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Abstract: Dicyanoaurate, dicyanoargentate, and dicyanocuprate ions in solution and  

doped in different alkali halide hosts exhibit interesting photophysical and photochemical 

behavior, such as multiple emission bands, exciplex tuning, optical memory, and 

thermochromism. This is attributed to the formation of different sizes of nanoclusters in 

solution and in doped hosts. A series of spectroscopic methods (luminescence,  

UV-reflectance, IR, and Raman) as well as theoretical calculations have confirmed the 

existence of excimers and exciplexes. This leads to the tunability of these nano systems 

over a wide wavelength interval. The population of these nanoclusters varies with 

temperature and external laser irradiation, which explains the thermochromism and optical 

memory. DFT calculations indicate an MLCT transition for each nanocluster and the 

emission energy decreases with increasing cluster size. This is in agreement with the 

relatively long life-time for the emission peaks and the multiple emission peaks 

dependence upon cluster concentration. 
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1. Introduction 

The term “excimer” was first introduced in 1960 by Stevens and Hutton when studying pyrene 

luminescence [1]. They defined excimer as a dimer associated in the electronic excited state and 

dissociated in its ground state, which is different from a stable dimer. Actually, the first excimer can be 

dated back to 1927, when Lord Rayleigh observed the ultraviolet emission spectrum of high-pressure 

mercury vapor [2]. Nobel gases, such Helium, Neon, Argon, and Krypton also form excimers to give 

intense emission spectra in the vacuum ultraviolet region [3,4]. Excimers are also common in liquid 

and solid phases, especially for aromatic compounds. As early as the 1950s, Förster and Kasper observed 

that the pyrene solution fluorescence depended on the concentration [5,6]. Since then, more and more 

organic compounds have been found to form excimers: benzene, naphthalene, 1,2-benzanthracene, and 

perylene, just to name a few [7–11]. 

For inorganic excimers, a matrix isolation study has been carried out for alkali metals, alkaline earth 

metals and group VIIB metals with absorption and luminescence spectra [12]. Platinum complexes 

have been reported to form different excimers in aqueous solution, such as [PtII(4,7-diphenyl-1,10-

phenanthroline)(CN)2], [Pt2(P2O5H2)4
2−

Tl], and [Pt2(P2O5H2)4
2−

Au(CN)2
−
] [13–15]. In aqueous 

solution, the formation of excimers is affected by the concentration of monomers; as the concentration 

increases, the emission peak intensity corresponding to the excimer is enhanced. Closed-shell heavy 

metals used to be considered as repelling each other due to the fully occupied valence orbitals. 

However, in the study of inorganic and organometallic compounds, experimental results have 

presented evidence of interaction between closed-shell metals [16–25]. The strength of these bonds is 

weaker than ionic (700–4000 kJ/mol) and covalent bonds (200–1000 kJ/mol) but stronger than a  

van der Waals bond (<5 kJ/mol), and they are about the energy of hydrogen bonds (10–40 kJ/mol) [26]. 

The strong aurophilic interaction is ascribed to the relativistic effect of gold. In chemistry, relativistic 

effect means when the electrons with high speed move close to a heavy nucleus, the mass increases 

consequently, and so does the effective nuclear charge [27]. Thus the less diffuse orbitals (s and p) 

contract radially and the orbital energy is stabilized, leading to a stronger shielding of the nuclear 

attraction. The more diffuse orbitals (d and f) expand radially and results in a destabilization of the 

orbital energy. Gold has a larger relativistic effect than any other element with Z < 100 [28]. The 

tendency of Au(I) to form larger clusters via a weak interaction is due to the stabilization of molecular 

orbitals derived from the filled 5d atomic orbitals by configuration mixing with empty molecular 

orbitals from 6s or 6p atomic orbitals [29]. 

Inspired by the Au(I) compounds, our group has reported the first example of ligand-unsupported 

Ag(I) complex with argentophilic interaction, Tl[Ag(CN)2] [30]. X-ray crystallography, luminescence, 

and temperature-dependent Raman spectra measurements were carried out. The crystal structure 

results show that the Ag–Ag bond distance is 3.11 Å and the low energy Ag–Ag vibrational frequency 

of about 75–125 cm
−1

 given by Raman indicates the presence of direct argentophilic interaction in 

Tl[Ag(CN)2]. Since then, our group has reported a series of d
10

 metal cyano compounds in nano 

systems [31–41]. We found that due to the formation of different size exciplexes, these nano  

systems show interesting photophysical and photochemical behaviors, such as emission tunability, 

thermochromism, and optical memory. Luminescence of these systems not surprisingly depends upon 

the content of cyanometallic compounds, similar to excimers in aqueous solution. In this paper, we 



Materials 2013, 6 2597 

 

 

review the research work concerning Ag(CN)2
−
, Au(CN)2

−
, and Cu(CN)2

−
 nano systems, which 

possess interesting luminescence properties. 

