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Abstract

Background: Multiple myeloma (MM) is a hematological cancer caused by abnormal accumulation of monoclonal plasma
cells in bone marrow. With the increase in treatment options, risk-adapted therapy is becoming more and more important.
Survival analysis is commonly applied to study progression or other events of interest and stratify the risk of patients.
Results: In this study, we present the current state-of-the-art model for MM prognosis and the molecular biomarker set for
stratification: the winning algorithm in the 2017 Multiple Myeloma DREAM Challenge, Sub-Challenge 3. Specifically, we
built a non-parametric complete hazard ranking model to map the right-censored data into a linear space, where
commonplace machine learning techniques, such as Gaussian process regression and random forests, can play their roles.
Our model integrated both the gene expression profile and clinical features to predict the progression of MM. Compared
with conventional models, such as Cox model and random survival forests, our model achieved higher accuracy in 3
within-cohort predictions. In addition, it showed robust predictive power in cross-cohort validations. Key molecular
signatures related to MM progression were identified from our model, which may function as the core determinants of MM
progression and provide important guidance for future research and clinical practice. Functional enrichment analysis and
mammalian gene-gene interaction network revealed crucial biological processes and pathways involved in MM progression.
The model is dockerized and publicly available at https://www.synapse.org/#!Synapse:syn11459638. Both data and
reproducible code are included in the docker. Conclusions: We present the current state-of-the-art prognostic model for
MM integrating gene expression and clinical features validated in an independent test set.
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Background

Multiple myeloma (MM) is a hematologic malignant neoplasm
with wide clinical presentation and heterogeneous genetic back-
ground, characterized by bone marrow infiltration with clonal
plasma cells [1–3]. MM is the third most common hematologic
cancer in the USA, with an estimated 30,770 new diagnoses and
12,770 deaths in 2018 [4]. Since the first case of MM was reported

in 1844, great progress has been made in its diagnosis, as shown
in the International Myeloma Working Group Diagnostic Crite-
ria for MM [5, 6]. Currently, risk-adapted therapy is becoming the
standard of care. As survival analysis is essential for therapeu-
tic decision making and clinical research, there is an urgent need
to develop reliable and robust models for estimating the survival
from massive time-to-event data.
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A major challenge of analyzing time-to-event data is the cen-
soring problem—the patient status is not fully available owing
to tracking interruption or time limit of a study. In this work,
we focused on the right-censored data, in which the censored
patient did not have disease progression at the censoring time
but his/her future status was not available. In this case, it is
not advisable to use prediction models directly. Many statistical
and machine learning applications have been developed to han-
dle censored data. As the most commonly used survival predic-
tion technique, the Cox proportional hazards model estimates
the parameters with partial likelihood function by assuming a
proportional hazards condition [7]. In addition to the basic Cox
model, a variety of regularized Cox models have been adopted
to deal with high-dimension data, such as Lasso-Cox [8], Ridge-
Cox [9], and EN-Cox [10]. However, Cox models only optimize the
partial maximum likelihood function of all realized events with-
out considering the likelihood of censored patients. In addition,
Cox models require multiple assumptions that may not be met
in many real situations. Random survival forests [11] is another
popular model that uses a forest of survival trees to extend the
basic random forest method. Compared with the Cox model, it
makes few assumptions and is a completely data-driven model,
but it also ignores the information from early-censored patients.
Furthermore, as a tree-based model, it prefers to split the con-
tinuous variables into categorical variables.

In 2017, the Dialogue on Reverse Engineering Assessment
and Method (DREAM) [12] organized the Multiple Myeloma
Challenge, in which computational methods were systemati-
cally evaluated on the held-out, previously unseen benchmark
datasets. DREAM Challenge, together with Multiple Myeloma
Research Foundation (MMRF), UAMS, Celgene, and Dana-Farber
Cancer Institute, put together the largest training and unpub-
lished test dataset for MM in history, allowing participants to
unbiasedly evaluate the algorithms in a blind dataset. In this ar-
ticle, we report the best-performing method by prediction accu-
racy in the Sub-Challenge 3 of this challenge, integrating both
expression and clinical data for MM prognosis. We used a com-
pleted hazard ranking model named GuanRank [13] with Gaus-
sian process regression (GPR) to predict the progression of MM.
Our model achieved consistent better performance across differ-
ent metrics than Cox and random survival forests in 3 indepen-
dent cohorts. We also identified the novel, important gene sig-
natures related to MM progression, some of which have not been
reported in previous studies. Our model and results establish the
new state-of-the-art in MM prognostic modeling and provide ge-
netic insights into MM prognosis.

