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Using information of relatives 
in genomic prediction to apply 
effective stratified medicine
S. Hong Lee1, W. M. Shalanee P. Weerasinghe1, Naomi R. Wray2, Michael E. Goddard3,4 & 
Julius H. J. van der Werf1

Genomic prediction shows promise for personalised medicine in which diagnosis and treatment are 
tailored to individuals based on their genetic profiles for complex diseases. We present a theoretical 
framework to demonstrate that prediction accuracy can be improved by targeting more informative 
individuals in the data set used to generate the predictors (“discovery sample”) to include those with 
genetically close relationships with the subjects put forward for risk prediction. Increase of prediction 
accuracy from closer relationships is achieved under an additive model and does not rely on any family 
or interaction effects. Using theory, simulations and real data analyses, we show that the predictive 
accuracy or the area under the receiver operating characteristic curve (AUC) increased exponentially 
with decreasing effective size (Ne), i.e. when individuals are closely related. For example, with the 
sample size of discovery set N = 3000, heritability h2 = 0.5 and population prevalence K = 0.1, AUC 
value approached to 0.9 and the top percentile of the estimated genetic profile scores had 23 times 
higher proportion of cases than the general population. This suggests that there is considerable room to 
increase prediction accuracy by using a design that does not exclude closer relationships.

The genomics era has demonstrated the polygenic nature of complex genetic traits, and genomic prediction shows 
much promise for personalised medicine in which diagnosis and treatment are tailored to individuals based on 
the profiles recorded in their genome. This creates the opportunity for ‘stratified medicine’1 in which individuals 
are classified into higher and lower risk groups and intervention or treatment of relevant sub-categories is based 
on profiles that incorporate information from both genomic and environmental risk factors. The utility of this 
approach, of course, will depend on the reliability of these risk predictions.

A key feature of risk predictors is that their use does not necessarily require an understanding of the aetiology 
of disease1. Usefulness of such prediction is demonstrated by success in genetic selection programs in animals 
and plants. Risk prediction in human medicine can also have an important impact even in absence of a full under-
standing of the underlying biology of diseases and disorders. Aggregate effects from causal variants tagged by sin-
gle nucleotide polymorphisms (SNPs) across the genome can quantify and assess individual risk for a particular 
disease or disorder, deemed “genomic prediction”.

Genomic prediction has recently been tested and shown to be promising for diseases of which genetic var-
iance is largely explained by a number of major genes2–4. However, for polygenic diseases and disorders caused 
by numerous genes with small effect, which is the case for most complex traits, the accuracy of genomic predic-
tion has been considered too low to be useful in actual clinical applications5–9. Most of these studies employed 
population-based prediction based on unrelated individuals. Several studies have reported a considerable 
increase in prediction accuracy when the training data set included individuals that were closely related to the 
target sample, from data on humans10–13 as well as from other species14–16. Some have argued that the use of close 
relatives may inflate estimated genetic variance due to common environmental effects, or gene-environment or 
gene-gene interaction17–19, and therefore such effects may also bias genomic risk prediction. However, theoret-
ical work from previous studies20–22 has shown that genomic predictions are more accurate in populations of 
smaller effective size, i.e. where individuals tend to be more closely related. In such cases there are effectively fewer 
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chromosome segments to estimate across the genome, which allows a higher prediction accuracy from the same 
size of data20–22. This suggests that subjects that are closely related could be a valuable resource for genomic risk 
prediction. For predicting human diseases, the area under the receiver operating characteristic curve (AUC) or 
odds ratio (OR) of case-control status contrasting the higher or lower risk group is a typical measure of prediction 
accuracy. However, we have no adequate insight in predicting the improvement in AUC or OR when using more 
related subjects, and how this accuracy may vary between individuals or between populations.

In this study, we revisit the theory on genomic prediction accuracy as presented previously20–22, and derive 
an improved method linking effective population size (Ne) and effective number of chromosome segments (Me) 
to prediction accuracy, assuming that trained individuals and predicted subjects are from the same homogenous 
population. We use simulated as well as real data to demonstrate that prediction accuracy can be increased when 
predicting from more related subjects. We extend this work to a case-control data set, which is a typical design 
for human diseases, so that the outcomes of this study are applicable to a clinical program for human diseases.