2. Ag(CN)2
−
 Excimers and Exciplexes 

The photoluminescence of solid state Tl[Ag(CN)2] indicates the existence of argentophilicity in 

Ag(I) compounds [30]. The Ag–Ag interaction is believed to result in the formation of *[Ag(CN)2
−
] 

excimers in the bulky state. We carried out a study focusing on the *[Ag(CN)2
−
]n in the nano state by 

doping Ag(CN)2
−
 in KCl hosts [31–34,39]. The KAg(CN)2/KCl nano systems were prepared by a 

simple slow evaporation method and the concentration was determined using atomic absorption method. 

Figure 1 shows the emission peaks for the KAg(CN)2/KCl single crystal. Multiple emission peaks at 

295, 327, 345, 417, and 548 nm were observed for corresponding excitation wavelengths. These 

luminescence peaks are labeled as A, B, C, and D respectively, as indicated in Figure 1. For each 

emission band, the corrected excitation spectra were compared to the absorption of a KAg(CN)2 

aqueous solution. The KAg(CN)2 solution absorbs at 196 nm, ascribed to a metal-to-ligand  

charge transfer process. However, the excitation maxima for A–D bands are at much lower energy  

and the homometallic interaction is believed to play an important role in the large red-shift of the 

excitation peaks. 

Figure 1. Exciplex tuning by site-selective excitation: emission spectra of a 

KAg(CN)2/KCl crystal at 77 K with different excitation wavelengths. Intensities are not 

comparable between different spectra. (Reprinted with permission from [31]. Copyright 

1998 American Chemical Society.)  

 

To better understand the argentophilic interaction, electronic structure calculations using both 

extend Hückel and ab initio methods were conducted for a monomer, dimer and trimer doped in KCl 

hosts. As shown in Figure 2, a Ag(CN)2
−
 monomer is present in the KCl cubic unit cell with 

substituting Ag
+
 and CN

−
 for K

+
 and Cl

−
, thus the total charge of this system is unchanged. For dimers, 
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there are three different configurations, eclipsed, perpendicular, and offset-eclipsed, which all have 

linear Ag(CN)2
−
 units. Calculations for four trimers with linear and angular arrangements respectively 

were carried out as well. 

Figure 2. Structure of a unit cell of KCl with a defect created by doping two adjacent 

Ag(CN)2
−
 ions. In the defect, the Ag

+
 and CN

−
 ions are shown to occupy the K

+
 and Cl

−
 

sites, respectively. (Reprinted with permission from [31]. Copyright 1998 American 

Chemical Society.)  

 

Table 1 summarizes the calculated results for the equilibrium distance, binding energy,  

HOMO-LUMO gap and overlap population for [Ag(CN)2
−
]n nanoclusters in ground and excited states. 

The bond distance between two Ag atoms is shorter in the excited state than in the ground state. In 

addition, the binding energy and the overlap population also increase significantly in the excited states 

in comparison with the ground states. These are consistent with the behavior of excimer and exciplex. 

The interaction between monomer units is stronger in the excited state, which results in a stable excited 

dimer, e.g., excimer. The multiple HOMO-LUMO gap energies by calculation are in agreement with 

the different luminescence bands (A to D) observed experimentally. Interestingly, the HOMO-LUMO 

gap show a trend that with an increase in the number of interacting Ag(CN)2
−
, the emission energy 

decreases. This explains the exciplex tuning behavior and the different bands A, B, C, and D are 

tentatively assigned to excimer, cis-localized exciplexs, trans-localized exciplexes, and delocalized 

exciplexes respectively. The ab initio calculation results for all [Ag(CN)2
−
]n nanoclusters indicate a 

antibonding HOMO to bonding LUMO transition, which is also favorable for the formation of 

excimers and exciplexes. 
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Table 1. Summary of the Results of Extended Hückel Calculations for the Ground and 

Excited States of Oligomeric Species of Dicyanoargentate(I). (Adapted with permission 

from [31]. Copyright 1998 American Chemical Society.)  