Materials and Methods
Data collection

Data used in this study were provided by the Multiple Myeloma
DREAM Challenge [14]. There are 4 cohorts from different
sources, GSE24080UAMS [15], HOVON65 [16], EMTAB4032 [17],
and MMRF [18]. The number of patients in the cohorts is 559,
282, 147, and 636, respectively. Gene expression, clinical, and de-
mographic data are available for all the cohorts. For the MMRF
cohort, the gene expression data were generated from RNA se-
quencing; for the other 3 cohorts, microarray was the original
method. There are 18,994, 20,514, 20,514, and 24,128 gene ex-
pression features for the cohort EMTAB4032, GSE24080UAMS,
HOVON65, and MMRF, respectively. All of the genes are used as
features. All the expression data were pre-processed by the chal-
lenge organizers and data providers to ensure consistency. Age

and International Staging System (ISS) stages are available as
clinical and demographic data. ISS is a risk-staging system based
on the assessment of 2 blood tests—β2 microglobulin and al-
bumin [19]. The demographic characteristics of each cohort are
summarized in Table 1.

Data pre-processing and GuanRank

Our model validation scheme consists of within-cohort vali-
dation and across-cohort validation. When they were evalu-
ated within each cohort, the data were first split 5 times for 5-
fold cross-validation (5 × 5 CV). For each dataset, we imputed
the missing values using the mean value across patients and
quantile-normalized the expression data in order to force the
values into the same distribution to eliminate batch effects. The
overall workflow is shown in Fig. 1.

To leverage cutting-edge machine learning techniques, we
need to transform the label of time-to-event data to a new re-
gressible label. In particular, the original label of a patient con-
tains 2 values: (i) the binary status and (ii) the corresponding
event/censoring time. This leads to the common problem that
the event/censoring time cannot be used directly by typical ma-
chine learning models. Therefore, the desired new label needs
to be a single value integrating the information of both the sta-
tus and the time. Here we use a complete hazard-ranking algo-
rithm, named GuanRank [20], to rank all the patients and as-
sign a score based on their relative hazards with a Kaplan-Meier
function [21]. Fig. 1 illustrates how GuanRank works. For each
pair of patients, we calculated a relative rank score for each pa-
tient through pairwise comparison. When the event time of pa-
tient A is earlier than that of patient B, there are 4 scenarios: (i)
if both A and B are not censored, 1 would be added to the rank
score of A; (ii) if only B is censored, 1 would also be added to the
rank score of A; (iii) if only A is censored, p would be added to the
rank score of A, and 1 − p would be added to the rank score of B.
Here p is a conditional probability that a future event happens
before A reaches the time point of B, which can be calculated
using the Kaplan-Meier survival function:

p = r (tA) − r (tB )
r (tA)

,

where r(t) is the proportion of the patients that are still alive at
time t; (iv) if both A and B are censored, p + (1 − p)/2 would be
added to the rank score of A and (1 − p)/2 would be added to the
rank score of B. When the event time of patient A is the same
as that of patient B, there are 2 scenarios: (v) if both A and B
are censored or neither are censored, 0.5 would be added to the
rank score of A and B, respectively; (vi) if only A or B is censored,
1 would be added to the rank score of the uncensored patient. In
the final model, as a summary of the above cases, the rank score
of A is given by:

If SA = 1,

∑
∀B:tB >tA

1 +
∑

∀B:tB ≤tA, SB = 0

r (tA)
r (tB )

+
∑

∀B: tB =tA , SB = 1
0.5.

If SA = 0,

∑
∀B:tB ≥tA, SB = 0

[
1 − 0.5r (tB )

r (tA)

]
+

∑
∀B:tB ≥tA, SB = 1

[
1 − r (tB )

r (tA)

]

+
∑

∀B:tB <tA, SB = 0

0.5r (tA)
r (tB )

.
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Table 1: Demographic characteristics of the 4 cohorts

Cohort GSE24080UAMS HOVON65 MMRF EMTAB4032

No. of patients 559 282 636 147
Mean ± Standard deviation age
(years)

57.18 ± 9.45 55.07 ± 7.72 64.09 ± 10.86 66.40 ± 9.92

Sex ratio (M:F) 1.52:1 1.33:1 1.46:1 1.10:1
Progression (%) 44.54 66.67 32.70 97.99
Median time to progression
(days)

