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The muscarinic acetylcholine type 1 receptor (M1R) is a metabotropic G protein-coupled
receptor. Knockout of M1R or exposure to selective or specific receptor antagonists
elevates neurite outgrowth in adult sensory neurons and is therapeutic in diverse
models of peripheral neuropathy. We tested the hypothesis that endogenous M1R
activation constrained neurite outgrowth via a negative impact on the cytoskeleton
and subsequent mitochondrial trafficking. We overexpressed M1R in primary cultures
of adult rat sensory neurons and cell lines and studied the physiological and
molecular consequences related to regulation of cytoskeletal/mitochondrial dynamics
and neurite outgrowth. In adult primary neurons, overexpression of M1R caused
disruption of the tubulin, but not actin, cytoskeleton and significantly reduced neurite
outgrowth. Over-expression of a M1R-DREADD mutant comparatively increased neurite
outgrowth suggesting that acetylcholine released from cultured neurons interacts
with M1R to suppress neurite outgrowth. M1R-dependent constraint on neurite
outgrowth was removed by selective (pirenzepine) or specific (muscarinic toxin 7)
M1R antagonists. M1R-dependent disruption of the cytoskeleton also diminished
mitochondrial abundance and trafficking in distal neurites, a disorder that was also
rescued by pirenzepine or muscarinic toxin 7. M1R activation modulated cytoskeletal
dynamics through activation of the G protein (Gα13) that inhibited tubulin polymerization
and thus reduced neurite outgrowth. Our study provides a novel mechanism of
M1R control of Gα13 protein-dependent modulation of the tubulin cytoskeleton,
mitochondrial trafficking and neurite outgrowth in axons of adult sensory neurons.
This novel pathway could be harnessed to treat dying-back neuropathies since
anti-muscarinic drugs are currently utilized for other clinical conditions.
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INTRODUCTION

Muscarinic acetylcholine receptors constitute a sub-family of
G protein-coupled receptors (GPCRs) that act as metabotropic
activators of the neurotransmitter acetylcholine (ACh). Five
distinct subtypes have been identified (M1-M5), based
on their G-protein coupling preferences (Wess, 1996).
Downstream pathways activated include phospholipase C,
inositol triphosphate (IP3), cyclic adenosine monophosphate
(cAMP) and altered calcium homeostasis (Eglen, 2005; Wess
et al., 2007; Kruse et al., 2014). In addition, these GPCRs
modulate the cytoskeleton through trimeric G protein signaling
(Kapitein and Hoogenraad, 2015). For example, α and βγ

subunits of heterotrimeric G proteins modulate microtubule
assembly (Roychowdhury and Rasenick, 2008; Schappi et al.,
2014). Activated Gα, acts as a GTPase activating protein (GAP)
and increases microtubule disassembly by activating the intrinsic
GTPase activity of tubulin (Roychowdhury et al., 1999).

The muscarinic acetylcholine type 1 receptor (M1R) is widely
expressed in the central nervous system (CNS) (Levey, 1993;
Wess et al., 2003; Jiang et al., 2014) and peripheral nervous system
(PNS) (Bernardini et al., 1999; Tata et al., 2000b). Membranes
isolated from hippocampus and cortex of M1R knockout (KO)
mice showed a significant decrease in GTPγ-S loading to the
Gα-q/11 G protein upon agonist stimulation (Felder et al.,
2001). In cortical neuron cultures obtained from M1R KO mice,
carbachol-stimulated phosphoinositide hydrolysis was reduced
by 60% compared with wild type (Bymaster et al., 2003). In
addition, phosphorylation of extracellular signal-regulated kinase
(ERK) was eliminated in pyramidal neurons of hippocampal
slices or cortical cultures derived from M1R KO mice (Berkeley
et al., 2001; Hamilton and Nathanson, 2001).

In sympathetic neurons, ACh activation of M1R mobilizes
internal Ca2+ stores leading to closure of M-type K+ channels
(Kv7 subtypes) and enhancement of slow depolarization and
discharge (Delmas and Brown, 2005; Brown and Passmore, 2009).
In embryonic neurons, ACh modulates neurite outgrowth in a
positive or negative manner based upon context (Tata et al.,
2000a, 2003; Bernardini et al., 2004; Yang and Kunes, 2004).
Furthermore, both adult sensory dorsal root ganglia (DRG)
neurons and epidermal keratinocytes synthesize and secrete ACh
(Bernardini et al., 1999; Khan et al., 2002; Nguyen et al., 2004;
Grando et al., 2006; Schlereth et al., 2006; Corsetti et al., 2012).
Adult rat sensory neurons of the DRG express a peripheral
form of ChAT (pChAT), exhibit ChAT activity, have low AChE
activity and express multiple muscarinic receptors including M1R
(Bernardini et al., 1999; Tata et al., 2000b; Bellier and Kimura,
2007; Hanada et al., 2013).

We have recently reported that selective or specific
antagonists of M1R elevated neurite outgrowth and augmented
mitochondrial function in adult sensory neurons (Calcutt
et al., 2017). These drugs also afforded protection against
several different forms of peripheral neuropathy. However, the
mechanism of M1R antagonist-driven neurite outgrowth and
neuroprotection has not been studied in detail. Mitochondrial
oxidative phosphorylation is the main mechanism providing ATP
to power neuronal activities such as production of presynaptic

action potentials, neurotransmitter release, postsynaptic
currents and postsynaptic action potentials (Hall et al., 2012).
Mitochondria are known to concentrate in regions of active
signaling and high metabolic demand (Chen and Chan, 2006;
Mironov, 2007; Verburg and Hollenbeck, 2008). This substantial
energy demand at the nerve ending or synapse implies that
neurons must have a mechanism to maintain microtubules to
augment mitochondrial trafficking upon demand (Sheng and
Cai, 2012; Schwarz, 2013).

In the present study we manipulated M1R expression/function
in adult DRG sensory neurons and related cell lines and
studied the cellular phenotypes and molecular consequences.
Specifically, we tested the hypothesis that the M1R regulates
the tubulin cytoskeleton, G-protein recruitment (Gα13 sub-
type) and mitochondrial trafficking. We identified that excessive
cholinergic signaling triggered tubulin destabilization through
over-activation of Gα13 proteins. Further, we studied the ability
of specific (muscarinic toxin 7: MT7) or selective (pirenzepine)
M1R antagonists to ameliorate the endogenous and M1R
overexpression-induced neuronal phenotypes that primarily
result in a constraint on neurite outgrowth.

MATERIALS AND METHODS

All animal procedures followed guidelines of University of
Manitoba Animal Care Committee using Canadian Council of
Animal Care rules or of the Institutional Animal Care and Use
Committee at UCSD.

Cell Culture
Dorsal root ganglia from adult male Sprague-Dawley rats were
dissected and dissociated using previously described methods
(Akude et al., 2011; Roy Chowdhury et al., 2012; Saleh et al.,
2013). All animal protocols carefully followed the Canadian
Committee on Animal Care (CCAC) guidelines. Neurons were
cultured in defined Hams F12 media containing 10 mM
D-Glucose (N4888, Sigma, St. Louis, MO, United States)
supplemented with modified Bottenstein’s N2 additives without
insulin (0.1 mg/ml transferrin, 20 nM progesterone, 100 µM
putrescine, 30 nM sodium selenite, 0.1 mg/ml BSA; all additives
were from Sigma, St. Louis, MO, United States). In all
experiments, the media was also supplemented with 0.146 g/L
L-glutamine, a low dose or high dose cocktail of neurotrophic
factors (Low dose = 0.1 ng/ml NGF, 1.0 ng/ml GDNF and 1 ng/ml
NT-3, High dose = 1 ng/ml NGF, 10 ng/ml GDNF, 10 ng/ml
NT3 – all from Promega, Madison, WI, United States), 0.1 nM
insulin and 1X antibiotic antimycotic solution (A5955, Sigma).
Cultures were treated with 100 nM MT7 (M-200, Alomone Labs,
Jerusalem, Israel) or 1 µM pirenzepine (P7412, Sigma).