Species [S] 
[S]2 

(ec) 

*[S]2 

(ec) 

[S]2 

(st) 

*[S]2 

(T1,st) 

[S]3 

(T1,ec) 

*[S]3 

(T1,ec) 

[S]3 

(T1,st) 

*[S]3 

(T1,st) 

[S]3 

(T1,ec) 

*[S]3 

(T1,ec) 

Ag–Ag eq. diet, A 8.00d 3.58 3.00 2.88 2.39 3.49 3.09 2.79 2.46 3.54 3.15 

Binding energy, eV 0.00 0.13 1.12 0.22 1.32 0.33 1.47 0.61 2.00 0.29 1.14 

H–L gap, eV 4.95 4.37 3.98 4.28 4.13 4.00 3.55 3.73 3.46 4.17 3.83 

O.P. (Ag–Ag) 0.000 0.003 0.034 0.069 0.089 −0.008 0.027 0.039 0.079 0.003 0.048 

The Ag(CN)2
−
/KCl nano system has an extreme wide luminescence tuning range over 18,000 cm

−1
, 

compared to some other systems [42–44]. This new optical behavior is referred to as exciplex tuning, 

in which the exciplex means excited state oligomers, not limited to dimers. The photoluminescence of 

the crystal can also be tuned by the content of the Ag in the host [32]. The higher energy bands are 

predominant for lower silver concentration whereas the spectra for higher silver concentration are 

mostly of lower energy bands. This further confirms the existence of different size nanoclusters in the 

doped system and the time-resolved luminescence spectra suggest energy transfer processes from 

dimers to trimers. The increase of trimer luminescence intensity is related to higher statistical 

population of trimers in Ag concentrated crystals and more acceptors for the energy transfer. 

In addition to the novel exciplex tuning behavior, the Ag(CN)2
−
/KCl nano system exhibits 

interesting thermochromism phenomena [33]. Figure 3 shows the emission spectra of a KCl/KAg(CN)2 

crystal at different temperatures. At room temperature, only one band (A) is observed while excited at 

235 nm. However, as the temperature is cooled down to liquid nitrogen temperature (~77 K), band A 

almost disappears and a strong emission band C at lower energy appears. As the temperature is further 

decreased to 12 K, the emission spectra show predominantly band B at intermediate energy. Since the 

luminescence pattern changes dramatically with temperature, the possible cause relating to the Ag–Ag 

bond distance change is excluded. Another possibility that these emission bands are dependent on 

fluorescence and phosphorescence is also ruled out, because all the emission bands have a lifetime of 

microsecond magnitude. Therefore, the thermochromism behavior is due to some major structural 

changes. A kinetic model based on “normal” and back energy transfer is proposed. At liquid helium 

temperature, no energy transfer is involved and the luminescence is only from direct excitation. With 

temperature increasing to 80 K, “normal” energy transfer processes from high energy nanoclusters to 

low energy ones prevail and thus band C intensity increases in this temperature range. However, a 

further temperature increase leads to back energy transfer with reverse direction between nanoclusters. 

The back energy transfer is from low energy to high energy, which is not thermodynamically 

favorable. The higher activation energy than that of normal energy transfer is compensated by higher 

temperature, e.g., the back energy is significant at higher temperatures. In addition to KCl, different 

alkali halides, such as NaCl, NaBr, KBr, and NaF were used to study the host effect. Similar 

experimental results were obtained except for NaF, which is likely due to the small lattice size leaving 

no space for the Ag(CN)
−
 clusters. 
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Figure 3. Emission spectra of a KCl/KAg(CN)2 crystal as a function of temperature and 

excitation wavelength. Thin and thick curves represent spectra obtained with excitation 

wavelengths of 235 and 270 nm, respectively. Intensities are comparable between spectra 

at the same temperature but not comparable between spectra at different temperatures. 

(Reprinted with permission from [33]. Copyright 2000 American Chemical Society). 

 

Figure 4. Emission spectra versus 266 nm laser irradiation time at 77 K for batch 1 of 

[Ag(CN)2
−
]/KCl crystals. All spectra were scanned with 275 nm excitation. Note the 

dominance of the short-wavelength bands following irradiation at 77 K and the regeneration of 

the original spectrum in the recovery step. (Reprinted with permission from [39]. Copyright 

2000 American Chemical Society.)  
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Optical memory is another interesting property resulting from the presence of the nanoclusters in 

the doped KCl host [39]. As shown in Figure 4, the Ag(CN)2
−
/KCl crystal show two emission peaks at 