776.73 558.15 389.50 346.18

Death (%) 30.77 34.75 16.35 36.91
Median time to death (days) 830.62 532.23 402.50 1287.10
ISS I (%) 52.6 40.1 32.5 25.5
ISS II (%) 26.1 25.2 36.2 30.2
ISS III (%) 21.3 28.7 28.0 40.3

Figure 1: Overall workflow of the algorithm design to predict the progression of patients with MM. The original survival data were first converted into complete ranking

scores via GuanRank. Four different cohorts were used to train models for predicting MM progression based on gene expression profiles and clinical features. The GPR
method was used in our final model to achieve the best prediction performance.

After completing all pairwise comparison between all the pa-
tients, the relative ranking would be normalized into the range
0–1 with the following function:

normalized rank (A) = rank (A) − rank (min)
rank (max) − rank (min)

,

where rank(A) is the original ranking of A, rank(min) is the min-
imum ranking in the cohort, and rank(max) is the maximum
ranking in the cohort. Then we can use this ranking score as the
target for different machine learning algorithms, such as GPR
and random forest.

Model comparison and evaluation

Four survival prediction models were compared in this study: (i)
combination of GuanRank and GPR [22], (ii) GPR direct regres-

sion on progression-free survival, (iii) Lasso-Cox proportional
hazards model, and (iv) random survival forests. Their perfor-
mances were evaluated by 2 metrics, integrated area under the
receiving operator characteristic (ROC) curve (AUC) [23] and the
C-index [24]. Integrated AUC measures time-dependent concor-
dance with the weights derived from the survival time distri-
bution. For continuous predictions, a cut-off can be used to bi-
narize the predictions and calculate 1 point in the ROC curve.
The cut-off for continuous predictions gradually increases from
0 to 1 to obtain the ROC curve and corresponding AUC. The
time-dependent AUC was first calculated at 14, 16, 18, 20, and
22 months using the weights from the Kaplan-Meier estimator
of the censoring distribution [25]. Then the integrated AUC was
calculated from time-dependent AUC using the weights from 2
× S(t) × f(t), where S(t) denotes the survival function and f(t) de-
notes the marginal density of the survival time Ti as described by
Heagerty et al. [23]. The C-index estimates the probability that
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a randomly selected patient who has experienced an event has
a higher risk score than a patient who has not experienced the
event [26]. Both metrics are the measures of the goodness of fit
for the survival model.

Stacking expression and clinical features

Although we have the whole gene expression profile (GEP) for
the model, it was demonstrated that the GEP-alone signature
has limited power to predict complete response in MM [27]. Here
we combine the therapy-specific features including age and ISS.
For these 2 features, we built a separate linear regression model
to predict the outcomes and then stacked the results with GEP-
based prediction. After trying different proportions, 50% for each
model had the best performance.

Cross-cohort prediction

To validate the robustness of the model, we predicted the MM
progression across 4 cohorts. For each experiment, 2 cohorts
were selected, one as the training cohort and the other as the
test cohort. We used the same model and parameters as the
within-cohort experiment and stacked the GEP and clinical fea-
tures. Finally we had 12 different pairs of outcomes and also
evaluated them with integrated AUC and C-index.

Progression-related genes

To identify the risk genes, we built a random forest regression
model based on the expression data with GuanRank hazard
score as target value. Then the feature importance values for
all the genes were extracted and sorted. Using the proportions
of each cohort among the 4 cohorts (number of patients in 1 co-
hort/total number of patients in 4 cohorts) as the weights, we
calculated the combined importance value for each gene. After
sorting, we selected 342 genes with importance value >0.01.

To evaluate the functional properties of the gene set, we
performed GO enrichment analysis with DAVID v6.8 [28]. False
discovery rate correction was performed using the Benjamini-
Hochberg method, and GO biological processes with Q-value
<0.01 and fold enrichment >2 were considered significantly en-
riched. To better understand the molecular basis of MM, we put
the genes into a mammalian functional network [29] context,
which was constructed on the basis of a Bayesian integration of
diverse genetic and functional genomic data, including protein-
protein interactions, homologous functional interactome, phe-
notype and disease, expression and phylogenetic profiles. We
then used the Girvan-Newman fast greedy algorithm [30] to per-
form community clustering in the network and found the en-
richment function for each cluster.

