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Abstract: The Hedgehog (HH) signaling pathway plays an important role in embryonic development
and adult organ homeostasis. Aberrant activity of the Hedgehog signaling pathway induces many de-
velopmental disorders and cancers. Recent studies have investigated the relationship of this pathway
with various cancers. GPCR-like protein Smoothened (SMO) and the glioma-associated oncogene
(GLI1) are the main effectors of Hedgehog signaling. Physalin A, a bioactive substance derived
from Physalis alkekengi, inhibits proliferation and migration of breast cancer cells and mammospheres
formation. Physalin A-induced apoptosis and growth inhibition of mammospheres, and reduced
transcripts of cancer stem cell (CSC) marker genes. Physalin A reduced protein expressions of SMO
and GLI1/2. Down-regulation of SMO and GLI1 using siRNA inhibited mammosphere formation.
Physalin A reduced mammosphere formation by reducing GLI1 gene expression. Down-regulation
of GLI1 reduced CSC marker genes. Physalin A reduced protein level of YAP1. Down-regulation of
YAP1 using siRNA inhibited mammosphere formation. Physalin A reduced mammosphere forma-
tion through reduction of YAP1 gene expression. Down-regulation of YAP1 reduced CSC marker
genes. We showed that treatment of MDA-MB-231 breast cancer cells with GLI1 siRNA induced
inhibition of mammosphere formation and down-regulation of YAP1, a Hippo pathway effector.
These results show that Hippo signaling is regulated by the Hedgehog signaling pathway. Physalin
A also inhibits the canonical Hedgehog and Hippo signaling pathways, CSC-specific genes, and the
formation of mammospheres. These findings suggest that physalin A is a potential therapeutic agent
for targeting CSCs.

Keywords: breast cancer stem cells (BCSCs); physalin A; Hedgehog signaling pathway; GLI1; Hippo
signaling pathway; YAP1; mammospheres

1. Introduction

Breast cancer (BC) is invasive cancer and involves different areas of the breast (lobules,
ducts, and connective tissue) and shows different clinical outcomes. Based on the cancer
response, BC can be divided into estrogen receptor(ER)-positive, progesterone receptor
(PR)-positive, ER/PR-positive, human epidermal growth factor receptor-2 (HER2)-positive,
and triple-negative breast cancer (TNBC) [1]. Breast cancer stem cells (BCSCs) are a
small population of BC cells that play a critical role in the metastasis of BC to other
organs and are a leading cause of tumor progression and resistance against conventional
therapy. Therefore, targeting BCSCs may be a potential approach for the treatment of
BC. Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors that exhibit
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diverse histological characteristics, molecular profile, and therapeutic response. TNBCs are
characterized by a lack of amplification of the expressions of estrogen receptor, progesterone
receptor, and human epidermal growth factor receptor 2 (HER2) [1]. Approximately
10–15% of all breast cancers are TNBC [2]. Compared to other breast cancer types, TNBC is
associated with poor prognosis and occurs at a higher frequency in younger women [3].
Breast cancer stem cells (BCSCs) are heterogeneous subpopulations of breast cancer cells
that have properties of differentiation and self-renewal [4]. Additionally, these BCSC
subpopulations are known to influence therapeutic response and clinical outcomes [5].
Owing to these characteristics, the development of treatments targeting BCSCs is an
emerging research hotspot. However, there are no standardized strategies for TNBCs and
BCSCs [6].

Physalin A is an active withanolide derived from Physalis alkekengi var. franchetii
(Solanaceae) which is named “Jin-deng-long” in China [7]. Traditional Chinese medicine
using the calyx of this plant is commonly adopted for the treatment of excessive phlegm,
pharyngitis, phemphigus, cough, sore throat, hepatitis, eczema, dysuria, and tumors [8].
These data suggest that the genus Physalis is an important source of withanolide-type
molecules with potential therapeutic effect against human diseases [9]. Studies have
demonstrated anti-tumor and anti-inflammatory properties of Physalin A. Nrf2 path-
way was regulated by physalin A through ERK and p38 for induction of detoxifying
enzymes [10]. Physalin A was shown to induce apoptosis and protective autophagy in
HT1080 human fibrosarcoma cells [7]. Physalin A attenuated inflammation by down-
regulating c-Jun NH2 kinase (JNK) phosphorylation/Activator Protein 1 (AP-1) activation
and up-regulating the anti-oxidative activity [11]. In addition, degradation of nuclear factor
kappa B alpha (IκBα) and nuclear translocation of nuclear factor-κB (NF-κB) was blocked
by physalin A, which induced an anti-inflammatory effect [12]. In human non-small cell
lung cancer cells, physalin A-induced G2/M phase cell cycle arrest and regulated the p38
MAPK/ROS pathway [13]. In another study, physalin A was shown to induce apoptosis
of prostate cancer cells by regulation of JNK and activation of ERK [14]. Compared with
5-fluorouracil or paclitaxel, physalin A showed no inhibitory effect on human peripheral
blood mononuclear cells and exhibited lower toxicity on normal human cells [7]. Thus,
physalin A can be considered as a potential therapeutic agent for clinical use.

Hedgehog (HH) signaling pathway plays a fundamental role in normal embryonic
development and postnatal tissue regeneration as well as in organogenesis and homeostasis
of almost all organs [15–17]. Its biological influence is mediated through a signaling cascade
that alters the balance between the activator and repressor forms of glioma-associated
oncogene (GLI) transcription factors [16]. The components involved in Hedgehog signaling
include Hedgehog ligands (Sonic Hedgehog, Indian Hedgehog, and Desert Hedgehog), the
seven-span transmembrane G protein-coupled receptor (GPCR)-like protein Smoothened
(SMO), the twelve-span transmembrane canonical receptor protein Patched (PTCH1), and
the glioma-associated oncogene (GLI1, GLI2, and GLI3) proteins [18]. Aberrant activity of
the Hedgehog signaling pathway has been implicated in several developmental disorders
and cancers [19]. Constitutive pathway activation resulting from mutations of Hedgehog
pathway components is frequently observed in some cancers [20,21]. In cancer stem
cells, Hedgehog signaling is known to drive the CSC phenotype through the regulation
of stemness-determining genes such as Nanog, Oct4, and Sox2 [22–26] and regulate self-
renewal and differentiation of CSCs [27]. These findings indicate that characterization of
the molecular mechanisms of the Hedgehog signaling pathway is essential for developing
strategies for the prevention and treatment of cancers or CSCs.

The Hippo signaling pathway, a serine/threonine kinase cascade, is related to the
proliferation of embryonic and somatic stem cells. Previous studies have shown that the
Hippo signaling pathway is a tumor suppressor pathway that induces apoptosis and
inhibits proliferation [28]. In particular, YAP and TAZ, which are the main effectors of
the Hippo pathway, are essential for the maintenance of BCSCs. In breast cancer cells,
TAZ-TEAD-Cyr61/CTGF, the Hippo signaling pathway is an important modifier of the
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paclitaxel response [29]. TAZ is required for the metastatic activity, self-renewal ability,
tumor-initiating capacity, and chemoresistance of BCSCs [30]. YAP-induced stemness in
mammary epithelial cells and breast cancer is mediated by SRF-IL6 [31]. These findings
indicate that the Hippo signaling pathway is determinant for treating BCSCs. However,
there has been no report on anti-CSCs activity and molecular mechanisms of physalin
A from Physalis alkekengi var. franchetii. In the present study, we studied physalin A as
a mammosphere formation inhibitor against BCSCs which suppresses mammosphere
formation in breast cancer cell lines. We investigated whether physalin A inhibits the
formation of BCSCs through the regulation of the Hedgehog signaling pathway and yes-
associated protein 1 (YAP1).