77 K. After irradiation at 266 nm for 90 min, the emission spectra have a significant change with the 

intensity of high energy peak increasing whereas the low energy peak intensity decreasing. Then, when 

the crystal is brought up to a warm temperature and cooled down again to 77 K again, the emission 

pattern recovers back to where it was at the beginning. In the whole process, acquiring emission 

spectra is “read”, irradiating laser beam on the crystal is “write”, and changing the temperature leads to 

“erase”. Therefore, this is a reversible write/read/erase optical memory behavior, which is similar to 

the research done by Zink and coworkers [45–47]. During the laser irradiations, the nanoclusters are 

excited and the distribution of different size excimers and exciplexes is changed, leading to the 

luminescence intensity change in the emission spectra. The kinetic study was conducted for every five 

min of laser irradiation and the activation energy was extrapolated via the emission peak intensity 

versus the logarithm of time. The obtained activation energy around 261 J/mol suggests a fast energy 

transfer between these *[Ag(CN)2
−
]n excimers and exciplexes. 

3. Au(CN)2
−
 Excimer and Exciplexes 

Our group has carried out a study on Ag(CN)2
−
 and Au(CN)2

−
 in aqueous as well as other organic 

solutions and observed non-Beer’s law behavior of the absorption for different concentrations of 

solution, as shown in Figure 5 [35,36]. The luminescence spectra of K[Au(CN)2] aqueous solution at 

room temperature and 77 K exhibit different emission peaks and the pattern depends upon the 

excitation wavelength. Theoretical calculations indicate the energy gap between the HOMO and 

LUMO decreases as the oligomer size increases. Both experimental and theoretical results suggest the 

presence of [Au(CN)2
−
]n excimers and exciplexes. Consequently, investigations on KAu(CN)2 doped 

in an alkali halide host was conducted to further understand the close-shell interaction between Au(I) 

complexes [38].  

Figure 5. Absorption spectra versus concentration of K[Au(CN)2] in aqueous solutions at 

ambient temperature. (Reprinted with permission from [35]. Copyright 2002 American 

Chemical Society.) 
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Figure 6 shows the emission spectra of a KAu(CN)2/KCl single crystal at 77 K. Same as the 

argentocyanide/alkali halide system, the Au(CN)2
−
/KCl also exhibit exciplex tuning behavior. The 

excitation ranges from 270 nm to 350 nm and the emission peaks are at 335, 390, and 425 nm 

respectively. However, the pure KAu(CN)2 crystal only shows one emission peak at 390 nm with 

different excitation wavelengths. Table 2 lists the emission maxima for KAu(CN)2 in an alkali halide 

host and aqueous solution, as well as the corresponding assignments. The high energy emission peak at 

275–285 nm in KAu(CN)2 aqueous solution was not observed for the solid state, implying no 

Au(CN)2
−
 monomer species is present in the doped KCl crystal. However, for the aqueous solution, 

due to the limit of concentration, low energy emission peak from the larger size of [Au(CN)2
−
]n does 

not exist. These results are in agreement with a model where the homometallic interactions between 

different Au(CN)2
−
 units form excimers and exciplexes. The lifetime measurements show microsecond 

magnitude phosphorescence, suggesting a metal to ligand charge-transfer process. In addition, Raman 

spectroscopy results provide further evidence for the formation of different nanoclusters in the doped 

crystal. A pure KAu(CN)2 crystal exhibits only one peak in the cyanide stretching region (about  

2176 cm
−1

), whereas the doped crystals have additional peaks at 2169 and 2189 cm
−1

. This is 

consistent with the photoluminescence results. The homometallic interaction in [Au(CN)2
−
]n 

nanoclusters affects the back bonding from gold to the cyanide ligand, which results in the shift of 

cyanide stretching frequency. 

Figure 6. Emission spectra of a single crystal of KAu(CN)2/KCl at 77 K with different 

excitation wavelengths. (Reprinted with permission from [38]. Copyright 2002 American 

Chemical Society.) 
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Table 2. General Qualitative Assignment of the Emission Bands Observed in Solids and 

Solutions of Au(CN)2-Species. (Adapted with permission from [38]. Copyright 2002 

American Chemical Society.) 

band 
solids, 

λmax
em

, nm 

solutions 

λmax
em

, nm 
assignment 

I – 275–285 *[Au(CN)2
−]2 

II 320–355 320–350 bent *[Au(CN)2
−]3 

III 370–395 380–390 linear *[Au(CN)2
−]3 

IV 420–450 420–440 *[Au(CN)2
−]4 

V – 455–490 *[Au(CN)2
−]n 

a 

VI 600–640 – *[Au(CN)2
−]n 

a *[Au(CN)2
−]n represents delocalized exciplexes.  