Results
Effective number of chromosome segments and prediction accuracy. A key parameter for deter-
mining the accuracy of the genomic prediction is Me, the effective number of chromosome segments segregat-
ing in a population. Intuitively, this makes sense, as fewer independent chromosomal segments require fewer 
independent parameters to be estimated from the same data. We show that Me depends on effective population 
size Ne, the number of chromosomes and the length of genomic region (eqs (10) and (11) in Methods), and that 
allowing close genetic relationships to exist between the discovery sample (used to generate predictors) and the 
target sample (where prediction is applied) is equivalent to reducing Me. We present an improved derivation 
of the expected Me by taking into account that there is a covariance between the relationship between indi-
viduals at different chromosomes (Supplementary Tables 1–3). We validated the theory for estimation of Me 
using the stochastic coalescence gene-dropping method (see simulation I in Methods). The expected Me (from 
eqs (10) or (11), eq. (11) accounts for historical mutations whereas eq. (10) does not, although the difference 
is small) were compared to the estimated Me from the variation in genomic relationships between discovery 
and target samples, i.e. using the elements in the off-diagonal block of the matrix relating to target × discov-
ery sample, using eq. (12) (Supplementary Figures 1A–3A). Furthermore, the expected prediction accuracy 
from theory (eq. (1)) and the observed accuracy from the simulated genotypes and phenotypes were compared 
(Supplementary Figures 1B–3B). The observed accuracy was obtained from the correlation between true and 
estimated genetic profile scores in the target data set (see Methods).

The empirically estimated Me from the genomic relationships (using eq. (12)) agreed with the expected Me 
from eqs (10) or (11) whether using a small or large sample size (Supplementary Figures 1A and 2A). From the 
estimated Me, the expected prediction accuracy could be obtained from eq. (1). The expected prediction accuracy 
was within the confidence interval of the actual observed prediction accuracy over 100 replicates (Supplementary 
Figures 1B and 2B). With a larger number of chromosomes the estimated Me from the genomic relationship 
matrix (GRM) was close to the expected Me from eqs (10) and (11) that accounts for the correlation between 
chromosomes, and the expected prediction accuracy from eq. (1) coincided with the confidence interval of the 
observed prediction accuracy over 100 replicates (Supplementary Figure 3).

Theoretical prediction accuracy in relation to Ne as a key design parameter. Accuracy of the 
genomic prediction is determined by the genetic variance, the number of phenotypic observations and Me. We 
theoretically quantified prediction accuracy. Using the theory (eqs (2), (10) and (11)), the prediction accuracy for 
a quantitative trait was quantified in relation to Ne, using h2 = 0.5, 30 chromosomes each with a genomic length 
of L = 1 Morgan (30 Morgan in total) and N = 3000 (number of records for the discovery sample) that mimics a 
typical GWAS. It is noted that 23 chromosomes each with L = 1.3 Morgan (30 Morgan in total) gave similar values 
(result not shown). Figure 1 shows that when Ne was smaller, the correlation between the estimated genetic profile 
scores and phenotypes for the target samples was increased, approaching the square root of the heritability. With 

Figure 1. Expected correlation between the phenotypes and estimated genetic profile scores representing 
the accuracy of genomic prediction of a target sample for quantitative traits when varying Ne = 10000, 
5000, 2000, 1000 and 100. The number of records (N) in the discovery data set is 3000, the true heritability is 
0.5 and the number of chromosome is 30 each with a genomic length of 1 Morgan.
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Ne = 10,000, this correlation was only 0.18, but the accuracy became larger rapidly with smaller Ne. For example, 
the correlation was 0.65 with Ne = 100.