Results

In this study, we first compared the performances of MM
progression prediction from GEPs between our GuanRank-GPR
framework and 3 other models. By converting the original sur-
vival status into a complete ranking score, our model showed
higher accuracy than the conventional survival prediction mod-
els. After integrating the clinical features, the model signif-
icantly achieved better performance. It also showed robust
predictive power in cross-cohort predictions. Furthermore, we
found a set of gene signatures that are important in predicting
MM progression. The key biological processes and pathways as-

sociated with these genes were identified through functional en-
richment analysis and gene-gene interaction network.

GuanRank-GPR framework improves the prediction of
MM progression

A major challenge in survival analysis is the incompleteness
of the time-to-event data. Many efforts have been made to ad-
dress this problem, including Cox regression and random sur-
vival forests. However, both of these models ignore the early-
censored patient information. During the maximum likelihood
(in Cox) or the random forest calculation, cases comparing an
early-censored point with a late-censored or uncensored point
are thrown out because of uncertainty of the relationship be-
tween the 2 points. However, let us imagine a case in which the
patient was censored at 1 day (i.e., observed to be alive at Day
1), versus a patient that is censored at 10 years. Obviously, the
2 points provide important information that we could make use
of. As the number of censored example goes up, we lose more
information. In an extreme case where all patients are censored,
we learn nothing from Cox and survival random forest.

To address this challenge, we developed the complete
hazard-ranking framework, GuanRank, to estimate the relative
rankings of censored patients. GuanRank differs from the tradi-
tional Cox model or random survival forests on 2 aspects: first,
it gives a probability ranking of 2 individuals; even the individ-
ual with a shorter observation time is censored. In other sur-
vival models, when an early time point individual A is censored,
the comparison of this individual against any of the later time
point individuals B is inconclusive (Fig. 1) because we are not
able to tell the status of A when it reaches the time point of B.
In this case, in the maximal likelihood function used by the Cox
model, this pair of A and B is discarded. However, in GuanRank,
although no decisive conclusion can be made for A and B, we
give a probabilistic estimation of the relationship between A and
B. The intuition, as described above, is that a patient that is cen-
sored at 1 day has a higher risk at baseline than a patient that
is censored at 10 years, since the former patient can die at any
time in between. Effectively, we increase the sample sizes by in-
tegrating the early-censored points. Second, unlike Cox and ran-
dom survival forest with fixed base learners, in GuanRank we
transform the censored data problem into a standard regression
problem, thus allowing us to have a much wider spectrum for
base learners and making us more likely to find the most suit-
able one. Because GPR is particularly suitable for multi-cohort
and cross-cohort modeling owing due to its local regression na-
ture [31], with GuanRank, we were able to take advantage of GPR
to significantly boost performance.

To evaluate the performance of different models, we per-
formed 5 × 5-fold cross-validation experiments within each co-
hort. The integrated AUC and C-index evaluation results are
shown in Fig. 2. We first directly used the binary censored sta-
tus as prediction target to train a GPR model. GPR is a type
of Bayesian non-parametric method, and it can model com-
plex systems while handling uncertainty in a principled man-
ner. Fig. 2 shows that the GPR-only model performed better than
Cox and random survival forests in 2 cohorts. It should be noted
that values >0.5 indicate that the model is better than predicting
an outcome randomly. To further consider the early-censored
patient information, we calculated the continuous GuanRank
scores as the prediction targets instead of the binary censored
status and re-trained the GPR model (hereafter referred to as
GuanRank-GPR). The GuanRank-GPR model performed best in
3 (GSE24080UAMS, HOVON65, and MMRF) of the 4 cohorts. In



Sun et al. 5

Figure 2: Performance comparison of different survival analysis models in 4 cohorts. In the GPR model, we directly use the progression status as the desired output
to train, whereas in the GuanRank-GPR model we convert the progression status into a complete ranking score before training. The GuanRank-GPR model (red)

consistently performed best in 3 cohorts (GSE24080UAMS, HOVON65, and MMRF) and second best in the EMTAB4032 cohort, when evaluated by both (A) integrated
AUC and (B) C-index. GPR, Gaussian process regression. Cox, Cox proportional hazards model. RF, random forest.