Theoretical calculations were conducted using Extended Hückel methods for [Au(CN)2
−
] monomer, 

dimer, trimer, and tetramer. The energy results of the ground state and the first excited-state results for 

these oligomers show that with the increase of the size, the binding energy between [Au(CN)2
−
] units 

increase and the HOMO-LUMO gap decreases. All the results indicate the bonding between Au-Au is 

stronger in the excited state and this confirms the existence of [Au(CN)2
−
]n excimers and exciplexes. 

For the trimer, the geometry also plays an important role and leads to different emission centers. The 

dynamics of [Au(CN)2
−
]n oligomer geometry changes have been studied by ultrafast spectroscopic 

experiments [48]. The time-resolved results show direct evidence of a shortening of Au-Au distance 

and further support the formation of [Au(CN)2
−
]n nanoclusters. 

4. Cu(CN)2
−
 Excimer and Exciplexes 

As the last member in the coinage group, copper has a smaller relativistic effect than gold and silver 

and the homometallic interaction between Cu(I) compounds should be less [28]. Moreover, most of the 

reported luminescent Cu(I) complexes are cationic with chelating imine ligands or bisphosphine 

ligands or cuprous clusters [49]. However, our group has reported photophysical and photochemical 

properties of anionic Cu(CN)2
−
 doped in alkali halide hosts which resulted from the close-shell 

interaction of Cu(I) [41]. 

Unlike pure KAg(CN)2 and KAu(CN)2 which have linear M(CN)2
−
, the dicyanocuprate salts have a 

local trigonal Cu(CN)2
−
 structure. X-ray diffraction (XRD) results indicate that both NaCu(CN)2 2H2O 

and KCu(CN)2 have a polymeric-chain structure. NaCu(CN)2 has zigzag CuCN chains linked to 

[Na(H2O)2]
+
 polyhedra and the copper has a trigonal-planar structure, with two bridge cyanides for the 

polymeric chain and one for the [Na(H2O)2]
+
 polyhedra. However, in KCu(CN)2, the polymeric chain 

is along a two-fold screw axis and the three-coordination of copper is not planar. However, when 

NaCu(CN)2 and KCu(CN)2 is doped in alkali halide hosts, the copper(I) cation becomes six-coordinated 

within the crystal field. With two cyanides and four surrounding halide atoms; the [Cu(CN)2X4]
5−

 (X 

for halides) has a local D4h symmetry. Figure 7 gives IR and Raman spectra in the CN stretching 

region for the pure and NaCl doped dicyanocuprate(I) crystals. The pure NaCu(CN)2·2H2O, KCu(CN)2 

have two CN vibrational modes in both IR and Raman, which is due to the local C2v symmetry of 

trigonal Cu(CN)2
−
. For the doped crystals, the same results were observed for both dicyanocuprate 
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salts, suggesting the linear structure in NaCl hosts. Same results were obtained for NaBr and KBr 

doped Cu(CN)2
−
 crystals. This structural change is also confirmed by UV-vis diffuse reflectance and 

aqueous solution absorption spectroscopy experiments. 

Figure 7. The υCN region IR and Raman spectra of pure NaCu(CN)2·2H2O, KCu(CN)2  

and doped in NaCl. (Reprinted with permission from [41]. Copyright 2012 American 

Chemical Society.) 

 

Figure 8. Luminescence spectra at 77 K of (a) NaCu(CN)2 and (b) KCu(CN)2 doped in 

NaCl. (Reprinted with permission from [41]. Copyright 2012 American Chemical Society.) 

 



Materials 2013, 6 2605 

 

 

The Cu(CN)2
−
 doped in alkali halide host systems show a series of interesting photophysical  

and photochemical properties. Similar to Au(CN)2
−
 and Ag(CN)2

−
, the dicyanocuprate ion in sodium 

chloride crystal exhibits exciplex tuning, as indicated in Figure 8. Both NaCu(CN)2·2H2O and 

KCu(CN)2 in NaCl show the same luminescence pattern, which provides further evidence for the linear 

structure of Cu(CN)2
−
 in doped hosts. Other alkali halides, such as NaBr and KBr, were also used and 

the result was that all the crystals have exciplex tuning. For each host, both NaCu(CN)2·2H2O and 

KCu(CN)2 give the same luminescence pattern. The intensity of emission peaks depends upon the 

concentration of the copper in these crystals. The relative peak intensity of low energy peak to high 

energy peak increases with higher Cu(CN)2
−
 content. As we have discussed for Ag(CN)2

−
/KCl 

crystals, the lower energy peaks are assigned to larger size nanoclusters, therefore in the copper case, 

the increase of Cu(CN)2
−
 concentration consequently leads to the formation of more large size 

oligomers and the lower energy peaks arise.  