HEK293 and HTLA cells were cultivated in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% heat
inactivated FBS. The β-arrestin null (ARRB1 and ARRB2) and
Gα12/13 (GNA12 and GNA13) null HEK293 cells were obtained
from the laboratory of Dr. Asuka Inoue, Tohoku University,
Japan. HTLA cells were provided by Prof Bryan Roth, University
of North Carolina, United States.
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Cloning, Transfection and siRNA Based
Gene Silencing
Total mRNA was extracted from adult rat DRGs using
Trizol reagent and used for amplifying the full length M1R
cDNA using the following primer sets: F: 5′-ATGAACACCT
CAGTGCCCCCTGC-3′ and R: 5′-TTAGCATTGGCGGGAG
GGGGTG-3′. The cDNA was cloned in the pEGFP-C1
vector (Clontech, now Takara Bio United States, Inc.,
Mountain View, CA, United States) in the XhoI and SacII
restriction sites. In addition, the cDNA was also cloned in
the pHTN Halo-Tag CMV-neo Vector (Promega, Madison,
WI, United States) at the SacII and Not1 restriction sites. The
plasmids were transiently transfected in freshly dissociated
sensory neurons using the rat neuron nucleofection kit
(VPG-1003, Amaxa, Lonza Inc., Allendale, NJ, United States)
and Amaxa nucleofector-II apparatus (program 0-003) and
cultured in poly L-Ornithine (P8638, Sigma) and laminin
coated µ-Plate-24 well (Ibidi United States, Inc., Madison,
WI, United States). The human M1-DREADD construct
was obtained from Dr. Arthur Christopoulos, Monash
University, Australia and sub-cloned in pEGFP-C1 vector
(Abdul-Ridha et al., 2013). The rat Gα13(GNA13) was knocked
down using a cocktail of three siRNAs targeted to exon 2
(AGTATCTTCCTGCTATAAGAGCC) and exon 4 (CTACAT
TCCGTCACAGCAAGATA and CATCAAAGACTATTTCCTA
GAAT), respectively. The siRNAs were transfected in to primary
sensory neurons using Amaxa transfection reagent.

Quantification of Neurite Outgrowth
The transgene transfected neurons were cultured for 48 h and
then cells were fixed in 4% paraformaldehyde for 10 min and
immunostained using monoclonal anti-β-tubulin III antibody.
The neurons were also stained with Hoechst for nuclear staining.
The neurons were imaged in an unbiased manner using a
Cellomics Arrayscan-VTI high content screening (HCS) Reader
(Thermo Fisher Scientific, Waltham, MA United States) and
total neurite outgrowth per neuron was measured by Neuronal
Profiling V4.1 software. The automated HCS reader provided a
bias-free objective analysis of neurite outgrowth.

Confocal Microscopic Image Acquisition
and Analysis to Determine Mitochondrial
Volume and Trafficking
Mitochondrial trafficking in GFP or GFP-M1R overexpressing
neurons was monitored using LSM510 confocal live cell imaging
and involved co-transfection of sensory neurons with GFP/GFP-
M1R and DsRed2Mito7 plasmids (Addgene plasmid #55838, a
gift from Dr. Michael W. Davidson, Florida State University),
respectively. The DsRed2Mito7 consists of a mitochondrial
targeting sequence from subunit VIII of human cytochrome C
oxidase which is placed before the Red fluorescence protein and
the resultant fusion protein selectively accumulates inside the
mitochondria (Van Kuilenburg et al., 1988). The transfected cells
were live imaged at 10 s interval for 80 time frames (∼13 min).
The time lapse images were used to generate kymographs using
the ImageJ make kymograph plugin (Schneider et al., 2012).

In each kymograph, the x-axis represents the position along
the length of the axon and the y-axis represents time. Vertical
lines indicate stationary mitochondria with no displacement
during the time elapsed and diagonal lines represent moving
mitochondria and their direction. Their velocity is reflected in the
slope of the line. In addition we used Fiji (Schindelin et al., 2012)
based MTrackJ to determine mitochondrial velocity (µm/sec) in
the neurites (Meijering et al., 2012). The volume of mitochondria
in the neurites was calculated by using Image J analyze particles
plugin and expressed in µm per neurite length (Schindelin et al.,
2012).

Western Blotting and Immune-Detection
Relative quantification of proteins was done by SDS-PAGE
separation of total proteins followed by transfer to nitrocellulose
membrane and immunoblotting based detection using HRP-
conjugated secondary antibodies. The immunoblots were imaged
in Bio-Rad Chemidoc system (Bio-Rad Laboratories Ltd.,
Mississauga, ON, Canada). Table 1 summarizes all the primary
antibodies used in this study. The cell lysates were prepared in 1X
RIPA lysis and extraction buffer (Cat No: 89900, Thermo Fisher
Scientific) supplemented with 1X Halt protease and phosphatase
inhibitor cocktail (Cat No: 78441, Thermo Fisher Scientific).

Polymerized Tubulin Quantification
The polymerized tubulin in M1R overexpressed cells (40–50%
transfection efficiency) was quantified by methods described
previously (Butcher et al., 2016). Briefly, the soluble fraction of
tubulin was first removed by lysing the cells in a microtubule
stabilizing buffer (MSB) containing 50% glycerol, 5 mM MgCl2,
0.1 mM EGTA, 0.3 mM guanosine triphosphate (grade II-S,
Sigma Chemical Co.), and 10 mM sodium phosphate, pH 6.8

TABLE 1 | List of antibodies.

Name of the
antibody; clone
number

Catalog number Host species
and type

Vendor

Anti-porin (B-6) Sc-390996 Mouse
monoclonal

SCBT

Anti-β-actin (C-4) Sc-47728 Mouse
monoclonal

SCBT

Anti GAPDH (0411) Sc-25778 Mouse
monoclonal

SCBT

Anti-α-tubulin (TU-02) Sc-8035 (TU-02) Mouse
monoclonal

SCBT

Anti-GFP Sc-9996 Mouse
monoclonal

SCBT

Anti-M1R Sc-365966 Mouse
monoclonal

SCBT

Anti-Gγ2/3/4/7 Sc-166419 Mouse
monoclonal

SCBT

Anti-Gα12/13 Sc-28588 Mouse
monoclonal

SCBT

Anti-β-tubulin III T8578 Mouse
monoclonal

Sigma

SCBT, Santa Cruz Biotechnology.
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(Beertsen et al., 1982). Cells were harvested with a rubber scraper
in MSB, homogenized, and centrifuged at 26,000 × g in a
Sorvall RC2-B centrifuge (17,000 rpm in rotor SS-34 in 1.0 ml
tubes; Dupont Instruments-Sorvall Biomedical Div., Dupont Co.,
Newtown, CT, United States) at 20◦C for 30 min. Supernatants
containing the soluble tubulin fraction were removed and the
pellet containing polymerized tubulin and other cytoskeletal
protein was assessed by immunoblotting using anti-actin and
anti-β tubulin III antibodies.