2. Results
2.1. Physalin A Inhibits the Proliferation of MDA-MB-231, MDA-MB-453, HCC-1937, and
MCF-7 Breast Cancer Cells and Mammosphere Formation

TNBC cell lines (MDA-MB-231, MDA-MB-453, and HCC-1937) and non-TNBC cell
lines (MCF-7) were cultured in 96-well plates. The effect of physalin A (Figure 1B and
Figure S1) on cell viability was assessed using MTS assay. As shown in Figure 1B and
Figure S1, physalin A suppressed the proliferation of breast cancer cell lines in a dose-
dependent manner. The migration and colony formation of MDA-MB-231 and MCF-7 cells
were inhibited by physalin A (Figure 1C,D). To assess whether physalin A has an inhibitory
effect on mammosphere formation, we cultured MDA-MB-231 (1 × 104 cells/well), MDA-
MB-453 (2 × 104 cells/well), HCC-1937 (4 × 104 cells/well), and MCF-7 (4 × 104 cells/well)
in ultralow attachment plates with/without physalin A (10 µM). Physalin A decreased the
number and size of the mammospheres (Figure 1E and Figure S1).
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Figure 1. Physalin A inhibits breast cancer cell viability and mammosphere formation efficiency. (A) Molecular structure
of physalin A. (B) Breast cancer cell lines (MDA-MB-231, MDA-MB-453, and MCF-7 cells) were cultured with increasing
concentration of physalin A (0, 10, 20, 40, 60, 80, 100 µM) for 24 h. The cytotoxic effect of physalin A was measured using
the MTS assay. (C,D) Effect of physalin A on colony formation and migration of breast cancer cells. MDA-MB-231 and
MCF-7 cells (2 × 103 per well) were cultured with/without physalin A for 7 days. The colonies were scanned using a
scanner. Migrations with/without physalin A were imaged at 0 and 12 h (scale bar: 1,000 µm). The percent inhibition
of cell migration was calculated using untreated well as 100%. (E) Physalin A inhibits mammosphere-forming ability.
MDA-MB-231 cells (1 × 104 per well), MDA-MB-453 (2 × 104 cells/well) and MCF-7 cells (4 × 104 per well) were cultured
in 6-well ultra-low attachment plates with/without physalin A. Representative mammospheres in the photos were captured
by inverted light microscopy (scale bar: 100 µm). The mammosphere formation efficiency (MFE) was determined as shown
in the graph. Mean ± SD values from three independent experiments are presented. * p < 0.005, ** p < 0.01.

2.2. Physalin A Decreases the CD44high/CD24low and ALDH1-Expressing Subpopulations

CD44high/CD24low and ALDH1-expressing subpopulations are BCSC populations.
We cultured MDA-MB-231 cells in 6-well culture plates and then treated with/without
physalin A for 24 h. Physalin A reduced the population of CD44high/CD24low-expressing
subpopulation of MDA-MB-231 breast cancer cells from 75.7% to 42.4% (Figure 2A). Sim-
ilarly, the ALDH assay showed that physalin A decreased the ALDH1-positive subpop-
ulation of MDA-MB-231 cells from 5.3% to 1.3% (Figure 2B). These results indicate that
physalin A reduced the frequency of BCSC populations, CD44high/CD24low, and ALDH1-
expressing subpopulations.
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Figure 2. Effects of physalin A in CD44high/CD24low and ALDH1-expressing breast cancer cells. CD44high/CD24low-cell
subpopulation was measured by flow cytometry after treatment with physalin A (20 µM). (A) Effects of physalin A on
CD44high/CD24low-expressing breast cancer cells. 1 × 106 cells were cultured for 1 day and then treated with physalin A.
After 1 day, cells were incubated with FITC-CD44 and PE-CD24 (BD, San Diego, CA, USA) and placed on ice for 20 min.
Breast cancer cells were washed twice with 1X FACS buffer and assayed using flow cytometry (Accuri C6). The red cross
was based on the binding of an antibody without physalin A. (B) MDA-MB-231 breast cancer cells were also treated with
physalin A for 1 day. ALDH assay was performed using the ALDEFLUOR kit (StemCell Technologies). Breast cancer cells
were incubated in ALDH assay buffer at 37 ◦C for 20 min. ALDH1-positive cells were determined using flow cytometry
(Accuri C6).

2.3. Physalin A Induces BCSC Apoptosis and Inhibits CSC-Specific Gene Transcription and
Growth of Mammospheres

We examined the effects of physalin A on the apoptosis of BCSCs. Early apoptosis (Q2)
was induced from 10.5% to 12.8% and late apoptosis (Q1) was induced from 9.8% to 27.4%
(Figure 3A). Moreover, physalin A inhibited the expression of CSC-specific genes; Oct4,
CD44, Sox2, c-myc, and Nanog (Figure 3B). To measure the inhibitory effect of physalin A
on mammosphere proliferation, MDA-MB-231 mammospheres were treated with physalin
A. With the same number of cells, we incubated the single cell from mammospheres in
6 cm diameter dishes for 1, 2, and 3 days. As shown in Figure 3C, physalin A inhibited the
proliferation of mammospheres.
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Figure 3. Effects of physalin A on apoptosis of mammospheres, expression of cancer stem cell markers,
and mammosphere growth. (A) Physalin A increased apoptotic subpopulation of mammospheres.
Mammospheres were cultured in an ultralow attachment 6-well plate for 5 days and then treated
with/without physalin A for 2 days. Subsequently, the cells were collected and trypsinized to obtain
single cells and washed with 1X PBS. 1 × 105 single cells were counted and suspended with 100 µL
of 1X Annexin V binding buffer. 5 µL of FITC Annexin V solution and 5 µL of PI staining solution
were added to each cell. All samples were incubated for 15 min at room temperature. After washing
with 1X Annexin V binding buffer, cell pellets were suspended with the buffer. Apoptosis was
assayed by Annexin V/PI staining using an Accuri C6 flow cytometer (BD, San Jose, CA, USA).
(B) Transcriptional levels of CSC markers, such as Oct4, CD44, Sox2, c-myc, and Nanog genes were
determined in mammospheres treated with/without physalin A using CSC marker-specific primers
and real-time qPCR (Table S1). β-actin was used as an internal control. (C) Mammosphere growth
is decreased by physalin A. MDA-MB-231 mammospheres treated with/without physalin A were
suspended with a single cell, and the single cells were cultured in equal numbers in 6 cm diameter
dishes. One to three days later, the cells were counted. Mean ± SD values from three independent
experiments are presented. * p < 0.05, ** p < 0.01 vs. DMSO-treated control.