Thermochromism and optical memory were also observed for Cu(CN)
−
 doped crystals. Between 77 

and 200 K, all the peak intensity decreases due to the quenching with increasing temperature. 

However, above 200 K, the intensity of higher energy peaks abruptly increases and the lower energy 

peak almost disappears. This is ascribed to the population change during the temperature increasing; 

the large size nanoclusters break into small size monomers and dimers, which take place between  

200 and 250 K. After the reaction is completed, the distribution of nanoclusters no longer changes and 

the peak intensity is only affected by the temperature. The optical memory experiment was conducted 

in three steps: (1) the doped crystal is cooled down to liquid nitrogen temperature and during the 

cooling process, the crystal is irradiated by the 266 nm laser, which is the writing; (2) the emission 

spectra are recorded at 77 K, the reading; and (3) the crystal is heated up to the room temperature and 

then cooled down to 77 K again. The luminescence spectra are shown in Figure 9. Excimer and 

exciplex are more stable and the metal-metal distance is shorter for excited states. The laser irradiation 

promotes Cu(CN)2
−
 ions into an excited state and thus form larger size nanoclusters. With the 

temperature decrease, they are frozen in their positions, which leads to the distribution change of 

different nanoclusters. 

Theoretical density functional calculations were carried out for monomers and possible dimers and 

the possible configurations are shown in Scheme 1. The calculated electron density results give a 

major metal-to-ligand charge transfer (MLCT) mixed with ligand-to-ligand charge transfer (LLCT) 

transition and this is in agreement with the long life time (μs) of all emission peaks, suggesting the 

phosphorescence process. Figure 10 gives the isodensity map of some of the [Cu(CN)2
−
]n in alkali 

halide hosts. The optimized structure for monomers and dimers were obtained in the ground state and 

the first excited triplet state. Comparing the bond distances between the ground state and the first 

excited triplet state, we find that the Cu–C bond distances contract and the C≡N bond distances 

expand, which is in accordance with the MLCT transition. Time-dependent DFT calculation results 

show the absorption and emission energies follow the trend that with the size of nanoclusters increase, 

the corresponding energies red shift. This is also observed from the experimental results. Atomistic 

calculations show that the potassium salts have greater bridging state selectivity and more favorable 

oligomerization energy than that of sodium salts. Bromide salts show a slightly greater bridging state 

selectivity than chloride salts. 
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Figure 9. Emission spectra of Cu(CN)2
−
 doped in KBr at 77 K without laser irradiation 

(black solid), with 266 nm laser irradiation (blue solid), and recover, e.g., heat to room 

temperature then cool down to 77 K without laser irradiation (red dashed). (Reprinted with 

permission from [41]. Copyright 2012 American Chemical Society.)  
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Scheme 1. Dimeric configurations of Cu2(CN)4X6 or 7]
8−

 or 
9−

 ions. (Reprinted with 

permission from [41]. Copyright 2012 American Chemical Society.) 

 

Figure 10. Isodensity of HOMO (left) and LUMO (right) for Cu(CN)2
−
 monomers (top),  

μ-Cl2 dimers (middle) and μ-ClCN dimers (bottom). (Reprinted with permission from [41]. 

Copyright 2012 American Chemical Society.) 

 

5. Conclusions  

The dicyano compounds of coinage metals, Ag, Au, and Cu doped in alkali halide hosts show 

examples of close-shell homometallic interactions, which results in a series of interesting 

photophysical and photochemical properties. These nanoclusters are typical excimers and exciplexes, 

e.g., more stable at the excited states. Especially for copper, the Cu(CN)2
−
 in alkali halide crystals are 
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unique examples for luminescent anionic Cu(I) compounds. The population of different nanoclusters 

changes with the concentration, temperature, and laser irradiation. Lifetime results of microsecond 

magnitude suggest phosphorescence and are consistent with the calculation results, which gives a 

MLCT transition with slightly LLCT process. The exciplex tuning gives a range as wide as 18,000 cm
−1

 

and the strong phosphorescence has possible application for solid state lasers. Thermochromism and 

optical memory properties can be used to make new photosensors and memory devices. 
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