Figure 3: Integrating gene expression profiles and clinical features improves the prediction performance. Two types of models were built using either gene expression
data or clinical data as features. After stacking the predictions from gene expression data and clinical data, the performance consistently increased in all cohorts when
evaluated by (A) integrated AUC and (B) C-index, except for the integrated AUC of EMTAB4032 and the C-index of HOVON65. expression-only, models using expression

data only as input features clinical-only, models using clinical data only as input features stacking, models using both expression and clinical data as input features

the EMTAB4032 cohort, our model performed slightly worse than
survival random forests. In fact, most patients (143 [97%]) in this
cohort experienced disease progression during the longitudinal
observation period, while the progression rates (number of pro-
gressed patients/number of total patients) in the other cohort
were only 45%, 67%, and 33%.

Integrating gene expression profile and clinical data
improves the performance

The GEP and clinical data are 2 types of features. They capture
different aspects of information, and integrating them into our
model further improves prediction performance. We combined
the prediction from the clinical features, age, and ISS. The in-
tegrated AUC and C-index of the expression-only model and

stacking model are shown in Fig. 3. The stacking model per-
formed better than the expression-only model in all 4 cohorts
when evaluated with integrated AUC. For the C-index metric,
there was only 1 cohort for which the stacking model’s perfor-
mance was slightly worse. The results indicated that the predic-
tion would be more accurate with more relative information.

GuanRank-GPR model displays robust cross-cohort
performance

It is difficult to predict the progression of a new patient with
the information from different cohorts owing to the cohort and
batch effects. A cohort is a group of people who share a com-
mon characteristic or experience within a defined period. If we
just focus on 1 cohort, we cannot get the whole landscape.
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Figure 4: Cross-cohort evaluation of the GuanRank-GPR model. To test the robustness of our model in a cross-cohort fashion, we train our GuanRank-GPR model on
one cohort and make predictions on another cohort. Each row represents the training cohort and each column represents the test cohort. There are no data in the
diagonal of the matrices, which represents the self-prediction. The predictions were evaluated using (A) integrated AUC and (B) C-index.

Figure 5: GO enrichment analysis of important genes in predicting MM progression. The top 25 significant GO biological processes were enriched from 342 key genes

related to MM progression. In the list, color indicates biological process class. Most biological processes are related to the cell cycle. In the bar graph, the dark bars are
the negative logarithmic transformation of the P-value, and the light bars are the counts of genes.

Therefore, cross-cohort robust models are needed. The Guan-
Rank framework can take advantage of the information from
the censored patients. It exhibits more robustness than the con-
ventional models when the cohorts contain a certain amount
of censored data. Here, we systematically evaluate the perfor-
mance of our GuanRank-GPR model in a cross-cohort fashion:
for each pair of cohorts, we trained our model on one cohort
and validated the performance on the other. Fig. 4 illustrates
the evaluation of the results of 12 training-test pairs with in-
tegrated AUC and C-index. All the values are >0.5, showing that
the model is robust to cohort bias.

Gene determinants of MM progression prediction are
extracted from feature importance analysis

A key set of 342 gene determinants related to MM progression
were identified on the basis of the feature importance from ran-
dom forests regression. To investigate the functional pathways
associated with these genes, we performed functional enrich-
ment analysis. After filtering with Q-value and fold enrichment,
we found 69 significantly enriched GO biological processes (Sup-
plementary Fig. S1; Fig. 5 shows the top 25 processes). Most pro-
cesses are related to the cell cycle or chromosomal instability.
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Figure 6: Functional clusters in the MM progression gene network. The gene clusters are shown in different colors and visualized using a mammalian gene-gene
interaction network. The shared biological processes of selected clusters are labeled.

The cell cycle is a process by which cells progress, divide, and
reproduce themselves. Proper cell cycle progression is regulated
by cell cycle proteins and checkpoint pathways. However, dereg-
ulation of cell cycle progression is one of the key hallmarks of
cancer [32]. Chromosomal instability is another characteristic
property of cancer cells, where chromosomes are not stable as
they are in normal cells [33].

To better understand the molecular basis of the MM, we stud-
ied the gene interactions and the shared biological processes un-
der a mammalian gene function network (Fig. 6). We clustered
the functionally related genes; different colors represent differ-
ent clusters. Three clusters (Cluster 3, 6, 7) are related to cell cy-
cles, including cell division, nuclear division, and regulation and
transition of the mitotic cell cycle. Other clusters are related to
chromatin modification (Cluster 2), spermatogenesis (Cluster 1),
ribosome biogenesis (Cluster 4), and the immune system (Clus-
ter 5).