The prediction accuracy was also derived for case-control data using the same parameters as above for an 
underlying quantitative trait. A disease or disorder with population prevalence of K = 0.1 and a proportion of 
cases in the sample of P = 0.5 was used. With these parameters, we obtained the expected values for AUC (eq. (3)), 
the odds ratio of case-control status contrasting the top and bottom 20% of the genetic profile scores (eq. (4)) and 
that contrasting the top 1% of the genetic profile scores and the general population (eq. (5)). The expected values 
were verified by comparing them with the observed values from simulation II, showing that the expectation and 
observation agreed well (Supplementary Figures 4, 5 and 6). Furthermore, we tested the prediction accuracy with 
a rare disease or disorder with population prevalence of K = 0.01, which also showed a good agreement between 
the expectation and observation (Supplementary Figures 7, 8 and 9).

When using Ne = 10,000, the value for AUC was just 0.60, rising to a value of 0.85 with Ne = 100 (Fig. 2). The 
odds ratio of the case-control status, contrasting the top and bottom 20% according to estimated genetic profile 
scores, ranged from 2.7 with Ne = 10,000 to 131.9 with Ne = 100 (Fig. 3). The odds ratio of the case-control sta-
tus contrasting the top 1% of estimated genetic profile scores and normal population was 2.3 with Ne = 10,000, 
and 23.0 with Ne = 100 (Fig. 4). With a larger N or higher h2, the prediction accuracy was further dramatically 
increased (Supplementary Table 4).

Real data application. We applied the approach to a real data set, the Framingham heart study (see 
Methods). In 100 cross-validation replicates, the real data was randomly divided into two sets - one for discovery 
and the other for target, where sampling was either family wise to create a larger Ne or within family to create a 
low Ne. For the family-wise sampling, 80% of the available families were selected as the discovery data set, with 
the remaining 20% of families used as the target data set. For the within-family sampling, each member in every 
family was assigned an 80% chance to be a discovery sample and the rest was in the target sample (see Methods). 
The discovery set had an average of 3394 individuals and the target set had an average of 849 individuals over 100 
cross-validation replicates (Table 1). The estimated Me from the genomic relationship between the discovery and 
target samples was 4,434 and 31,080 (from eq. (12)) when generating a smaller and a larger Ne, respectively. The 

Figure 2. Expected AUC of estimated genetic profile scores in a target sample for case-control data when 
varying Ne = 10000, 5000, 2000, 1000 and 100. The number of records (N) is 3000, the true heritability is 0.5, 
the number of chromosome is 30 each with a genomic length of 1 Morgan, the population prevalence is K = 0.1 
and the proportion of cases in the sample is P = 0.5.

Figure 3. Expected odds ratios of case-control status contrasting the top and bottom 20% of the genetic 
profile scores in a target sample when varying Ne = 10000, 5000, 2000, 1000 and 100. The number of records 
(N) is 3000, the true heritability is 0.5, the number of chromosome is 30 each with a genomic length of 1 
Morgan, the population prevalence is K = 0.1 and the proportion of cases in the sample is P = 0.5.
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distribution of variance of relationships, calculated for each target individual when paired with discovery indi-
viduals is shown in Supplementary Figure 10 for designs with smaller and larger Ne values. Table 1 shows that the 
average correlation between the estimated genetic profile scores and the phenotypes (height) in the target set was 
0.549 (SD 0.021) and 0.091 (SD 0.043) when using a design with small and large Ne, respectively, clearly indicating 
the advantage of using a design with a smaller Ne.

Interestingly, the results were consistent with the estimated heritability from family-based stud-
ies (i.e. h2 = 0.823–25) or population-based studies (i.e. h2 = 0.4526,27), which is numerically illustrated in 
Supplementary Table 5. When using h2 = 0.8 and Me = 4,434, the expected accuracy of genomic prediction was 
0.551 (from eq. 2), which was close to the observed accuracy of 0.549 (Table 1). By contrast, using h2 = 0.45 
and Me = 31,080 would give an expected accuracy of genomic prediction of 0.145, approximately similar to the 
observed accuracy of 0.091 (Table 1).