2.4. Physalin A Regulates the Canonical Hedgehog Signaling Pathway

To determine the cellular mechanism by which physalin A inhibits mammosphere
formation, we first checked the Hedgehog signaling pathway. Physalin A reduced the
expression of SMO protein (the upper signal effector of the Hedgehog signaling) in mam-
mospheres (Figure 4A and Figure S2). We further confirmed the relationship between
SMO and the formation of CSCs. After treating siRNA of SMO, we scanned the plate
and measured the MFE. The number of mammospheres was modestly decreased, and
the size of mammospheres was also decreased, as shown in Figure 4B. Physalin A also
reduced the GLI1 and GLI2 (Figure 4C and Figure S2). siRNA-mediated silencing of GLI1 in
MDA-MB-231 cells led to a significant decrease in mammosphere formation. The silencing
of GLI1 reduced the number as well as the size of mammospheres (Figure 4D). In BCSCs,
physalin A also decreased the transcriptional level of GLI1 (Figure 4E). Silencing of GLI1
also reduced the transcriptional levels of CSC marker genes, Oct4, Nanog, and Sox2, but
not that of c-myc (Figure 4F). These results showed that physalin A inhibits the canonical
Hedgehog signaling pathway in MDA-MB-231 breast cancer stem cells.
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Figure 4. Effect of physalin A on Hedgehog signaling pathway. (A) Physalin A decreased the total protein level of SMO
in breast mammospheres. An Anti-SMO antibody was used for immunoblotting. (B) Effect of SMO on mammosphere
formation using SMO small interfering RNA (siRNA). siRNA-transfected cancer cells were incubated for 5 days with a
complete Mammocults medium, and mammosphere formation efficiency (MFE) was calculated. (C) The protein levels of
GLI1 and GLI2 in physalin A-treated mammospheres were assessed using specific anti-GLI1 and anti-GLI2 antibodies.
(D) The effect of GLI1 protein on mammosphere formation was assessed using siRNA of GLI1. GLI1 siRNA-transfected
cells were cultured for 7 days in a complete MammoCult medium and the MFE was determined. (E) Physalin A treatment
reduced Hedgehog signaling-related GLI1 gene expression in the mammospheres derived from MDA-MB-231 cells. (F) After
transfection of GLI1 siRNA, total RNA was extracted from breast cancer cells. The transcripts levels of c-myc, Oct4, Nanog,
and Sox2 were measured by RT-qPCR using specific primers. β-actin was used as the internal control. Mean ± SD values
from three independent experiments are presented. * p < 0.05, ** p < 0.01 vs. control.

2.5. Physalin A Inhibits the Hippo Signaling Pathway Which Is Regulated by GLI1

To study the downstream effects of the Hedgehog signaling pathway, we examined
the effect of physalin A on the expression level of YAP1 (an effector of the Hippo signaling
pathway) in the mammosphere. Physalin A reduced the total levels of YAP1 protein and
also reduced cytosol and nuclear levels of YAP1 in MDA-MB-231 and MCF-7 mammo-
spheres (Figure 5A,B and Figure S2). siRNA-mediated silencing of YAP1 significantly
decreased mammosphere formation of MDA-MB-231 cells. The silencing of YAP1 reduced
the number as well as the size of mammospheres (Figure 5C). Physalin A induced a de-
crease in transcripts level of YAP1 in mammospheres (Figure 5D). The expressions of cancer
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stem cell-related genes, Sox2 and Oct4, were decreased by siRNA of YAP1 (Figure 5E).
To examine the crosstalk of YAP1 and GLI1, we examined the level of YAP1 protein in
cancer cells after the silencing of GLI1. Down-regulation of GLI1 using siRNA induced
a decrease in transcripts and protein level of YAP1 (Figure 6A,B) and reduced cytosolic
and nuclear fractions of YAP1 (Figure 6C). YAP1 is essential for the formation of mam-
mospheres. According to available TCGA data, GLI1 is related to YAP1 in breast cancer
patients (Figure 7A). In conclusion, our data showed that GLI1 regulates the protein and
transcription level of YAP1, and physalin A affects the Hippo signaling pathway via reg-
ulation of the Hedgehog signaling pathway. A schematic illustration of the proposed
mechanism is presented in Figure 7B.
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Figure 5. Effect of physalin A on Hippo signaling pathway. (A) Physalin A decreased the total protein level of YAP1 in
breast mammospheres. Anti-YAP1 antibody was used for immunoblotting. (B) Treatment of MDA-MB-231 mammospheres
with physalin A decreased the cytosolic and nuclear protein level of YAP1. (C) Effect of YAP1 on mammosphere formation
using YAP1 small interfering RNA (siRNA). siRNA-transfected cancer cells were incubated for 5 days with a complete
Mammocults medium, and mammosphere formation efficiency (MFE) was calculated. (D) Physalin A treatment reduced
Hippo signaling-related YAP1 gene expression in the mammospheres derived from MDA-MB-231 cells. (E) After transfection
of YAP1 siRNA, the total RNA was extracted from breast cancer cells. The transcript levels of c-myc, Oct4, Nanog, and Sox2
were measured by RT-qPCR using specific primers. β-actin was used as the internal control. Representative Western blot
images of triplicate experiments are shown as mean ± SD. * p < 0.05, ** p < 0.01 vs. DMSO-treated control.
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Figure 6. Down-regulation of YAP1 by knockdown of GLI1. (A) Effect of down-regulation of GLI1 on YAP1 gene expression.
MDA-MB-231 cells were transfected with siRNA of GLI1. After extraction of protein, the transcript level of YAP1 was
assessed. (B) Effect of down-regulation of GLI1 on YAP1 protein expression. MDA-MB-231 cells were transfected with
siRNA of GLI1. After extraction of protein, the protein levels of YAP1 were assessed. (C) The cytosolic and nuclear protein
levels of YAP1 were also decreased in cells transfected with siRNA of GLI1. Representative Western blot images of triplicate
experiments are shown as mean ± SD. ** p < 0.01 vs. DMSO-treated control.

1 
 

 

Figure 7. Relationship between GLI1 and YAP1 and the proposed model for physalin A-induced CSC death. (A) Scatter-plot
of GLI1 and YAP1 expression in breast cancer patients (based on publicly available TCGA data). Spearman’s correlation
coefficient and p-values are shown in this analysis. (B) The proposed schema suggests that physalin A regulates the
canonical Hedgehog signaling pathway, induces down-regulation of YAP1, and inhibits BCSC. GLI1 also regulates the
expression of YAP1. Inhibition of GLI1 and YAP1 contributes to the inhibition of BCSC formation.

3. Discussion

Breast cancer is the most malignant cancer in women [32]. Triple-negative breast cancer
(TNBC) lacks estrogen receptor, progesterone receptor, and HER2 expression and TNBC
patients have a higher rate of relapse and a poorer prognosis than other breast cancer
patients [3]. Triple-negative breast cancer (TNBC) is typically challenging to treat [33].
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TNBC is associated with chemotherapeutic failure and poor prognosis [34,35]. BCSCs are a
key determinant of tumor heterogeneity and contribute to the induction of chemoresistance
and metastasis [36]. Additionally, BCSCs are responsible for cancer progression, recurrence,
and therapeutic resistance [37]. CD44high/CD24low and ALDH1 expressions, which are
biomarkers of BCSCs, can be regulated during CSC progression [38]. An increasing
body of evidence suggests that targeting breast CSCs is a viable therapeutic strategy for
breast cancer.

This study aimed to understand the mechanism of action of physalin A derived from
the natural product in BCSCs. There is a growing interest in identifying compounds
with anticancer potential from herbs and many natural products that are clinically used
for chemotherapies. For example, vincristine, irinotecan, etoposide, and paclitaxel are
representative compounds derived from plants, which are used in cancer therapy [39].
Physalins, a type of steroids are the characteristic constituents of Physalis alkekengi L Physalis
are traditionally used in China for the treatment and prevention of tumors.

Physalin A is a steroidal compound. Steroids are widely used in cancer therapy
and have been known to possess an anti-cancer effect. For instance, Ciclesonide, a kind
of glucocorticoid, inhibits the formation of BCSCs via the GR/YAP pathway [40] and
the lung cancer stem cells via the Hedgehog/Sox2 signaling pathway [41]. A steroidal
lactone, withaferin A, induces Par-4-dependent apoptosis in prostate cancer cells [42]. In
our study, physalin A inhibited the proliferation of breast cancer cells and the formation
of mammospheres (Figure 1). Physalin A also induced apoptosis of BCSCs (Figure 3).
Physalin A decreased the BCSC biomarkers (such as CD44high/CD24low and ALDH1) and
reduced the transcriptional levels of CSC-specific genes such as Oct4, CD44, Sox2, c-myc,
and Nanog (Figures 2 and 3). Our data show the inhibitory effect of physalin A on BCSCs.