Several genes in our gene signature were reported in recent
studies. MYBL2 and ANP32E were identified as the top 2 impor-
tant genes in our result. MYBL2 is a gene that encodes a tran-
scription factor with functions in checkpoint control of the G2
cell cycle phase. Heinrichs et al. considered this gene as a key
tumor suppressor and believed that it plays an important role

in myeloid malignant neoplasms [34]. ANP32E is a member of
the acid nuclear protein family that has been implicated in his-
tone acetyltransferase inhibitory activity. Walker et al. identified
ANP32E as one of the prognostic important genes for myeloma
in 372 patients with MM [35]. Furthermore, several genes have
never been reported to be associated with MM, but they are
oncogenes (e.g., TPX2 is related to gastric cancer [36, 37] and
pancreatic cancer [38]; UBE2C is related to prostate cancer [39]
and colorectal cancer [40]). Further validations for these genes
are needed. The complete gene signature is available in Supple-
mentary Table S1.

Discussion

With the development of machine learning techniques, survival
analysis can benefit more from the efforts of state-of-the-art al-
gorithms. Many machine learning approaches, as well as statis-
tical models and their extensions, were developed for survival
prediction. In this article, we used a non-parametric ranking
method to assign a hazard score to each patient in the study.
Then we built a Gaussian process regression model on the GEP
with the hazard scores as the target. Our model outperformed
other popular models when evaluated using both integrated
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AUC and C-index of the predictions. The model also showed ro-
bust predictive power in our cross-cohort validations.

There are 3 advantages of the GuanRank framework. First, it
does not rely on any assumption, while the Cox model assumes
a proportional hazards condition [7]. Second, it is easy to gener-
alize the data into a standard regression problem, where many
machine learning methods can be applied to the survival pre-
diction. Third, it completely ranks the patient pairs including
ealy-censored−late-uncensored pairs, which is not considered
in the Cox [7] and random survival forests [11]. However, it also
has several limitations. When an event happened in an unbal-
anced way within the cohort, e.g., 98% of patients experienced
progression during the observation period in the EMTAB4032 co-
hort, the performance of our model is not as good as expected.
Another problem is that our model focuses on the hazard rank-
ing. It would lose the specific time information and only use the
event order between a pair of patients.

After combining clinical information, the performance was
improved. This indicates that a GEP alone is inadequate in
predicting progression for MM, and it is helpful to add more
progression-related features. Although GEP has been widely
used for hazard risk prediction, it cannot reflect the whole land-
scape of MM progression. We need to develop a more com-
prehensive predictive model with an integrated genomics ap-
proach. Cytogenetic abnormality is another important marker
for MM progression prediction, and it has been reported to pro-
vide prognostic information [41]. The DREAM Challenges also
provided the cytogenetic data; however, they contained many
missing values, and the performance decreased when these
cytogenetics features were added. We believe that the model
would have better predictive power when more high-quality cy-
togenetic features were stacked.

Specifically, we wanted to extract the most informative genes
from the GEP in order to better predict the progression of pa-
tients with newly diagnosed MMs. We built a GEP-based prog-
nostic signature with GuanRank hazard score as the target value.
Part of the genes were reported to be associated with MM, and
part of the genes were not but correlated with other types of can-
cers. A few gene signatures were published in recent years, such
as EMC-92 [42], UAMS-70 [43], UAMS-80 [44], IFM-15 [45], MRC-IX
[46], and HM-19 [47]. There is little overlap among these signa-
tures, and they are also not included in our signature. It is shown
that all the signatures have a cohort bias and cannot completely
reflect MM progression. More comprehensive studies are needed
in the future.

Availability of Supporting Source Code and
Requirements

Project name: Multiple Myeloma Survival Prediction
Project home page: https://www.synapse.org/#!Synapse:syn114
59638
Includes: Data and dockerized environment for training and pre-
diction
Operating system(s): Platform independent
Programming language: Perl, Python, and Matlab
License: GNU GPL v3.0
An archival copy of code and data is also available via the Giga-
Science database GigaDB [48]. The dockerized environment has
been registered in bio.tools with the identifier biotools: Mul-
tiple Myeloma survival prediction, and in SciCrunch with the
identifier RRID:SCR 017651.

Additional Files

Supplementary Figure S1. The complete list of significantly en-
riched GO biological processes.
Supplementary Table S1. The complete list of gene signatures.
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