Mimicking case-control data, the top 10% of the phenotypes were selected and treated as cases (i.e. K = 0.1), 
and 11.1% of the remaining 90% of phenotypes were chosen to be controls. Therefore, the case-control ratio was 
1:1 (i.e. P = 0.5). The two sampling strategies used in cross-validation for the quantitative traits, were also used 
for the case-control data generating higher and lower variance of relationships between discovery and target sets 
(smaller and larger Ne, respectively). The discovery set had an average of 680 individuals and the target set had an 
average of 170 individuals over 100 cross-validation replicates (Table 1). The estimated Me from the genomic rela-
tionship between the discovery and target samples was 3,247 and 29,479 from eq. (12) for smaller and larger Ne, 
respectively. In Table 1, the average AUC for the two scenarios was 0.687 (SD 0.037) and 0.535 (SD 0.038), indi-
cating that the AUC was considerably higher with a smaller Ne than with larger Ne. The observed AUC values were 
very similar to the expected values, based on eq. (3), for the small Ne design (0.682 with Me = 3247 and h2 = 0.823–25)  
and the large Ne design (0.537 with Me = 29,479 and h2 = 0.4526,27), respectively (Supplementary Table 5).

The odds ratio of case-control status comparing each 20 percentile to the bottom 20% of the ranked genetic 
profile scores demonstrates that the contrasting power was substantially higher with a smaller Ne than with a 
larger Ne. (Fig. 5). The observed odds ratio of case-control status contrasting the top and bottom 20% of the 
genetic profile scores was similar to the expected odds ratio from eq. (5) for the small Ne design with Me = 3,247 
and h2 = 0.823–25 and the large Ne design with Me = 29,479 and h2 = 0.4526,27, respectively (Supplementary Table 5).

Figure 4. Expected odds ratios of case-control status contrasting the top 1% of the genetic profile scores 
and a random sample from population in a target sample when varying Ne = 10000, 5000, 2000, 1000 and 
100. The number of records (N) is 3000, the true heritability is 0.5, the number of chromosome is 30 each with 
a genomic length of 1 Morgan, the population prevalence is K = 0.1 and the proportion of cases in the sample is 
P = 0.5.

Small Ne Large Ne

Quantitative traits (height)–3394 discovery, 849 target 

 Me 4434 31080

 Expected accuracy 0.551a 0.145b

 Observed accuracy 0.549 (0.021) 0.091 (0.043)

Case-control (10% selection); 680 discovery, 170 target (K = 0.1 and P = 0.5)

 Me 3247 29480

 Expected AUC 0.682a 0.537b

 Observed AUC 0.687 (0.037) 0.535 (0.038)

Table 1.  The accuracy of genomic prediction from a design with smaller or larger Ne values when using 
height phenotypes from the Framingham data. aExpected accuracy from eq. (2) using the value for Me and 
h2 = 0.823–25 that is from family studies. bExpected accuracy from eq. (2) using the value for Me and h2 = 0.4526,27 
that is from population studies. SD over 100 cross-validation replicates is in the bracket.
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We additionally analysed BMI phenotypes, which gave a similar result in that the prediction accuracy was 
considerably higher with a smaller Ne than with larger Ne, and that the observed and expected values agreed with 
each other (Supplementary Table 6).

As a second real data set, we used genetic data from the European ancestry participants of the Kaiser 
Permanente genetic epidemiology research on adult health and aging (GERA) cohort. When using the GERA 
dataset that does not have a clear family structure, the prediction accuracy for hypertension phenotypes is signif-
icantly higher for 25% of the target sample with the highest variance of pair-wise relationships with the discov-
ery sample (Fig. 6 and Supplementary Figure 11). The prediction accuracy was 0.118 (0.114–0.123) for the top 
25% and 0.106 (0.104–0.107) for the entire target sample. Moreover, the prediction accuracy was significantly 
decreased to 0.097 (0.095–0.099) (Fig. 7) when higher relationships were removed from the sample (>relatedness 
of 0.025), therefore increasing Me (Supplementary Figure 12). These results demonstrate that a higher variance 
of pair-wise relationships, hence smaller Me, results in a higher prediction accuracy even when using data from 
an extensive population-based sample. We also confirmed these results by using the real genotype data (GERA) 

Figure 5. The odds ratio of the case-control status contrasting the top and bottom 20% of the ranked 
genetic profile scores estimated from a design with a smaller or larger Ne, in the Framingham data. 