Hedgehog signaling pathway effectors such as SMO and GLI, are essential for cancer
progression. Inhibition of Hedgehog signaling enhanced the delivery of chemotherapy
in a mouse model of pancreatic cancer [43]. Inhibition of sonic Hedgehog ligand activity
inhibits the growth of small cell lung cancer lines expressing Shh and GLI, but not that
of non-small cell lung cancer lacking expression of both Shh and GLI [44]. NF-κB up-
regulation is responsible for Shh overexpression which induces breast carcinogenesis [45].
The Hedgehog signaling pathway is a critical mechanism in breast cancer cells [46–49].
Additionally, Hedgehog signaling and Bmi-1 regulate the self-renewal of BCSCs [50]. An
agonist of the A3 adenosine receptor was shown to inhibit the survival of BCSCs via
the GLI1/ERK pathway [51]. In our study, physalin A inhibited the formation of BCSCs
through down-regulating canonical Hedgehog signaling effectors such as SMO and GLI1.
Silencing of SMO and GLI1 using specific siRNAs reduced the size as well as the number of
mammospheres. Moreover, GLI1 knockdown decreased the mRNA levels of CSC marker
genes, Oct4, Nanog, and Sox2 (Figure 4). These findings indicate that the main effectors
of the Hedgehog signaling pathway play a vital role in the maintenance of BCSCs. Some
studies have demonstrated the crosstalk of the Hedgehog signaling pathway with various
oncogenic pathways. In melanomas, the Hedgehog signaling is regulated by the interaction
between GLI1 and RAS-MEK/AKT pathway [52]. PI3K/AKT plays an important role
in Hedgehog-dependent tumors [53]. Targeting the crosstalk between major oncogenic
signaling pathways is an essential step to improve the anticancer therapeutic efficacy [54].
Hedgehog is related to CYR61 which is the target gene of the YAP/TAZ complex [55]. As
shown in Figures 5 and 6, we examined the crosstalk between Hedgehog signaling and
Hippo signaling. GLI1 down-regulation using siRNA reduced the mRNA and protein
expressions of YAP1. Physalin A also reduced the level of YAP1. Knockdown of YAP1
affected the expressions of CSC-related genes (Sox2 and Oct4) and the formation of BCSCs.
TAZ/YAP activity is also important for the maintenance of BCSCs. TAZ is required for
metastasis and chemoresistance of BCSCs [30]. YAP1 protein was shown to be associated
with outcomes in patients with luminal A breast cancer [56]. These findings indicate that a
better understanding of the crosstalk between these pathways may be shown as potential
therapeutic strategies against BCSCs.
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Physalin A can inhibit BCSCs via regulation of mammosphere formation and growth,
colony formation, and cell migration. Physalin A also inhibits the Hedgehog and Hippo
signaling pathway. Our data showed that GLI1 regulates the protein and mRNA ex-
pressions of YAP1. These findings suggest that BCSCs are inhibited via inhibition of
SMO/GLI1/YAP1 signaling. Our data showed that physalin A is a potential agent for
BCSC therapy.

4. Materials and Methods
4.1. Cell and Mammosphere Culture

TNBC cells (MDA-MB-231, MDA-MB-453, and HCC-1937) and non-TNBC cells (MCF-
7) were obtained from the American Type Culture Collection (Rockville, MD, USA) were
cultured in Dulbecco’s modified Eagle’s medium (Gibco, Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with 10% fetal bovine serum (Gibco, Thermo Fisher Scientific)
and 1% penicillin/streptomycin (Gibco, Thermo Fisher Scientific). The four breast cancer
cell lines, MDA-MB-231 (1 × 104), MDA-MB-453 (2 × 104), HCC-1937 (4 × 104) and MCF-7
(4 × 104) were cultured in ultralow attachment 6-well plates with MammoCult™ culture
medium (STEMCELL Technologies, Vancouver, BC, Canada) supplemented with 4 µg/mL
heparin, 0.48 µg/mL hydrocortisone, 100 U/mL penicillin, and 100 µg/mL streptomycin.
All cells were incubated in a humidified 5% CO2 incubator at 37 ◦C. After one week of
culture, the formation of mammospheres was assessed by obtaining images using a scanner
(Epson Perfection V700 PHOTO, Epson, Tokyo, Japan). For counting, regions of interest
(ROIs) were created by choosing the desired number of rows and columns (e.g., 2 × 3 for a
6-well plate), and individual ROIs were defined by moving and resizing the provided ROI
shapes after selecting the elliptical setting in the NICE program. The background signal
of the images was negated using thresholding algorithms, and the selected images were
automatically counted. Mammospheres were counted using the NIST’s integrated colony
enumerator (NICE) program and assessed as mammosphere formation efficiency (MFE, %
of control) [57].

4.2. Antibodies and Small Interfering RNAs (siRNAs)

Anti-GLI1 and anti-GLI2 antibodies were purchased from Cell Signaling Technology
(Danvers, MA, USA). Anti-β-actin and anti-Lamin B antibodies were purchased from Santa
Cruz Biotechnology (Dallas, TX, USA). Anti-SMO antibody was purchased from Bioss
(Woburn, MA, USA). Anti-YAP1 antibody was obtained from FineTest® (Wuhan, Hubei,
China). Human SMO-, GLI1-, and YAP1-specific siRNAs were purchased from Bioneer
(Daejeon, Korea).

4.3. Cell Proliferation Assay

MDA-MB-231, MDA-MB-453, HCC-1937, and MCF-7 cells were cultured in a 96-well
plate for 24 h and treated with various concentrations (0, 10, 20, 40, 60, 80, and 100 µM)
of physalin A (ChemFaces Co., Hubei, China) for 1 day in cell culture medium. Then,
cell proliferation assay was performed using CellTiter 96® Aqueous One Solution cell kit
(Promega, Madison, WI, USA). We mixed DMEM and aqueous one solution in the ratio of
five to one added 100 µL of the mixture to each well and incubated the plate in a 5% CO2
incubator at 37 ◦C for 2 h. The OD490 was measured using a Versa Max ELISA microplate
reader (Molecular Devices, San Jose, CA, USA).

4.4. Colony Formation Assay

For colony formation assay, the two breast cancer cell lines were cultured in 6-well
plates at a density of 2 × 103/well and treated with/without 40 µM physalin A at 37 ◦C
for 1 week. The colonies were washed three times with 1× phosphate-buffered saline
(PBS), fixed for 10 min using 3.9% formaldehyde, and stained for 1 h with 0.04% crystal
violet. The colonies were washed twice with distilled water and dried. The images were
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acquired by a scanner (Epson). The number of colonies was counted with the NICE
software program [58].

4.5. Migration Assay

MDA-MB-231 and MCF-7 cells with 2 × 106 cells/plate were cultured in a 6-well
plate. After 1 day, the cells were scratched using a microtip. The cells were washed twice
with 1× PBS and treated with/without 40 µM physalin A. The plate was placed in the
LionheartTM, previously set to 37 ◦C and 5% CO2. First, we selected the scratched areas for
obtaining images. Then, imaging of these areas was performed every 30 min over a 12 h
period using 4× objective. High contrast bright-field images of the migrated areas were
captured using a microscope (Lionheart, Biotek, Winooski, VT, USA) at the Jeju Center of
Korea Basic Science Institute (KBSI, core-facility center).

