (n = 11, missing case = 1).

Method Dimension Min Max Md Sten IQR Sten

VAS Overall satisfaction 8 10 6 2.25

eQUEST 2.0

Dimensions 2 5 6 4
Weight 2 5 6 2

Adjustment 2 5 7 3.5
Safety 4 5 10 0

Reliability 4 5 6 4
Ease of use 3 5 10 5

Comfort 1 5 6 1

VAS (0 = not satisfied at all to 10 = very satisfied)
eQUEST 2.0 (1 = not satisfied at all, 2 = not very satisfied, 3 = more
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3.2. User Satisfaction

Users′ overall satisfaction with their interaction with the system averaged 6 sten,
which was close to the maximum rating of “very satisfied” on an 11-point scale (Table 2.
VAS). The highest-rated aspects of the interaction were found to be Safety and Ease of use.
An average rating above five sten was assigned to the remaining aspects of the system:
Adjustment, Dimensions, Reliability, Weight, and Comfort (Table 2. eQUEST 2.0).

Table 2. Satisfaction assessment during the session (n = 11, missing case = 1).

Method Dimension Min Max Md Sten IQR Sten

VAS Overall satisfaction 8 10 6 2.25

eQUEST 2.0

Dimensions 2 5 6 4
Weight 2 5 6 2

Adjustment 2 5 7 3.5
Safety 4 5 10 0

Reliability 4 5 6 4
Ease of use 3 5 10 5

Comfort 1 5 6 1

VAS (0 = not satisfied at all to 10 = very satisfied)
eQUEST 2.0 (1 = not satisfied at all, 2 = not very satisfied, 3 = more

or less satisfied, 4 = quite satisfied, 5 = very satisfied).

Median
(Md)

Interquartile
range (IQR)

4. Discussion

According to the hypothesis, the classification results in the calibration session con-
firmed the possibility of discrimination between the enhanced attention engagement
(n-back task) and the relaxation state based on HbO2/HbR concentration changes from
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the DLFPC and MFG area. The classification accuracy at an average level of 88.58% is
significantly above the confidence intervals (α = 5% and α = 1%) of the random effect for a
two-category procedure containing 20 trials [26]. These outcomes are higher than those
reported in other studies using fNIRS to identify cognitive engagement/relaxation based on
task-positive/task-negative network activities (M = 69.1%; SD = 4.4%) [23]. Slightly lower
recognition effect between the 2-back and relax condition (M = 80.3%; SD = 10.45%) was
also achieved by analyzing average activity from eight channels located over the prefrontal
cortex without distinguishing between the DLFPC and MFG area [33]. However, such an
effect was not observed for the data collected in the online session (M = 61, SD = 14.89).
The mean classification outcomes from the online session are significantly above the chance
threshold (50%) but below the upper confidence interval for a more conservative measure
proposed by Müller-Putz et al. [26]. Although such a result remains relatively low, an
average classification accuracy of more than 60% is sometimes considered the minimum
correctness threshold for most users of 2-state BCI after training [34].

The classification results can be interpreted in the context of participants’ tasks in both
parts of the study. In the calibration phase, subjects had to respond to stimuli in the VR
environment by pressing the correct trigger; in contrast, in the online phase, the stimuli
control was based only on the classifier’s output training using the data from the calibration
phase. This implies two types of problems. First, subjects may have been more focused
on the task during the offline sessions due to the need for motor responses. During online
control, participants’ attention may have drifted or they may have felt a lack of control over
the procedure, which is a common problem in BCI research [35]. Secondly, for the same
reasons, the calibration session data used to train the classifier in the online session may
not have been representative of the activity in this phase.

The satisfaction evaluation methods show overall positive user enjoyment when
interacting with the system. These results are consistent with research indicating that
virtual environments increase user engagement during cognitive tasks [21]. Head-mounted
displays are still a relatively uncommon entertainment device, meaning that contact with
this technology is likely to elicit user interest [36]. However, overall satisfaction scores
may have been influenced by positive skew bias. It has been observed that subjects tend
to choose positive scores when answering questions on satisfaction [37]. Indeed, in our
study, all participants only selected answers from among the highest scores (from 8 to 10 on
an 11-point scale). Therefore, it may be more valuable to assess satisfaction with specific
technology features as rated by the eQUEST scale.

Concerning the eQUEST results, HMD and fNIRS are viewed by users as safe and
easy to use. This may be due to the small sizes (all-in-one HMD and wireless fNIRS)
and short setup time for both devices. However, aspects directly related to physical
convenience during the interaction, such as Weight, Comfort, and Adjustment, were rated
ambiguously. The weight of both devices on the head is nearly a kilogram (HMD = 503 g;
fNIRS optodes and cap = 265 g), which can be uncomfortable during a more extended
session. In addition, the EEG cap system (MCScap 10-5, Medical Computer System, Sankt-
Petersburg, Russia) used to attach the fNIRS optodes is designed for a relatively wide range
of head circumferences (e.g., 54 cm to 60 cm for size L). Thus, the cap may have appeared
unsuitable for some participants at the beginning or end of the size range. In summary,
it can be assumed that the subjects are positively disposed towards the technology that
composed the HMD-fNIRS system. The method appears safe and easy to use. However,
user comfort can be improved.

There are some limitations of our study that need to be mentioned. First, the small
number of subjects and trials has made it difficult to use more advanced machine learning
algorithms, such as deep neural networks [38]. Therefore, the classification results should
not be generalized to other cases without replicating the effect on larger data sets using
different methods. Another limitation is the lack of comparisons to other conditions, such
as performing cognitive tasks presented on a monitor screen. Such comparisons would
allow us to verify whether the use of HMDs affects the accuracy of task-positive/negative
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brain network activity recognition. It would also be beneficial for future research to include
more user experience factors than satisfaction [24,25].

5. Conclusions

As hypothesized, the classification of hemodynamic changes from the areas of interest
allowed the recognition of states of enhanced attention and relaxation above a level of
chance threshold. HMD and mobile fNIRS in the experiment resulted in high overall user
satisfaction with system interaction. Moreover, the signal processing pipeline in open-
source real-time data processing software can provide a framework for future BCI and
neurofeedback studies. For example, research [39] shows that it is possible to achieve symp-
tom improvement in social anxiety disorder (SAD) by attention-focused neurofeedback
training using the VR-BCI fNIRS setup. The same techniques can create more realistic social
stimuli or interactions to evoke and recognize emotional states [40]. A further area to apply
the VR-fNIRS combinations might also be the study of memorizing and reproducing pro-
cesses [41]. In summary, due to the mobile capabilities of modern fNIRS and HMD systems,
it is possible to study cognitive processes in more realistic but controlled conditions.
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