Halo-M1R Pull Down and Blue-Native
Polyacrylamide Gel Electrophoresis
(BN-PAGE)
SH-SY5Y human neuroblastoma cells (provided by Dr. Jun-
Feng Wang, University of Manitoba) were grown in dulbecco’s
modified eagle medium: nutrient mixture F-12 (DMEM/F12,
Thermo Fisher) supplemented with 10% fetal bovine serum (FBS,
Thermo Fisher). Halo-M1R plasmid was transiently expressed
in SH-SY5Y cells that were treated with 100 nM MT7 or
1 µM pirenzepine for 1 h. Halo-M1R was then pulled down
using Halo-link resin by overnight incubation at 4◦C (Promega
Corporation, Madison, WI, United States) as per manufacturer’s
instruction and the pull-down product was cleaved using TEV-
protease (Promega) overnight on a constant rotating shaking
platform. The cleaved fraction was resolved in SDS-PAGE
and immunoblotted using anti-M1R, anti Gγ2/3/4/7 and anti-
Gα12/13 antibodies. The BN-PAGE was performed as described
previously (Sabbir et al., 2016). Polymeric tubulins in Gα12/13
null and native HEK293 cells were separated by BN-PAGE using
microtubule stabilizing native cell lysis buffer containing 20 mM
Bis-tris (pH7.0), 500 mM ε-aminocaproic acid, 20 mM NaCl, 10%
Glycerol, 5 mM MgCl2, and 0.3 mM GTP (Beertsen et al., 1982).

Isoelectric Focusing
Fifty microgram of total cellular protein was precipitated by
acetone and dissolved in rehydration buffer containing 8 M Urea,
2% CHAPS, 50 mM dithiothreitol (DTT) and 0.2% Bio-Lyte
ampholytes pH3-10. The dissolved proteins were incubated in
Zoom IPG-strip 3-10 non-linear (NL) (Thermo Fisher) for 1 h
and then focused at 175 volt (V) for 15 min, 175–2000 V ramp
for 45 min and 2000 V for 30 min. After the run, the strips were
alkylated and resolved on 2D SDS-PAGE and immunoblotted
using antibodies previously described.

Statistical Analysis
Statistical analysis was performed using Prism version 7.00
(GraphPad Software). The mean of two or more groups
were compared using one-way ANOVA followed by multiple
comparison tests (Siegel, 1956; Dunn, 1964). The mean of
multiple experimental groups were compared with the control
group by Dunnett’s post hoc multiple comparison test, whereas,
the mean difference between two experimental groups were
compared by Sidak’s post hoc multiple comparison test (Dunn,
1964). Comparisons between two groups were performed
using Student’s t-test (unpaired). Differences were considered
significant at P < 0.05. Neurite outgrowth, neurite width and

mitochondrial quantification data were plotted as box and
whisker plot where the end of the box represents the upper and
lower quartiles and the median is marked by a horizontal line
inside the box. The whiskers represent the highest and lowest
values excluding the outliers. In some figures the individual data
points of outliers are also indicated.

RESULTS

MT7 and Pirenzepine Significantly
Augmented Neurite Outgrowth in
Cultured Primary Sensory Neurons
Pirenzepine is a selective M1R antagonist whereas MT7 is
the only specific antagonist of this receptor (Birdsall et al.,
1983; Max et al., 1993a). Our previous study demonstrated
that both antagonists enhanced neurite outgrowth from adult
sensory neurons (Calcutt et al., 2017). In order to confirm
that MT7 and pirenzepine had growth promoting effects under
the current conditions, we measured total neurite outgrowth
from primary sensory neurons derived from adult rats and
cultured in defined media containing a cocktail comprising of
low or high concentrations of GDNF, NGF, and NT3 growth
factors (LGF and HGF, respectively) and either 100 nM MT7
or 1 µM pirenzepine (Figures 1A–D). The growth factor
concentrations in the LGF cocktail reflects concentrations of
growth factors that are sub-saturating and induce small but
significant increases in neurite outgrowth (Calcutt et al., 2017).
The HGF cocktail contained 10-fold higher concentrations to
allow us to determine whether the neuritogenic effects of MT7
and pirenzepine were also effective when growth factors were
present in excess and, also to see if increased tyrosine kinase
signaling masked the effect of antagonist-M1R signaling mediated
growth. In the absence of muscarinic antagonists, the HGF
promoted significantly (p < 0.0001) more neurite outgrowth
than LGF, as assessed using unbiased automated high content
imaging combined with data analysis (Figures 1A,B). Both MT7
and pirenzepine significantly increased neurite outgrowth in LGF
and HGF conditions within 48 h of treatment (Figures 1A,B).
In addition, binning of the entire data set of 1249 (LGF) and
1517 (HGF) neurons for their total neurite length revealed
that the neuritogenic effect of pirenzepine and MT7 evenly
affected neurite outgrowth of the majority of the population
of neurons (Figures 1C,D). Further, pirenzepine treatment
elicited significantly higher neurite outgrowth under the LGF
conditions when compared to MT7, whereas under the HGF
condition, the primacy was reversed (Figures 1A,B). The
exact reason for the difference between the drugs in terms of
synergistic effect on growth at HGF condition is not known.
The difference in the chemical nature of these drugs may
be responsible. MT7 is a cell impermeable 7.4 kDa protein
(Krajewski et al., 2001) which binds allosterically to M1R
(Max et al., 1993b; Karlsson et al., 2000) whereas pirenzepine
is a cell-permeable orthosteric antagonist molecule (Caulfield
and Birdsall, 1998). We used LGF conditions in subsequent
experiments.
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FIGURE 1 | M1R antagonists, MT7 and pirenzepine, augment neurite outgrowth in primary sensory neurons and M1R overexpression inhibits neurite outgrowth.
(A,B) Whiskers box (Tukey) showing total neurite outgrowth per neuron. Neurons were grown for 48 h in defined media containing LGF (A) or HGF (B) condition and
treated with 100 nM MT7 or 1 µM pirenzepine (PZ), respectively. N = 1249 (LGF) and 1517 (HGF), respectively. P-values were calculated by one-way ANOVA
followed by post hoc multiple comparison tests. Dunnett’s multiple comparisons test was used to compare the MT7 and PZ treatment groups with the control group
and Sidak’s multiple comparisons test was used to compare between the MT7 and PZ treatment groups; ∗ indicates the p-value obtained by Sidak’s multiple
comparisons test. (C,D) Binning of the entire data set presented in (A,B). (E) Immunoblot showing GFP-tagged muscarinic receptors (M1R to M5R) and GFP
expression in transfected adult rat DRG neurons. pEGFP-C1-(M1R-M5R) plasmids were transfected in to DRG neurons and the lysate was resolved in SDS page
and subsequently immunoblotted with anti-M1R (bottom panel) and anti-GFP (top panel) antibodies. (F) Time lapse confocal images showing increasing
internalization (white arrows) of the GFP-M1R following treatment with carbachol (10 µM). Scale bar: 10 µm. (G) Immunofluorescence images showing colocalization
of 24h CCh treated GFP-M1R with endosomal marker Rab5. Scale bar: 10 µm. (H) Whiskers box (Tukey) showing total neurite outgrowth per neuron, N = 634
(GFP), and N = 553 (GFP-M1R), neurons, respectively. P-value was calculated by t-test (unpaired). (I) Immunofluorescence images showing β-tubulin III staining and
corresponding neurite trace (red lines) images in GFP and GFP-M1R overexpressed neurons. The total neurite outgrowth measurement was performed in Cellomics
ArrayScan HCS Reader using neuronal profiling software. Scale bar: 10 µm.