4.6. Flow Cytometry Analysis and Aldehyde Dehydrogenase (ALDH1) Activity Assay

MDA-MB-231 cells (1 × 106 cells) were seeded in a 6-well plate for 24 h and treated
with DMSO as the control or 20 µM physalin A for 24 h. After treatment with/without
20 µM physalin A for 1 day, cancer cells were detached by using 1× trypsin/EDTA. The
detached cells were washed with 1× activated cell sorting (FACS) buffer. A total of
1 × 106 cells were suspended with 100 µL of 1× FACS buffer and 10 µL of FITC-conjugated
anti-human CD44 and phycoerythrin (PE)-conjugated anti-human CD24 (BD, San Jose, CA,
USA) were added to each sample. After incubating on ice for 20 min, the samples were
washed twice with 1× FACS buffer, and then analyzed using an Accuri C6 flow cytometer
(BD, San Jose, CA, USA). The ALDH1 assay was performed using an ALDEFLUORTM

assay kit (STEMCELL Technologies). The active reagent boron-dipyrromethene (BODIPY)-
aminoacetaldehyde was added to each sample, which converts the reagent to fluorescent
BODIPY-aminoacetate via ALDH. The ALDH inhibitor diethylaminobenzaldehyde (DEAB)
was used as a negative control. MDA-MB-231 cells were treated with/without 20 µM
physalin A for 24 h, and then trypsinized for detachment from the plate. After washing
with ALDEFLUORTM assay buffer as per the manufacturer’s instructions, the proportion
of ALDH1-positive cells was assayed using an Accuri C6 flow cytometer [59].

4.7. Annexin V/PI Assay and Analysis of CSC Apoptosis

Mammospheres of MDA-MB-231 cancer cells were cultured in an ultralow attachment
6-well plate for 5 days and treated with/without 10 µM physalin A for 2 days. Subsequently,
the cells were harvested, dissociated, and incubated with FITC-Annexin V/PI for 30 min at
4 ◦C. Apoptotic cells were analyzed by the FITC-Annexin V/PI staining method according
to the manufacturer’s instructions (BD). The stained samples were assayed using a flow
cytometer (Accuri C6).

4.8. Gene Expression Analysis

Total RNA was isolated from MDA-MB-231 mammospheres. RT-qPCR was performed
using a TOPrealTM One-Step RT-qPCR kit (SYBR Green with low ROX) (Enzynomics,
Daejeon, Korea) according to the manufacturer’s instructions. We prepared RT-qPCR
mixture containing TOPrealTM One-step RT-qPCR Enzyme MIX 1 µL, 2× TOPrealTM One-
step RT-qPCR Reaction MIX (with low ROX) 10 µL, RNA template (100 ng/µL) 2 µL,
specific primers-F (10 pmol/µL) 2 µL, specific primers-R (10 pmol/µL) 2 µL, and RNase-
free sterile water 3 µL in each sample. The relative transcript expression levels of the target
genes were analyzed using the comparative CT method [60]. The specific primers used are
listed in Table S1. The β-actin gene was used as an internal control.

4.9. Immunoblot Analysis

Protein extracts of cancer cells treated with/without physalin A were isolated from
MDA-MB-231 and MCF-7 breast cancer cells and mammospheres. Mammospheres of
MDA-MB-231 and MCF-7 cells were cultured in an ultralow attachment 6-well plate for



Int. J. Mol. Sci. 2021, 22, 8718 13 of 16

5 days and treated with physalin A for 2 days. After washing twice with 1× PBS, the cell
pellets were resuspended in lysis buffer. For extraction of total protein, the cell pellets
were suspended with radio-immunoprecipitation assay (RIPA) buffer (Thermo Fisher
Scientific, Rockford, IL, USA) supplemented with 10 mM protease inhibitor, 10 mM sodium
fluoride (NaF), and 10 mM sodium vanadate. The samples were incubated on ice for
30 min and then micro-centrifuged at 14,000× g for 15 min. The resulting supernatant
contained the total proteins. For extraction of cytosolic and nucleic protein, we followed
the previously described method [58]. The washed cell pellets were resuspended in buffer
A (pH 7.9 of 10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.05% NP-40, 0.5 mM DTT,
10 mM protease inhibitor, 10 mM NaF, and 10 mM sodium vanadate) and the lysates were
micro-centrifuged at 10,000× g for 5 min. The supernatant contains the cytosolic protein
and the resulting pellet contains the nucleus. The nuclear pellet was dissolved with RIPA
buffer with 10 mM protease inhibitor, 10 mM NaF, and 10 mM sodium vanadate. The
samples were placed on ice for 30 min and then micro-centrifuged at 14,000× g for 15 min.
The resulting supernatant contains the nucleic protein. The proteins were separated using
8% or 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel,
which was conducted using a tris-glycine buffer. Separated proteins were transferred
to polyvinylidene fluoride (PVDF) membranes (Millipore, Burlington, MA, USA). The
membranes were incubated with Odyssey blocking buffer at room temperature for 1 h
and then incubated overnight with primary antibodies at 4 ◦C. On the next day, the PVDF
membranes were washed thrice with PBS-Tween 20 (0.1%, v/v), and incubated with IRDye
680RD- and IRDye 800W-conjugated secondary antibodies for 1 h at room temperature. The
signals were detected using an Odyssey CLx imaging system (LI-COR, Lincoln, NE, USA).

4.10. Small Interfering RNA (siRNA)

MDA-MB-231 cells were seeded in a 6-well plate at a density of 1.0 × 106 cells/plate.
To examine the effect of SMO, GLI1, and YAP1 on mammosphere formation, the cells
were transfected with siRNAs targeting the human SMO, GLI1, and YAP1 genes. The
SMO siRNA (NM_005631.4), GLI1 siRNA (NM_005269.2), YAP1 siRNA (NM_006106.4),
and a scrambled siRNA were obtained from Bioneer. Lipofectamine® 3000 (Thermo
Scientific) was used to transfect siRNAs according to the manufacturer’s instructions.
MDA-MB-231 cells were cultured until the achievement of 70% confluence. We diluted
4 µL of Lipofectamine® 3000 reagent in 125 µL of Opti-Minimal Essential Medium (MEM)®

medium and prepared a master mix of siRNAs by diluting 5 µg of siRNAs in 125 µL of
Opti-MEM® medium in each tube. Subsequently, we mixed the diluted Lipofectamine®

3000 reagent and diluted siRNAs (for control, only Opti-MEM® and diluted Lipofectamine®

3000 were mixed with a scrambled siRNA) and incubated it for 15 min at room temperature.
The siRNA-lipid complex was added to each well and the cells were incubated for 2–4 days
at 37 ◦C. The protein expressions of SMO, GLI1, and YAP1 were determined by Western
blot analysis.

4.11. Statistical Analysis

All variables are expressed as mean ± standard deviation (SD) values from three
independent experiments. One-way ANOVA was used for statistical analysis. Data
analysis was performed using GraphPad Prism 8.0 software (GraphPad Software Inc.,
San Diego, CA, USA).

5. Conclusions

In this study, physalin A inhibited the formation of BCSCs and decreased the transcript
levels of BCSC-related genes (Oct4, CD44, Sox2, c-myc, and Nanog). Physalin A also reduced
the CD44high/CD24low and ALDH1-expressing subpopulations. In BCSCs, this compound
was found to inhibit the Hedgehog signaling pathway, especially the important effectors
such as SMO and GLI. The significant effector of the Hippo pathway, YAP, was decreased
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by physalin A and siRNA of GLI1. Our findings suggest that physalin A regulates the
Hedgehog/Hippo signaling pathway and can be a potential agent targeting BCSCs.

Supplementary Materials: The following data are available online at https://www.mdpi.com/
article/10.3390/ijms22168718/s1. The Specific real-time RT-qPCR primer sequences are described in
Table S1. Cell viability and mammosphere formation efficiency of another TNBC cell line (HCC-1937)
are shown in Figure S1. The western blot data of MCF-7 mammospheres are shown in Figure S2.

Author Contributions: H.S.C. and Y.-C.K. designed this study and participated in all the experiments.
H.S.C. and Y.-C.K. wrote the manuscript. R.L. helped design and perform the experiments. D.-S.L.
supervised the study. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A03012862
and NRF-2020R1A2C1006316). This research was supported by the National University Develop-
ment Project funded by the Ministry of Education (Korea) and the National Research Foundation of
Korea (2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available within the article. Other
data that support the findings of this study are available upon request from the corresponding
authors.