Figure 6. The prediction accuracy is significantly increased when using the top 25% of the target sample 
according to the variance of pair-wise relationships with the discovery sample (therefore decreasing Me 
from 58000 to 37000). GERA data with hypertension phenotypes are used. The error bar is 95% confidence 
interval of the observed prediction accuracy over 100 replicates.
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and simulating phenotypes with the total variance fully or partly explained by the SNPs in order to support the 
results from the real data analysis (Figs 6 and 7) by showing that higher prediction accuracy for the top 25% group 
and the lower accuracy after removing one from a pair of individuals with higher relationships was not due to 
non-genetic confounding factors such as artefact batch effects (Supplementary Figures 13–16).

We also analysed dyslipidemia phenotypes and found a consistent result showing that the prediction accuracy 
was significantly increased for 25% of the target sample with the highest variance of pair-wise relationships with 
the discovery sample (Supplementary Figure 17), and that it was decreased (although non-significant) when 
higher relationships were removed from the sample (Supplementary Figure 18).

Discussion
In this study, we have shown, by theory, simulations and analyses of real data that genomic prediction based on a 
discovery set that includes individuals with close relationships to the predicted subjects leads to higher prediction 
accuracy, assuming that reference sample and predicted subjects are from the same homogenous population. 
The accuracy can be predicted from the variation in relationships of the target individual with the individuals in 
the discovery data set. The variation in relationship can be linked back to the number of effective chromosome 
segments to be estimated, which in turn is a result of a certain effective population size, i.e. the size of a homoge-
neous unstructured population where the amount of chromosome segment sharing is similar, leading to the same 
accuracy of prediction. We showed that there is merit in designing the discovery population such that variation 
of genetic relationships is maximized.

Current studies for polygenic diseases or disorders have reported that the accuracy of genomic prediction 
is not useful for actual clinical practice5–9 due to low prediction accuracies. However, it is common practice to 
deliberately exclude close relatives and use samples from the population that are genetically distant resulting in Ne 
values of more than a few thousand and a resulting Me across the genome in the tens of thousands, even when pre-
dictions are just within populations of pure European descent. The effective number of chromosome segments is a 
key parameter on which prediction accuracy depends20–22. A desirable design for genomic prediction should have 
a discovery set that is well related to the target set of individuals, resulting in a smaller Me. Note that this is similar 
to predicting in a population with a smaller Ne, in other words, including closer relatives in the discovery set has 
the same effect as predicting in a population with a smaller Ne. It was shown that the prediction accuracy (AUC 
and ORs) increased with a design of a smaller Ne, compared to that with a larger Ne, using theory, simulations and 
real data analyses. Note that the term ‘effective population size’ is used here not as a property of the population at 
large, but rather the term refers to the effective information that arises from the relatedness between the discovery 
set and the subject(s) to be predicted.

The utility of genomic prediction was illustrated with an example where the top percentile of the estimated 
genetic profile scores had a substantially higher proportion of cases than a random population sample (23-fold) 
especially when using a design that includes closer relatives, which effectively leads to a smaller Ne, and even 
when using a moderate sample size in the discovery set (N = 3,000) and a heritability of 0.5 (Fig. 4). This could 
be increased to 32-fold with a larger sample size (N = 24,000), or 176-fold with a higher heritability (h2 = 0.8) 
(Supplementary Table 4). This demonstrates that relatives (i.e. smaller Ne) are a valuable resource for genomic 
prediction that can be used in stratified medicine. This is an important implication because currently the infor-
mation on relatives is often discarded in predicting human complex traits and diseases based on genome-wide 
SNP data.