M1R Overexpression Induced Significant
Reduction in Neurite Outgrowth
The muscarinic receptor subtypes (M1–M5) show
considerable heterogeneity of expression in sensory neurons

(Bernardini et al., 1999; Chiu et al., 2014). In order to understand
the biological function of M1R in sensory neurons, we
overexpressed GFP-tagged M1R in sensory neurons and
measured the impact on neurite outgrowth. M1R overexpression
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significantly reduced neurite outgrowth when compared
to GFP-expressing neurons (Figures 1H,I). The GFP-M1R
transgene-induced protein production was verified in the
transfected DRG neurons by immunoblotting of the expressed
recombinant proteins (GFP-M1-5R) using both anti-M1R and
anti-GFP antibodies (Figure 1E). The biological functionality
of the GFP-M1R recombinant protein was verified by treating
GFP-M1R overexpressing DRG neurons with the broad
spectrum muscarinic agonist carbachol (10 µM) followed by
live confocal imaging to monitor internalization of recombinant
protein. Treatment with carbachol increased presence of the

recombinant protein as internalized spots that were positive for
the early endosomal marker Rab5 (Zerial and McBride, 2001)
(Figures 1F,G). This indicates that GFP-tagged recombinant
M1R elicited agonist induced internalization response similar
to that of naïve proteins. In addition, to assess functionality
of the recombinant M1R in overexpressed cells, we performed
a β-arrestin recruitment assay [TANGO assay: (Kroeze et al.,
2015), Figure 2]. In the TANGO assay, upon activation,
β-arrestin is recruited to the C-terminus of the M1R-TEV-
tTA fusion protein at the TEV protease site and cleaves to
release the tTA transcription factor, which after transport to

FIGURE 2 | Constitutive basal activity of M1R and the effect of DREADD mutant on neurite outgrowth. (A) Graphical representation of the arrestin recruitment assay
(TANGO) strategy, TRE-Tet response element. HA-cleavable signal sequence to promote membrane localization, FLAG-epitope tag, TEV- Tobacco Etch Virus
cleavage site, V2 tail: C-terminus of the V2 vasopressin receptor (V2 tail) to promote arrestin recruitment and tTA- tetracyclin transactivator. (B) Immunoblot showing
expression of M1R-TEV-tTA and β-arrestin-TEV protease transgene. (C) Scatter plot showing the RLU (Relative Luminescence Units) for the drug treated HTLA cells.
N = 5 independent experiments. (D) Co-expression of GFP/GFP-M1R/GFP-M1R(DREADD) with mito7-RFP in DRG neurons following 48 h of growth. Neurite
outgrowth suppression was comparatively less in M1R-DREADD mutant over-expressing neurons. The white and blue arrows indicate that localization of GFP-M1R
was mainly restricted in the perikaryon where as GFP was localized both in perikaryon and neurites. LSM510 confocal images acquisition parameters were same for
all images. Scale bar: 100 µm. (E) Whiskers box (Tukey) showing total neurite outgrowth per neuron. N = 250. p-value by one-way ANOVA followed by Dunnett’s
multiple comparisons test. (F) Binning of the entire data set presented in (E).
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the nucleus activates transcription of luciferase reporter gene
(Kroeze et al., 2015) (Figure 2A). We verified expression of the
M1R-TEV-tTA and β-arrestin transgenes by immunoblotting
(Figure 2B). We found significant recruitment of β-arrestin
due to basal M1R activation in presence of serum in the
culture media in the HTLA cells (Figure 2C). This basal
activation of M1R occurred in the absence of exogenously
supplied agonist. However, fetal bovine serum (FBS) used in
the culture media is reported to contain acetylcholine (ACh)
(Lau et al., 2013) and this may have constitutively acted upon
the M1R. Treatment with the muscarinic agonist, carbachol,
significantly increased activation of the M1R by up to ∼7.4-fold
(Figure 2C).

Endogenous ACh Binds M1R to
Constrain Neurite Outgrowth
Adult sensory neurons secrete ACh into the extracellular
media when grown in culture (Calcutt et al., 2017). The
Tango Assay revealed that ACh present in the serum

supplied to the culture media may also act upon M1R and
constitutively activate the receptor. We therefore hypothesized
that overexpression of M1R in sensory neurons may lead to
increased constitutive activation of the receptor by recruitment
of trimeric G-proteins, including the Gα12/13 subtype that
promotes tubulin destabilization (Roychowdhury et al.,
1999). In order to test this hypothesis we transfected DRG
neurons with an M1R-DREADD (designer receptors exclusively
activated by designer drugs) mutant to eliminate the putative
basal activity in M1R-DREADD overexpressing neurons
(Figures 2D,E). The M1R-DREADD mutant contained two
mutations in the conserved orthosteric site residues (Y106C
and A196G in the M1R) that minimize responsiveness to
ACh (Abdul-Ridha et al., 2013). Overexpression of GFP-M1R
and M1R-DREADD caused low levels of neurite outgrowth
(Figures 2D–F). However, neurite outgrowth in M1R-
DREADD neurons was significantly higher than GFP-M1R
alone over 72 h of culture (Figures 2D–F). This indicates
that endogenous ACh may interact with M1R to limit neurite
outgrowth.

FIGURE 3 | GFP-M1R over-expression in sensory neurons caused reduced mitochondrial abundance. (A) Representative images showing the signal of
co-expression of GFP/GFP-M1R and mito7-RFP in DRG neurons. BF, bright field. (B) Immunofluorescence images showing mito7-RFP and β-tubulin III stained
neurites. The 4th panel image showing tracing of the mitochondrial volume used for determining the amount of mitochondria per unit length of the neurites in
GFP/GFP-M1R overexpressed DRG neurons. The tracing image was created using ImageJ particle counter plugin. Scale bar: 5 µm. (C) Whiskers box (min–max)
showing amount of mitochondria in GFP/GFP-M1R transfected neurons. N = 101 from three independent experiments, p-value by t-test (unpaired). (D) Binning of
the entire data set presented in (C).
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Impact of M1R Overexpression on
Mitochondrial Abundance
In an attempt to understand the mechanism of the growth
inhibitory effect of M1R overexpression, we examined the
abundance of mitochondria in the neurites by co-expressing
DsRed2Mito7 plasmid (Figure 3A). The DsRed2Mito7 plasmid
expresses DsRed protein tagged with mitochondrial targeting
sequence from subunit VIII of human cytochrome C oxidase and
therefore localizes specifically to mitochondria. We measured the
volume of mitochondria present per unit length (µm) of neurites
in the M1R and GFP overexpressing DRG neurons (Figure 3B).
M1R overexpression significantly reduced the abundance of
mitochondria in the neurites after 48 h of culture (Figures 3C,D).
The mitochondria in both M1R and GFP over-expressing
neurons accumulated mitotracker CMXRos dye, indicating that
functionality of the mitochondria was not impaired in M1R
overexpressed neurons despite reduced abundance (data not
shown).

Reduced Mitochondrial Abundance Was
Associated With Impaired Cytoskeletal
Structure
To determine whether reduced mitochondrial abundance was
related to a defect in the actin or tubulin cytoskeletons, we
immunostained DRG neurons that overexpressed GFP/GFP-
M1R with phalloidin and anti-β-tubulin III antibodies. In
the presence of M1R over-expression, immunofluorescent
imaging of phalloidin revealed the presence of abundant
and continuous actin filaments in the neurites, although
the neurite tips were notably thinner compared to those
of GFP expressing neurites (Figure 4A). In contrast, the
β-tubulin III associated cytoskeleton appeared less abundant
and discontinuous (Figure 4B). Fragmentation of the tubulin
cytoskeleton was confirmed using a polymerized tubulin
quantification assay in which there was significantly less
polymerized tubulin in the DRG neurons overexpressing M1R
compared to those that overexpressed only GFP (Figures 4C,D).