Acknowledgments: We thank the Korea Basic Science Institute (National Research Facilities and
Equipment Center) grant fund from the Ministry of Education, Korea (Grant no. 2020R1A6C101A188).
This research was supported by the Program of the National Research Foundation of Korea through
the Ministry of Education. This research was supported by the 2020 scientific promotion program
funded by Jeju National University.

Conflicts of Interest: There are no conflict of interest to declare.

References
1. Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016, 293, 247–269. [CrossRef]

[PubMed]
2. Gucalp, A.; Traina, T.A. Triple-Negative Breast Cancer: Adjuvant Therapeutic Options. Chemother. Res. Pract. 2011, 2011, 1–13.

[CrossRef]
3. Vagia, E.; Mahalingam, D.; Cristofanilli, M. The Landscape of Targeted Therapies in TNBC. Cancers 2020, 12, 916. [CrossRef]

[PubMed]
4. Ricardo, S.; Vieira, A.; Gerhard, R.; Leitão, D.; Pinto, R.; Cameselle-Teijeiro, J.F.; Milanezi, F.; Schmitt, F.; Paredes, J. Breast cancer

stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 2011, 64,
937–946. [CrossRef]

5. Zhang, X.; Powell, K.; Li, L. Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms,
Cellular Origin, and Beyond. Cancers 2020, 12, 3765. [CrossRef] [PubMed]

6. Engebraaten, O.; Vollan, H.K.M.; Børresen-Dale, A.-L. Triple-Negative Breast Cancer and the Need for New Therapeutic Targets.
Am. J. Pathol. 2013, 183, 1064–1074. [CrossRef] [PubMed]

7. He, H.; Zang, L.-H.; Feng, Y.-S.; Wang, J.; Liu, W.-W.; Chen, L.-X.; Kang, N.; Tashiro, S.-I.; Onodera, S.; Qiu, F.; et al. Physalin A
Induces Apoptotic Cell Death and Protective Autophagy in HT1080 Human Fibrosarcoma Cells. J. Nat. Prod. 2013, 76, 880–888.
[CrossRef]

8. Tian, Y.-Q.; Ding, P.; Yan, X.-H.; Hu, W.-J. Discussion on quality control of preparations with cortex moutan in volume I
pharmacopoeia of People’s Republic of China (2005 edition). China J. Chin. Mater. Med. 2008, 33, 339–341.

9. Huang, M.; He, J.-X.; Hu, H.-X.; Zhang, K.; Wang, X.-N.; Zhao, B.-B.; Lou, H.-X.; Ren, D.-M.; Shen, T. Withanolides from the genus
Physalis: A review on their phytochemical and pharmacological aspects. J. Pharm. Pharmacol. 2020, 72, 649–669. [CrossRef]

10. Shin, J.M.; Lee, K.-M.; Lee, H.J.; Yun, J.H.; Nho, C.W. Physalin A regulates the Nrf2 pathway through ERK and p38 for induction
of detoxifying enzymes. BMC Complement. Altern. Med. 2019, 19, 1–9. [CrossRef] [PubMed]

11. Lin, Y.-H.; Hsiao, Y.-H.; Ng, K.-L.; Kuo, Y.-H.; Lim, Y.-P.; Hsieh, W.-T. Physalin A attenuates inflammation through down-
regulating c-Jun NH2 kinase phosphorylation/Activator Protein 1 activation and up-regulating the antioxidant activity. Toxicol.
Appl. Pharmacol. 2020, 402, 115115. [CrossRef] [PubMed]

12. Wang, L.; Gu, J.; Zong, M.; Zhang, Q.; Li, H.; Li, D.; Mou, X.; Liu, P.; Liu, Y.; Qiu, F.; et al. Anti-inflammatory action of physalin A
by blocking the activation of NF-κB signaling pathway. J. Ethnopharmacol. 2021, 267, 113490. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms22168718/s1
https://www.mdpi.com/article/10.3390/ijms22168718/s1
http://doi.org/10.1007/s00404-015-3859-y
http://www.ncbi.nlm.nih.gov/pubmed/26341644
http://doi.org/10.1155/2011/696208
http://doi.org/10.3390/cancers12040916
http://www.ncbi.nlm.nih.gov/pubmed/32276534
http://doi.org/10.1136/jcp.2011.090456
http://doi.org/10.3390/cancers12123765
http://www.ncbi.nlm.nih.gov/pubmed/33327542
http://doi.org/10.1016/j.ajpath.2013.05.033
http://www.ncbi.nlm.nih.gov/pubmed/23920327
http://doi.org/10.1021/np400017k
http://doi.org/10.1111/jphp.13209
http://doi.org/10.1186/s12906-019-2511-y
http://www.ncbi.nlm.nih.gov/pubmed/31072358
http://doi.org/10.1016/j.taap.2020.115115
http://www.ncbi.nlm.nih.gov/pubmed/32634518
http://doi.org/10.1016/j.jep.2020.113490
http://www.ncbi.nlm.nih.gov/pubmed/33091501


Int. J. Mol. Sci. 2021, 22, 8718 15 of 16

13. Kang, N.; Jian, J.-F.; Cao, S.-J.; Zhang, Q.; Mao, Y.-W.; Huang, Y.-Y.; Peng, Y.-F.; Qiu, F.; Gao, X.-M. Physalin A induces G2/M
phase cell cycle arrest in human non-small cell lung cancer cells: Involvement of the p38 MAPK/ROS pathway. Mol. Cell. Biochem.
2016, 415, 145–155. [CrossRef]

14. Han, H.; Qiu, L.; Wang, X.; Qiu, F.; Wong, Y.; Yao, X. Physalins A and B Inhibit Androgen-Independent Prostate Cancer Cell
Growth through Activation of Cell Apoptosis and Downregulation of Androgen Receptor Expression. Biol. Pharm. Bull. 2011, 34,
1584–1588. [CrossRef]

15. Varjosalo, M.; Taipale, J. Hedgehog: Functions and mechanisms. Genes Dev. 2008, 22, 2454–2472. [CrossRef]
16. Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The role of the Hedgehog signaling pathway in cancer: A

comprehensive review. Bosn. J. Basic Med. Sci. 2018, 18, 8–20. [CrossRef]
17. Briscoe, J.; Therond, P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol.

2013, 14, 416–429. [CrossRef]
18. Jiang, J.; Hui, C.-C. Hedgehog Signaling in Development and Cancer. Dev. Cell 2008, 15, 801–812. [CrossRef]
19. Murone, M.; Rosenthal, A.; de Sauvage, F.J. Hedgehog Signal Transduction: From Flies to Vertebrates. Exp. Cell Res. 1999, 253,

25–33. [CrossRef]
20. Schwalbe, E.; Lindsey, J.; Straughton, D.; Hogg, T.L.; Cole, M.; Megahed, H.; Ryan, S.L.; Lusher, M.E.; Taylor, M.; Gilbertson, R.J.;

et al. Rapid Diagnosis of Medulloblastoma Molecular Subgroups. Clin. Cancer Res. 2011, 17, 1883–1894. [CrossRef]
21. Reifenberger, J.; Wolter, M.; Knobbe, C.B.; Köhler, B.; Schönicke, A.; Scharwächter, C.; Kumar, K.; Blaschke, B.; Ruzicka, T. Somatic

mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol. 2005, 152, 43–51.
[CrossRef]

22. Ma, Y.; Yu, W.; Shrivastava, A.; Srivastava, R.K.; Shankar, S. Inhibition of pancreatic cancer stem cell characteristics by α-Mangostin:
Molecular mechanisms involving Sonic hedgehog and Nanog. J. Cell. Mol. Med. 2019, 23, 2719–2730. [CrossRef]

23. Ma, Y.; Yu, W.; Shrivastava, A.; Alemi, F.; Lankachandra, K.; Srivastava, R.K.; Shankar, S. Sanguinarine inhibits pancreatic cancer
stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway. Carcinogenesis 2017,
38, 1047–1056. [CrossRef] [PubMed]

24. Justilien, V.; Walsh, M.P.; Ali, S.A.; Thompson, E.A.; Murray, N.R.; Fields, A.P. The PRKCI and SOX2 Oncogenes Are Coamplified
and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma. Cancer Cell 2014, 25, 139–151. [CrossRef]
[PubMed]

25. Clément, V.; Sánchez, P.; De Tribolet, N.; Radovanovic, I.; I Altaba, A.R. HEDGEHOG-GLI1 Signaling Regulates Human Glioma
Growth, Cancer Stem Cell Self-Renewal, and Tumorigenicity. Curr. Biol. 2007, 17, 192. [CrossRef]

26. Batsaikhan, B.E.; Yoshikawa, K.; Kurita, N.; Iwata, T.; Takasu, C.; Kashihara, H.; Shimada, M. Cyclopamine de-creased the
expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Res. 2014, 34, 6339–6344.

27. Cochrane, C.; Szczepny, A.; Watkins, D.N.; Cain, J.E. Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers 2015,
7, 1554–1585. [CrossRef] [PubMed]

28. Zheng, X.; Han, H.; Liu, G.; Ma, Y.; Pan, R.; Sang, L.; Li, R.; Yang, L.; Marks, J.R.; Wang, W.; et al. Lnc RNA wires up Hippo and
Hedgehog signaling to reprogramme glucose metabolism. EMBO J. 2017, 36, 3325–3335. [CrossRef]

29. Lai, D.; Ho, K.C.; Hao, Y.; Yang, X. Taxol Resistance in Breast Cancer Cells Is Mediated by the Hippo Pathway Component TAZ
and Its Downstream Transcriptional Targets Cyr61 and CTGF. Cancer Res. 2011, 71, 2728–2738. [CrossRef]

30. Bartucci, M.; Dattilo, R.; Moriconi, C.; Pagliuca, A.; Mottolese, M.; Federici, G.; Di Benedetto, A.; Todaro, M.; Stassi, G.; Sperati,
F.; et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 2015, 34, 681–690.
[CrossRef]

31. Kim, T.; Yang, S.-J.; Hwang, D.; Song, J.; Kim, M.; Kim, S.K.; Kang, K.; Ahn, J.; Lee, D.; Kim, M.-Y.; et al. A basal-like breast
cancer-specific role for SRF–IL6 in YAP-induced cancer stemness. Nat. Commun. 2015, 6, 10186. [CrossRef]

32. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer
incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [CrossRef]

33. Denkert, C.; Von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.;
et al. Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy With or Without Carboplatin in Human
Epidermal Growth Factor Receptor 2–Positive and Triple-Negative Primary Breast Cancers. J. Clin. Oncol. 2015, 33, 983–991.
[CrossRef]

34. Newman, L.A.; Kaljee, L.M. Health Disparities and Triple-Negative Breast Cancer in African American Women. JAMA Surg.
2017, 152, 485–493. [CrossRef] [PubMed]

35. Kaplan, H.G.; Malmgren, J.A. Impact of Triple Negative Phenotype on Breast Cancer Prognosis. Breast J. 2008, 14, 456–463.
[CrossRef] [PubMed]

36. De Angelis, M.; Francescangeli, F.; Zeuner, A. Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and
Relapse: New Challenges and Therapeutic Opportunities. Cancers 2019, 11, 1569. [CrossRef]

37. Cobaleda, C.; Cruz, J.J.; González-Sarmiento, R.; Sánchez-García, I.; Perez-Losada, J. The Emerging Picture of Human Breast
Cancer as a Stem Cell-based Disease. Stem Cell Rev. Rep. 2008, 4, 67–79. [CrossRef]

38. Arnaud da Cruz, P.; Lopes, C. Implications of Different Cancer Stem Cell Phenotypes in Breast Cancer. Anticancer Res. 2017, 37,
2173–2183.

http://doi.org/10.1007/s11010-016-2686-1
http://doi.org/10.1248/bpb.34.1584
http://doi.org/10.1101/gad.1693608
http://doi.org/10.17305/bjbms.2018.2756
http://doi.org/10.1038/nrm3598
http://doi.org/10.1016/j.devcel.2008.11.010
http://doi.org/10.1006/excr.1999.4676
http://doi.org/10.1158/1078-0432.CCR-10-2210
http://doi.org/10.1111/j.1365-2133.2005.06353.x
http://doi.org/10.1111/jcmm.14178
http://doi.org/10.1093/carcin/bgx070
http://www.ncbi.nlm.nih.gov/pubmed/28968696
http://doi.org/10.1016/j.ccr.2014.01.008
http://www.ncbi.nlm.nih.gov/pubmed/24525231
http://doi.org/10.1016/j.cub.2007.01.024
http://doi.org/10.3390/cancers7030851
http://www.ncbi.nlm.nih.gov/pubmed/26270676
http://doi.org/10.15252/embj.201797609
http://doi.org/10.1158/0008-5472.CAN-10-2711
http://doi.org/10.1038/onc.2014.5
http://doi.org/10.1038/ncomms10186
http://doi.org/10.1002/ijc.31937
http://doi.org/10.1200/JCO.2014.58.1967
http://doi.org/10.1001/jamasurg.2017.0005
http://www.ncbi.nlm.nih.gov/pubmed/28355428
http://doi.org/10.1111/j.1524-4741.2008.00622.x
http://www.ncbi.nlm.nih.gov/pubmed/18657139
http://doi.org/10.3390/cancers11101569
http://doi.org/10.1007/s12015-008-9012-6


Int. J. Mol. Sci. 2021, 22, 8718 16 of 16

39. da Rocha, A.B.; Lopes, R.M.; Schwartsmann, G. Natural products in anticancer therapy. Curr. Opin. Pharmacol. 2001, 1, 364–369.
[CrossRef]

40. Kim, S.-L.; Choi, H.S.; Kim, J.-H.; Lee, D.-S. The Antiasthma Medication Ciclesonide Suppresses Breast Cancer Stem Cells through
Inhibition of the Glucocorticoid Receptor Signaling-Dependent YAP Pathway. Molecules 2020, 25, 6028. [CrossRef]

41. Choi, H.S.; Kim, S.-L.; Kim, J.-H.; Lee, D.-S. The FDA-Approved Anti-Asthma Medicine Ciclesonide Inhibits Lung Cancer Stem
Cells through Hedgehog Signaling-Mediated SOX2 Regulation. Int. J. Mol. Sci. 2020, 21, 1014. [CrossRef]

42. Srinivasan, S.; Ranga, R.S.; Burikhanov, R.; Han, S.-S.; Chendil, D. Par-4-Dependent Apoptosis by the Dietary Compound
Withaferin A in Prostate Cancer Cells. Cancer Res. 2006, 67, 246–253. [CrossRef]

43. Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell,
M.E.; Allard, D.; et al. Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic
Cancer. Science 2009, 324, 1457–1461. [CrossRef]

44. Watkins, D.N.; Berman, D.M.; Burkholder, S.G.; Wang, B.; Beachy, P.A.; Baylin, S.B. Hedgehog signalling within airway epithelial
progenitors and in small-cell lung cancer. Nat. Cell Biol. 2003, 422, 313–317. [CrossRef]