FIGURE 4 | Dorsal root ganglia (DRG) neurons over-expressing M1R exhibited cytoskeletal defects. (A) Actin cytoskeleton in GFP-M1R and GFP over-expressing
DRG neurons. White arrow indicates narrower neurites in GFP-M1R expressing neurons. (B) β-tubulin III associated cytoskeleton in GFP-M1R and GFP
over-expressing neurons. Black rectangular area is shown in a magnified view in the right panel; white arrow indicates discontinuous/continuous tubulin
cytoskeleton. BF, bright field. Scale bar: 20 µm. (C) Immunoblot and (D) bar graph showing relative amount of polymerized tubulin in the M1R-GFP and GFP
over-expressed neurons. The data represent the mean ± SEM of three independent experiments. P = 0.0011 calculated by unpaired t-test.
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FIGURE 5 | Altered mitochondrial trafficking in M1R overexpressing neurons was rescued by antagonist treatment. (A) Representative images (top panels) of the first
frame of a series of live cell time-lapse images showing the expression of DsRed2Mito7 in the mitochondria of GFP/M1R–GFP expressing neurons. The circles
represent mitochondria identified by MTrackJ plugin, which then tracked migration through time in a series of time lapse images and calculated velocity of specific
mitochondria. White/blue line represents neurite trace. The bottom panel represents Kymographs generated from live cell time-lapse images. The Kymograph was
generated using ImageJ Kymograph plugin. The X-axis represents the physical location of mitochondria on the neurite, and the Y-axis represents the location of
mitochondria in time. Streak of particles traversing the kymograph from left to right in angular lines indicates retrograde/anterograde mitochondrial motion.
(B) Whisker plot showing mitochondrial velocity. DRG neurons were cultured in LGF media supplemented with 100 nM MT7 or 1 µM pirenzepine for 48 h following
transfection. N = 40 from three independent experiments, p-value by one-way ANOVA followed by Dunnett’s multiple comparisons test. (C) Binning of the entire data
set presented in (B). (D,E) Immunofluorescence images showing mito7-RFP and β-tubulin-III staining in the GFP/GFP-M1R expressing neurites. White arrows
indicate continuous/discontinuous tubulin cytoskeleton in GFP/GFP-M1R expressing neurites, respectively. Scale bar: 5 µm.

Discontinuous Tubulin Cytoskeleton Was
Associated With Reduced Mitochondrial
Trafficking in Sensory Neurons
Overexpressing M1R
In order to determine whether the discontinuous β-tubulin
cytoskeleton was associated with altered mitochondrial
trafficking in growing neurites, we measured velocity of
mitochondrial movement in the neurites of DRG neurons that
co-expressed GFP/GFP-M1R and DsRed2Mito7. Time-lapse

images of the neurites at 10 s intervals were used to generate
kymographs of mitochondrial trafficking (Figure 5A). The mean
velocity of mitochondria was calculated as 1.9 µm/sec in GFP
expressing neurons whereas in GFP-M1R expressing neurons
it was significantly lower at 0.62 µm/sec (Figures 5B,C). In
addition, immunostaining of neurites with a similar appearance
to those used in the mitochondrial velocity measurement
revealed a continuous β-tubulin-III cytoskeleton in GFP
over-expressed neurons and a discontinuous β-tubulin-III
cytoskeleton in M1R over-expressed neurons (Figures 5D,E).
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Muscarinic Antagonists MT7 and
Pirenzepine Rescued the Cytoskeletal
Defect, Aberrant Mitochondrial
Distribution and Trafficking in Neurites
We investigated whether pirenzepine or MT7 could overcome
M1R overexpression-induced cytoskeletal defects. M1R over-
expressing neurons were maintained for 48 h and then
treated for 24 h with 100 nM MT7 or 1 µM pirenzepine
and total neurite outgrowth and mitochondrial velocity
(Figure 5) and abundance (Figure 6) quantified. MT7 and
pirenzepine treatment significantly rescued the deficits in
the mitochondrial velocity in M1R overexpressed neurons,
with mean mitochondrial velocities of 0.78/1.2 µm/s in

MT7/pirenzepine treated neurons being significantly higher
than untreated neurons (Figures 5B,C). Both MT7 and
pirenzepine also caused considerable re-localization of M1R
from the perikarya to the neurites, as revealed by time lapse
confocal live cell images over a period of 72 h. This may
indicate increased vesicular transport of internalized M1R
(Figure 6A). Within the same neuron (shown in Figure 6A),
following 24 h of drug treatment and upon fixation and
immunostaining for β-tubulin III, there was continuity in the
β-tubulin III associated cytoskeleton (right panel). MT7 or
pirenzepine significantly increased total neurite outgrowth,
reversed the reduced neurite caliber and increased mitochondrial
abundance in DRG neurons that overexpressed GFP-M1R
(Figures 6B–E).

FIGURE 6 | Restoration of cytoskeleton, mitochondrial abundance and neurite outgrowth by M1R antagonists MT7 and pirenzepine treatment. (A) Time-lapse live
confocal images of GFP-M1R over-expression in sensory neurons showing MT7 induced re-localization of M1R from perikaryon to neurites. The overexpressed
neurons were grown in defined media for 48 h and imaged (left panel). Neurons were then treated with 100 nM MT7 for 24 h and imaged (middle panel). Right panel:
The same neuron depicted left was fixed and stained for β-tubulin III to show continuity of cytoskeleton. Scale bars: 50 µm. (B,C) Whiskers box (Tukey) showing
total neurite outgrowth per neuron (B) and average neurite width per neuron (C). p-value calculated by one-way ANOVA, N = 224, 230 and 198 cells, respectively,
for (A) and N = 1250, 1268, 1280, and 1306 cells, respectively, for (B). Asterisks indicate p-value calculated by unpaired t-test. (D) Whisker box plot showing
amount of mitochondria in the M1R expressing neurons treated with 100 nM MT7 or 1 µM pirenzepine. N = 101, p-values were calculated by one-way ANOVA
followed by Dunnett’s multiple comparisons tests. (E) Binning of the entire data set presented in (D).
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Knockdown of Gα13 in Sensory Neurons
Reversed the M1R
Overexpression-Induced Tubulin
Cytoskeleton Defect
The M1R-DREADD mutant study raised the possibility that,
in normal DRG neurons, basal M1R activity resulting from
binding of endogenous ACh release may destabilize the tubulin

cytoskeleton through increased active G proteins. Gα12/13
proteins are known for their effect on cytoskeleton remodeling
and the M1R receptor activates Gα12/13 type G proteins leading
to mobilization of the small GTP-binding protein Rho through
activation of Rho-GEF (RhoGTPase nucleotide exchange factor)
(Haga, 2013). We, therefore, measured the relative expression
of Gα12 and Gα13 proteins in sensory neurons (Figure 7A).
Immunoblots revealed that DRG neurons express significantly