45. Cui, W.; Wang, L.-H.; Wen, Y.-Y.; Song, M.; Li, B.-L.; Chen, X.-L.; Xu, M.; An, S.-X.; Zhao, J.; Lu, Y.-Y.; et al. Expression and
regulation mechanisms of Sonic Hedgehog in breast cancer. Cancer Sci. 2010, 101, 927–933. [CrossRef] [PubMed]

46. Sterling, J.A.; Oyajobi, B.O.; Grubbs, B.; Padalecki, S.S.; Munoz, S.A.; Gupta, A.; Story, B.; Zhao, M.; Mundy, G.R. The Hedgehog
Signaling Molecule Gli2 Induces Parathyroid Hormone-Related Peptide Expression and Osteolysis in Metastatic Human Breast
Cancer Cells. Cancer Res. 2006, 66, 7548–7553. [CrossRef]

47. Kwon, Y.-J.; Hurst, D.; Steg, A.D.; Yuan, K.; Vaidya, K.S.; Welch, D.; Frost, A.R. Gli1 enhances migration and invasion via
up-regulation of MMP-11 and promotes metastasis in ERα negative breast cancer cell lines. Clin. Exp. Metastasis 2011, 28, 437–449.
[CrossRef]

48. Han, B.; Qu, Y.; Jin, Y.; Yu, Y.; Deng, N.; Wawrowsky, K.; Zhang, X.; Li, N.; Bose, S.; Wang, Q.; et al. FOXC1 Activates
Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer. Cell Rep. 2015, 13, 1046–1058. [CrossRef]

49. Di Mauro, C.; Rosa, R.; D’Amato, V.; Ciciola, P.; Servetto, A.; Marciano, R.; Orsini, R.C.; Formisano, L.; De Falco, S.; Cicatiello, V.;
et al. Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers. Br. J. Cancer 2017, 116, 1425–1435.
[CrossRef]

50. Liu, S.; Dontu, G.; Mantle, I.D.; Patel, S.; Ahn, N.-S.; Jackson, K.W.; Suri, P.; Wicha, M.S. Hedgehog Signaling and Bmi-1 Regulate
Self-renewal of Normal and Malignant Human Mammary Stem Cells. Cancer Res. 2006, 66, 6063–6071. [CrossRef]

51. Jafari, S.M.; Panjehpour, M.; Aghaei, M.; Joshaghani, H.R.; Enderami, S.E. A3 Adenosine Receptor Agonist Inhibited Survival of
Breast Cancer Stem Cells via GLI-1 and ERK1/2 Pathway. J. Cell. Biochem. 2017, 118, 2909–2920. [CrossRef]

52. Stecca, B.; Mas, C.; Clement, V.; Zbinden, M.; Correa-Rocha, R.; Piguet, V.; Beermann, F.; i Altaba, A.R. Melanomas require
HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci.
USA 2007, 104, 5895–5900. [CrossRef]

53. Riobo, N.A.; Lu, K.; Ai, X.; Haines, G.M.; Emerson, C.P. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog
signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 4505–4510. [CrossRef]

54. Pandolfi, S.; Stecca, B. Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: Implications
for cancer therapy. Expert Rev. Mol. Med. 2015, 17, e5. [CrossRef] [PubMed]

55. Harris, L.G.; Pannell, L.K.; Singh, S.; Samant, R.S.; A Shevde, L. Increased vascularity and spontaneous metastasis of breast cancer
by hedgehog signaling mediated upregulation of cyr61. Oncogene 2011, 31, 3370–3380. [CrossRef]

56. Lehn, S.; Tobin, N.P.; Sims, A.H.; Stål, O.; Jirström, K.; Axelson, H.; Landberg, G. Decreased expression of Yes-associated protein
is associated with outcome in the luminal A breast cancer subgroup and with an impaired tamoxifen response. BMC Cancer 2014,
14, 119. [CrossRef]

57. Kim, J.-H.; Choi, H.S.; Kim, S.-L.; Lee, D.-S. The PAK1-Stat3 Signaling Pathway Activates IL-6 Gene Transcription and Human
Breast Cancer Stem Cell Formation. Cancers 2019, 11, 1527. [CrossRef]

58. Ko, Y.-C.; Choi, H.S.; Kim, J.-H.; Kim, S.-L.; Yun, B.-S.; Lee, D.-S. Coriolic Acid (13-(S)-Hydroxy-9Z, 11E-octadecadienoic Acid)
from Glasswort (Salicornia herbacea L.) Suppresses Breast Cancer Stem Cell through the Regulation of c-Myc. Molecules 2020,
25, 4950. [CrossRef]

59. Choi, H.S.; Kim, S.-L.; Kim, J.-H.; Deng, H.-Y.; Yun, B.-S.; Lee, D.-S. Triterpene Acid (3-O-p-Coumaroyltormentic Acid) Isolated
From Aronia Extracts Inhibits Breast Cancer Stem Cell Formation through Downregulation of c-Myc Protein. Int. J. Mol. Sci. 2018,
19, 2528. [CrossRef]

60. Choi, H.S.; Kim, J.; Kim, S.; Deng, H.; Lee, D.; Kim, C.S.; Yun, B.; Lee, D. Catechol derived from aronia juice through lactic acid
bacteria fermentation inhibits breast cancer stem cell formation via modulation Stat3/IL-6 signaling pathway. Mol. Carcinog.
2018, 57, 1467–1479. [CrossRef]

http://doi.org/10.1016/S1471-4892(01)00063-7
http://doi.org/10.3390/molecules25246028
http://doi.org/10.3390/ijms21031014
http://doi.org/10.1158/0008-5472.CAN-06-2430
http://doi.org/10.1126/science.1171362
http://doi.org/10.1038/nature01493
http://doi.org/10.1111/j.1349-7006.2010.01495.x
http://www.ncbi.nlm.nih.gov/pubmed/20180807
http://doi.org/10.1158/0008-5472.CAN-06-0452
http://doi.org/10.1007/s10585-011-9382-z
http://doi.org/10.1016/j.celrep.2015.09.063
http://doi.org/10.1038/bjc.2017.116
http://doi.org/10.1158/0008-5472.CAN-06-0054
http://doi.org/10.1002/jcb.25945
http://doi.org/10.1073/pnas.0700776104
http://doi.org/10.1073/pnas.0504337103
http://doi.org/10.1017/erm.2015.3
http://www.ncbi.nlm.nih.gov/pubmed/25660620
http://doi.org/10.1038/onc.2011.496
http://doi.org/10.1186/1471-2407-14-119
http://doi.org/10.3390/cancers11101527
http://doi.org/10.3390/molecules25214950
http://doi.org/10.3390/ijms19092528
http://doi.org/10.1002/mc.22870

	Introduction 
	Results 
	Physalin A Inhibits the Proliferation of MDA-MB-231, MDA-MB-453, HCC-1937, and MCF-7 Breast Cancer Cells and Mammosphere Formation 
	Physalin A Decreases the CD44high/CD24low and ALDH1-Expressing Subpopulations 
	Physalin A Induces BCSC Apoptosis and Inhibits CSC-Specific Gene Transcription and Growth of Mammospheres 
	Physalin A Regulates the Canonical Hedgehog Signaling Pathway 
	Physalin A Inhibits the Hippo Signaling Pathway Which Is Regulated by GLI1 

	Discussion 
	Materials and Methods 
	Cell and Mammosphere Culture 
	Antibodies and Small Interfering RNAs (siRNAs) 
	Cell Proliferation Assay 
	Colony Formation Assay 
	Migration Assay 
	Flow Cytometry Analysis and Aldehyde Dehydrogenase (ALDH1) Activity Assay 
	Annexin V/PI Assay and Analysis of CSC Apoptosis 
	Gene Expression Analysis 
	Immunoblot Analysis 
	Small Interfering RNA (siRNA) 
	Statistical Analysis 

	Conclusions 
	References