FIGURE 7 | Knockdown of Gα13 reversed M1R overexpression-induced inhibition of neurite outgrowth. (A) Immunoblots showing relative expression of Gα12 and
Gα13 proteins in cultured DRG neurons. (B) Scatter plot showing relative amount of Gα12 and Gα13 proteins in cultured sensory neurons. N = 5 independent
experiments. p-value was calculated by unpaired t-test. (C) Immunoblots showing siRNA (cocktail of 3 siRNAs targeted to rat Gα) based knockdown of Gα13
protein in cultured adult rat DRG neurons. (D,F) Whisker box (Tukey) showing total neurite outgrowth per neuron. DRG neurons were transfected with a
pEFGP-C1-M1R plasmid and siRNA using Amaxa nucleofection reagent and allowed to grow for 48 h. Scrambled siRNAs were used for control. In drug treatment
groups, neurons were cultured in media supplemented with 100 nM MT7 or 1 µM pirenzepine following transfection. The neurons were fixed after 48 h of culture,
stained with β-tubulin III and imaged using Cellomics ArrayScan HCS Reader. p-value by unpaired t-test or one-way ANOVA test followed by Dunnett’s multiple
comparisons tests. N = 432/452 (in D) and 406/694 (in F). (E,G) Binning of the entire data set presented in (D,F).
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more Gα13 compared to Gα12 (Figures 7A,B). The relative
levels of Gα12 and Gα13 expression were comparable to those
of the human carcinoma cell line HEK293 (Supplementary
Figure S1A). We used siRNA to knockdown Gα13 in DRG
neurons and used a CRISPR/Cas9 based Gα12/13 null HEK293
cell line to study the effect of cholinergic signaling through Gα13
on the tubulin cytoskeleton (Figure 7C and Supplementary
Figure S1A). The HEK293 cell line has been reported to exhibit
a neuronal lineage phenotype and express neuronal proteins
(Stepanenko and Dmitrenko, 2015). Therefore, we considered
it suitable for this study. The siRNA based knockdown of
Gα13 in DRG neurons had no significant effect on neurite
outgrowth (Figures 7D,E). Interestingly, knockdown of Gα13
in M1R overexpressed sensory neurons significantly reversed
the suppressed neurite outgrowth (Figures 7F,G). In addition,
treatment of the M1R overexpressed and Gα13 knockdown
neurons with 100 nM MT7 or 1 µM pirenzepine exhibited
significantly increased neurite outgrowth (Figures 7F,G).

CRISPR/Cas9 Based Gα12/13 Null
HEK293 Cells Showed Abundant Tubulin
Cytoskeleton but Diminished Actin
Stress Fibers
RNA sequencing data in the human protein atlas (HPA) indicates
that HEK293 cells express very high levels of α-tubulin compared
to β-tubulin III (Uhlen et al., 2005). The transcripts per
million bases (TPM) value for α-tubulin (TUBA1B isoform) and
β-tubulin III has been recorded as 1923.6 and 13.7, respectively1.
β-tubulin III was undetectable by immunoblotting in HEK293
cells (data not shown). We, therefore, studied α-tubulin dynamics
in CRSIPR/Cas9 based Gα12/13 knockout HEK293 cells. We
performed immunofluorescent labeling using phalloidin and
anti-α-tubulin specific antibodies to visualize the actin and
tubulin based cytoskeletal structures in Gα12/13 knockout
HEK293 cells (Supplementary Figure S1E). Phalloidin staining
revealed that actin stress fibers were diminished in Gα12/13 null
cells, with appearance of abundant distinct punctate actin rich
focal adhesion points (Supplementary Figure S1E). Further, the
tubulin cytoskeleton appeared more robust and organized in
Gα12/13 null cells (Supplementary Figures S1E, S2). The BN-
PAGE based microtubule fractionation assay and polymerized
microtubule quantitative assay showed Gα12/13 null cells
exhibited significantly more polymerized tubulin than wild type
HEK293 cells (Supplementary Figures S1B–D). Overexpression
of M1R in Gα12/13 null cells and treatment with muscarinic
agonist carbachol did not alter the tubulin networks as compared
to wild type cells (Supplementary Figures S2, S3).

MT7 and Pirenzepine Modulate G Protein
Interaction With the M1R
Adult DRG cultures have very low cell yields, in the range of
250,000 per culture. To enable feasible pull down of protein
complexes we used human neuroblastoma SH-SY5Y cultures
that allow use of millions of cells. This cell line also exhibits

1www.proteinatlas.org

a cholinergic phenotype with ACh secretion, expression of
muscarinic receptors and AChE shedding (Yamada et al.,
2011). We examined the recruitment of trimeric G proteins
to M1R by Halo-pull down assay and BN-PAGE analysis
(Figures 8, 9). The Halo-pull down assay permitted a focus on the
over-expressed M1R with no contamination from endogenous
muscarinic receptors of mixed sub-type. The SH-SY5Y cells
that overexpressed Halo-M1R were treated with drugs and
Halo-tagged M1R was pulled down using Halo-linked resin.
Subsequently, the pull down product was resolved in SDS-PAGE
and immunoblotted with anti-M1R, anti-Gα12/13 and anti-
Gγ/2/3/4/7 antibodies (Figures 8B–D). The Halo-M1R pull down
fraction from the drug treated cells showed significantly elevated
levels of Gγ/2/3/4/7 and Gα12/13 proteins when compared with
untreated cells (Figures 8E,F).

The 2D BN-PAGE/SDS-PAGE analysis revealed existence
of 2 protein complexes at ∼900 and ∼1200 kDa equivalent
molecular weights in Halo-M1R over-expressing SH-SY5Y cells
(Figures 9A,B). Each complex was associated with a native
∼100 kDa Halo-tagged M1R protein and >180 kDa fractions,
the latter may be derived from different PTMs of the Halo-
M1R. Treatment with 100 nM MT7 caused a major shift of the
∼900 kDa protein complex to the ∼1200 kDa protein complex
within 1 h of treatment, suggestive of recruitment of putative
interacting proteins (Figure 9, blue and red dotted areas). In
contrast, untreated cells did not show any shift in the ∼900 kDa
protein complex to the ∼1200 kDa protein complex indicating
less or no recruitment of interacting proteins (Figure 9A).
Further, when the same blots were immunoblotted with anti-
Gα12/13 antibodies, the Gα12/13 proteins appeared as spots on a
vertical line corresponding to the∼1200 kDa protein complex in
the drug treated cells which suggests possible co-migration and
association with M1R (Figures 9A,B, bottom panel).

DISCUSSION

Our recent work has shown that sensory neurons derived from
M1R null mice exhibit enhanced neurite outgrowth (Calcutt
et al., 2017). We now demonstrate that over-expression of
M1R inhibited neurite outgrowth, caused disruption of the
tubulin cytoskeleton and blockade of mitochondrial trafficking
in adult sensory neurons, all of which were rescued by
exposure to selective or specific M1R antagonists. We then used
overexpression of GFP-M1R to identify the molecular pathway
components associated with specific M1R-mediated cellular
phenotypes. Based on our data, we propose that ACh mediated
signaling via M1R constrains neurite outgrowth via activation of
Gα13 proteins, which in turn limits tubulin polymerization and
mitochondrial trafficking within axons.

Overexpression of M1R in sensory neurons has biological
consequences that likely arise from the presence of neuron-
derived ACh in the culture environment. Cultured sensory
neurons secrete endogenous ACh into the extracellular media
to generate a local concentration in the range of approximately
16 µM (Calcutt et al., 2017). This far exceeds the ACh Kd of
25–35 nM measured in several regions of rat brain tissue (Kellar
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FIGURE 8 | MT7 and pirenzepine elevated sequestration of trimeric G proteins associated with M1R in SH-SY5Y cells. (A) Diagrammatic representation of the
experimental strategy. (B–D) Halo-tagged M1R was expressed transiently in sensory neurons and then treated with 100 nM MT7 or 1 µM PZ for 1 h. Cells were then
lysed and Halo-M1R was pulled down using halo-linked resin. The halo tag was cleaved by TEV protease and the cleaved M1R associated multiprotein complex
(MPC) was resolved in denaturing SDS-PAGE and immunoblotted using (B) anti-M1R, (C) anti-Gγ2/3/4/7, and (D) anti-Gα12/13 antibodies. (E,F) Scatter plot
showing the relative amount of G proteins (Gα and Gγ, respectively) associated with M1R following drug treatment. The data represent mean ± SEM of three
independent experiments. p-values (∗∗∗∗<0.0001) were calculated by one-way ANOVA with Dunnett’s post hoc multiple comparison test.

et al., 1985) or the Kd of 0.2–0.4 nM measured using rat brain
neurons (Pavia et al., 1991; Bakker et al., 2015). In the presence
of abundant extracellular ACh, overexpressed. M1R will trigger
activation of Gα13 proteins that leads to the dissociation of
tubulin microtubules, as seen in Figure 4. The chemogenetically
modified M1R-DREADD mutant significantly reduced M1R
induced growth retardation (Figure 2). Thus, ACh-driven basal
activity of M1R is responsible for neurite outgrowth suppression
under conditions of M1R over-expression. In addition, we
propose in normal un-transfected neurons that basal endogenous
M1R signaling tonically suppresses neurite outgrowth by
restricting mitochondrial (and potentially vesicular) transport,
thereby explaining the ability of antimuscarinic drugs to
prevent/reverse this constraint.

Knockdown of Gα13 in M1R-overexpressed neurons
significantly reversed the M1R-induced growth inhibitory effect
and protected from tubulin destabilization in growth cones
(Figure 7). Gα13 is more abundant than Gα12 in sensory
neurons and M1R was linked to activation of Gα12/13 type G

proteins that leads to activation of small GTP binding protein
Rho through mobilization of RhoGEF (Luo et al., 2001; Siehler,
2009; Haga, 2013). Activation of Gα12/13 leads to stimulation
of the Rho/Rho Kinase pathway via a subgroup of Rho guanine
nucleotide exchange factors (Fukuhara et al., 2001). Involvement
of Rho and ROCK (Rho-associated coiled coil forming protein
kinase) in agonist-induced neurite retraction and cell rounding
has been reported in N1E-115 neuroblastoma cells (Hirose et al.,
1998). Dominant-negative p160-ROCK completely abolished
this neurite retraction suggesting a clear link between RhoA-
ROCK signaling and cytoskeleton disassembly (Hirose et al.,
1998). Activation of neuronal cannabinoid receptors linked to
Gα12/13 proteins triggered rapid and reversible contraction of
actinomyosin cytoskeleton through a Rho-GTPase and ROCK
(Roland et al., 2014). Further, the CRISPR/Cas9 based knockout
of Gα12/13 proteins in the HEK293 cell line augmented the
abundance of polymerized tubulin (Supplementary Figure S1).
HEK293 cells have been utilized as a model system for neuronal
synapse formation (Biederer and Scheiffele, 2007) as they express
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FIGURE 9 | MT7 and pirenzepine elevated sequestration of trimeric G proteins in a protein complex associated with M1R in SH-SY5Y cells. (A,B) BN-PAGE analysis
showing recruitment and sequestration of G proteins to M1R following MT7 treatment. GFP-M1R transfected cells were treated with 100 nM MT7 and incubated for
1 h. Cell lysates were then separated on 1D BN PAGE followed by 2D SDS-PAGE, (A) Control, (B) 100 nM MT7 treatment. Top panel: Coomassie stained gel piece
showing 1D BN-PAGE separation of native page protein molecular weight marker. The red horizontal and vertical arrows indicate the direction of the 1D BN-PAGE
and 2D SDS-PAGE, respectively. The blue rectangle shows PTMs of GFP-M1R associated with 1000 kDa and >1200 kDa MPCs. The red circle indicates native
form of the GFP-M1R associated with the MPCs. The red arrow connecting the red circles indicates shift of molecular weight in MPC due to recruitment of G
proteins following drug treatment. The red rectangle in the bottom panel shows the co-migration of possible interacting G proteins with the MPCs.

neuronal proteins and have neuronal cell-lineage (Shaw et al.,
2002; Stepanenko and Dmitrenko, 2015). Using a NanoBIT split
luciferase based RhoA biosensor that detects Gq-induced RhoA
activation showed that the RhoA signal is completely lost in the
Gα12/13 KO cell (Mercier et al., manuscript in revision, personal
communication).

Activated G proteins regulate tubulin polymerization (Schappi
et al., 2014) and tubulin binds directly to Gα or Gβγ

subunits (Wang et al., 1990; Roychowdhury et al., 1999; Sarma
et al., 2003). Activated GTP bound Gα promotes microtubule
instability by increasing the intrinsic hydrolysis of GTP-
tubulin to the less polymer stable GDP-tubulin (Roychowdhury
et al., 1999, 2006). We have modelled this in Figure 10.
Overexpression of Gαq in a rat pituitary cell line showed
a 50% decrease in the ratio of soluble to polymerized
tubulin (Ravindra et al., 1996). There is considerable cell type
and isoform specificity in Gα mediated tubulin cytoskeleton
dynamics (Sarma et al., 2015). We found that Gα12/13 and
Gγ(2,3,4,7) were sequestered upon M1R antagonist binding
(Figures 8, 9) and it is plausible that these factors also
regulate tubulin polymerization in sensory neurons. In addition,
some guanine nucleotide exchange factors (GEFs) for Rho
GTPases, namely p115 RhoGEF (Kozasa et al., 1998), PDZ-
RhoGEFs (Fukuhara et al., 1999), and LARG (Suzuki et al.,
2003) can act as direct couplers of Gα12/13 proteins to small
GTPases such as RhoA, Rac1, and CDC42, all of which are
known to influence microtubule dynamics (Hall and Lalli,
2010). The Gα12/13-RhoGEF-RhoA pathway of GPCR has
been implicated in many diseases (Siehler, 2009). Interestingly,

while Gα promotes tubulin disassembly by increasing the
tubulin GTPase activity, Gβγ subunits preferentially associate
with GDP-bound tubulin to promote polymerization and
stability of the microtubule (Roychowdhury and Rasenick, 1997;
Popova and Rasenick, 2003; Roychowdhury et al., 2006). Our
data from non-crosslinked halo-pull down (Figure 8) and
BN-PAGE analyses (Figure 9) show augmented association and
occupancy of trimeric G-proteins (Gα12/13) to M1R during
MT7 or PZ treatment, which indicates elevated sequestration
of these proteins on M1R. We propose that muscarinic
antagonist-induced sequestration of trimeric G-proteins restricts
their dissociation from the overexpressed M1R associated
protein complex and thereby limits their detrimental effect
on tubulin polymerization (see Figure 10). Further, we posit
that the same M1R suppression pathway is occurring in
normal un-transfected neurons to limit cytoskeleton formation
in axons and is counteracted by these drugs. However, this
does not exclude the possibility that other pathways may
be involved. For example, Ca2+ signaling/homeostasis are
known to be responsible for the maintenance of cytoskeletal
integrity (Tsai et al., 2015). Cholinergic activation of M1R
coupled with the Gq/11 protein generates cytosolic calcium
transients via phospholipase-C signaling pathway (Langmead
et al., 2008). High Ca2+ may act to increase the intrinsic
GTP hydrolysis of tubulin and directly destabilize growing
microtubule ends without changing the effective concentration
of tubulin (O’Brien et al., 1997). Therefore, it is possible that
excessive cholinergic signaling may imbalance intracellular Ca2+

homeostasis and promotes tubulin destabilization. Antagonist
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FIGURE 10 | Model explaining the effect of M1R overexpression and antagonism on tubulin associated cytoskeleton and mitochondrial trafficking. (Left) M1R
overexpressing neurons have increased basal activity in response to secreted acetylcholine signaling through overexpressed receptor. This is turn causes recruitment
of trimeric G proteins that destabilize tubulin polymers by increasing intrinsic GTPase activity of tubulin. The lack of tubulin cytoskeleton in M1R overexpressing
neuron leads to decreased mitochondrial trafficking and stagnation of mitochondria in the neurites that impairs outgrowth. (Right) M1R overexpression in the
presence of antagonists MT7 and pirenzepine (PZ) stabilizes tubulin polymerization. The antagonists bind to the M1R and may stabilize a specific structural
ensemble, which in turn recruit trimeric G proteins. However, the antagonist mediated M1R structural ensemble may sequester the bound G proteins and makes
them unavailable for exerting their effect on tubulin polymerization which in turn stabilizes microtubule cytoskeleton and promotes mitochondrial trafficking and
neurite outgrowth.

mediated sequestration of G-proteins may limit this response
and protect Ca2+ induced tubulin destabilization. However,
further experimentation is required to prove this hypothesis.
Insertion and site-directed mutagenesis based studies have
revealed potential G-protein interaction sites in the i2 and
i3 loops in mAChRs (Blin et al., 1995; Liu et al., 1996; Hu
et al., 2010). Overexpression of mutated M1R for disruptive
Gα13 binding and subsequent reversal of cholinergic tubulin
destabilization effect would provide another means of testing.
The exact binding site for Gα13 protein in M1R needs to be
evaluated.

Overexpression of M1R restricted the number of active
mitochondria in neurites, presumably through diminished
trafficking as a direct consequence of overexpressed M1R-
induced disruption of the cytoskeleton. The M1R antagonists,
pirenzepine and MT7, were able to protect mitochondrial
transport. Pirenzepine and MT7 also enhance mitochondrial
oxygen consumption rate and respiratory complex activities
through activation of the AMP-activated protein kinase
(AMPK)/peroxisome proliferator-activated receptor γ

coactivator-1α signaling axis (Calcutt et al., 2017). Mitochondrial
function was also enhanced in sensory neuron cultures derived
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from M1R null mice. Thus, ACh signaling through M1R can
negatively regulate mitochondrial phenotype at multiple levels
in the neuron that include trafficking and positioning as well
as fine regulation of activity of the respiratory complexes.
Optimal regulation of mitochondrial function is critical in
distal regions of sensory neurons which, in human peripheral
nerve, can be up to a meter from the cell body (Schwarz,
2013). The architecture of sensory neurons poses an extreme
cellular environment for mitochondrial distribution and a
need to supply energy to the distal endings where energy
demand is high (Bernstein and Bamburg, 2003; Chowdhury
et al., 2013). Any defect in mitochondrial function is likely
to have a profound influence on the axon. Recent in vivo
studies of mitochondrial transport along the saphenous nerve
of adult mice revealed elevated anterograde transport of this
organelle in axons undergoing high rates of depolarization
and impulse conduction (Sajic et al., 2013). Indeed, loss of
function of mitochondrial proteins such as bcl-w or mitofusin-2
results in a length-dependent dying-back sensory neuropathy
(Baloh et al., 2007; Misko et al., 2010; Courchesne et al., 2011).
Genetic ablation of mitochondrial transport also leads to axonal
growth failure following axotomy in mice (Zhou et al., 2016).
In axons, approximately 30–40% of total mitochondria are
constantly engaged in saltatory motion (Lovas and Wang,
2013). It is plausible that the microtubule disruption induced by
overexpression of M1R eliminated the basic framework for motor
proteins to carry their mitochondrial cargo and potentially other
vesicular cargos. As a result, the physical abundance of active
mitochondria was diminished in the distal neuritis, which would
be expected to deprive the neuronal growth cone of an essential
supply of ATP, resulting in suppressed actin treadmilling and
neurite outgrowth. This hypothesis, summarized in Figure 10,
is further supported by reports that several microtubule-targeted
chemotherapeutic agents, such as colchicine and vincristine,
are known to induce a sensory neuropathy in which the distal
aspect of the sensory axon gradually degenerates (Bennett et al.,
2014).

Our pre-clinical studies have demonstrated that selective
and specific M1R antagonists promote neurite outgrowth
in adult sensory neurons in vitro (Calcutt et al., 2017).
MT7 and pirenzepine were also able to prevent or reverse
the distal degenerative neuropathy characteristic of diabetes,
chemotherapy-induced and HIV-induced peripheral neuropathy.
In the present study, we have reinforced the finding that M1R
antagonists are neuronal growth promoters using an unbiased
automated high throughput neurite outgrowth measurement
technique in a large cohort of sensory neurons. In addition,
we have highlighted a molecular mechanism that indicates
that treatment with these drugs stabilizes microtubules by
sequestering Gα13 proteins and promotes microtubule-based
axonal transport of mitochondria, which in turn augments
neurite outgrowth. Peripheral neuropathy is a major cause of
human morbidity with huge associated health care costs (Gordois
et al., 2003; McInnes, 2012). One particularly encouraging
implication of our identification of the endogenous M1R-
mediated suppression of axonal outgrowth in sensory neurons is
that antimuscarinic drugs that can prevent/reverse this process

have already been widely used as approved drugs for other
indications (Siatkowski et al., 2008). Since small fiber axonal
degeneration is an early feature of many peripheral neuropathies,
the novel growth-regulating pathway we have identified could
be mobilized to prevent or reverse distal neurodegeneration.
Our studies support a previously unrecognized therapeutic
potential for M1R antagonists in the treatment of peripheral
neuropathies and unravels a novel pathway of cholinergic
signaling mediated via control of microtubule dynamics through
Gα13 signaling.
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FIGURE S1 | Polymerized α-tubulin is augmented in Gα12/13 null HEK293 cells.
(A) Immunoblots showing expression of Gα12, Gα13, and porin (VDAC1) in wild
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type and Gα12/13 null HEK293 cell. (B) Immunoblots showing the
relative amount of polymerized tubulin in wild type and Gα12/13 null HEK293
cells. (C) In BN-PAGE based assay, polymerized tubulin was stabilized in
microtubule stabilization buffer and resolved in native gradient gel. The
polymerized tubulin microtubules are trapped in the native page at the top
(∼1200 kDa) whereas the dimers and monomers migrated to lower molecular
weight regions. The first dimension gel was denatured and the proteins were
further separated in 2nd dimension SDS-PAGE and immunoblotted. The spots at
∼146 and ∼66 kDa represent α-tubulin dimer and monomers. The red dotted
circle represents the polymerized tubulin. Green and blue arrows indicate
direction of protein movement. (D) Scatter plot showing polymerized tubulin in
wild type and Gα12/13 null HEK293 cell as revealed by polymerized tubulin and
BN-Page based assays. In the BN-PAGE assay the polymerized tubulin was
quantified based on the relative intensity of the monomeric tubulin. N = 3/4
independent experiments. Data represented as mean ± SEM, p-value by
unpaired t-test. (E) Immunofluorescent images showing actin (phalloidin) and

(α-tubulin) in HEK293 (Wild type: WT) and GNAS12/13 knockout (1GNAS12/13)
cells. Scale bar: 20 µm.

FIGURE S2 | Actin and tubulin cytoskeleton in wild type and G12/13 KO cells.
(A,B) Confocal immunofluorescent images showing F-actin (phalloidin stained, top
panel, A) and tubulin (α-tubulin immunolabelled, bottom panel, B) cytoskeleton in
GFP-M1R expressing wild type and G12/13 KO cells. Blue arrow indicates focal
adhesions, yellow arrow indicates extended cytoplasmic processes enriched in
tubulin. Scale bar: 20 µm.

FIGURE S3 | Effect of carbachol on tubulin cytoskeleton in M1R expressed wild
type and G12/13 KO cells. Confocal immunofluorescence images showing the
tubulin cytoskeleton. Yellow arrow indicates crest of the cell with dense packing of
tubulin. White and blue arrows indicate elongated cytoplasmic processes enriched
in tubulin. Blue arrow indicates localization of GFP-M1R in extended cytoplasmic
processes. Z represents a particular optical slice in Z-stacked image series. Scale
bar: 20 µm.
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