Even for a data set of unrelated individuals based on a random population sample, such as the case in the 
GERA data set, when using the discovery individuals that are more related to the target individuals, the genomic 
prediction accuracy increased (Figs 6 and 7 and Supplementary Figures 13 and 14), because of the larger variance 
of pair-wise relationships to the target sample (implying lower Me and Ne). This may have important implications 

Figure 7. The prediction accuracy is significantly decreased when excluding higher relationships from the 
sample that results in increasing Me (from 58000 to 67000). GERA data with hypertension phenotypes are 
used. The same number of discovery and target sample is used for both tests. The error bar is 95% confidence 
interval of the observed prediction accuracy over 100 replicates.
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when only considering population-based samples in genomic risk prediction for human complex traits and dis-
eases where higher relationships are subject to be excluded.

One challenge with this approach is that a large number of records or samples needs to be collected within a 
local community or from extended families. However, increasingly databases are built with phenotypic and gen-
otypic information from closer relatives28. In practice, a composite discovery population combining population- 
and family-based samples may be an alternative and desirable design, as demonstrated here for the Framingham 
study as well as in other studies29,30. In fact, personalised medicine based on family-based databases are in line 
with the very concept of family medicine31–35.

In many previous studies, it was observed that family-based estimates are considerably higher than 
population-based estimates of heritability23,25,36. There are plausible explanations for this phenomenon, including 
inflation due to family effects, gene-gene (G × G) or gene-environment interactions (G × E)17–19,37, or imper-
fect linkage disequilibrium (LD)11 and this has led to many studies discarding information from more closely 
related individuals. However, the theory and simulation in this study have clearly shown that even in absence of 
these inflatory effects there was a substantial increase in prediction accuracy (Figs 1, 2, 3 and 4), suggesting that 
information from close relatives should not be discarded. The results from real data showed that designing the 
discovery data set to include individuals that are closely related to those in the target sample could give substan-
tially higher prediction accuracy for the target sample (Table 1 and Fig. 5). In the real data, this is unlikely to be 
driven by population stratification, as 10 PCs were included in the analysis model (see Methods). However, it is 
not impossible that non-additive genetic effects could contribute to the increase in prediction accuracy (Table 1 
and Supplementary Table 5), but one could argue that this is not unwarranted when predicting individual risk. 
A further study about the possible role of non-additive genetic factors, and whether they can be estimated sepa-
rately, may be needed.

In the near future, hundreds of thousands or more records on genotype and phenotype of people will be 
available for a reference sample to predict genetic risk for a target individual, e.g. all newborn babies could be 
genotyped and there are improved data bases for recording phenotypes, consisting of one large reference panel 
that can be generally applied to a nation-wide genomic prediction. Using eqs (1) and (12), we show that either 
adding more relatives or more genetically distant individuals increased the prediction accuracy substantially 
(Supplementary Table 4 and Supplementary Figure 19). The number of relatives required to get the same high 
accuracy is much lower than that of distant individuals, implying that the information from relatives is of much 
higher value in genomic prediction.

Practically, the genotypic and phenotypic information of a subject’s relatives (including parents, siblings, cous-
ins and more distant relatives) can be used effectively as a part of the unified reference panel that also include a 
large number of individuals that are not related to the predicted subject to improve the accuracy further as illus-
trated in Supplementary Figure 19 (B). An optimal design should consist of both close relatives and unrelated 
individuals, e.g. a composite design, to maximise the prediction accuracy. That is, the composite design takes 
advantage of effective information from smaller number of relatives while it also use information from a greater 
number of unrelated individuals38.

When using case-control data by selecting 10% of the highest phenotypes, the estimated Me was slightly 
reduced (Table 1). Specifically, Me was diminished from 4,434 to 3,247 with a smaller Ne and from 31,080 to 
29,479 with a larger Ne. This would be expected because selection on the heritable traits might lower Ne

39, there-
fore Me was therefore decreased.

In this study, we present a theoretical framework, simulation and real data analyses to demonstrate that pre-
diction accuracy can be improved by targeting more informative individuals in a discovery set with closer rela-
tionships with the subjects, making prediction more similar to those in populations with small effective size (Ne). 
This work is also extended to case-control data analyses so that the outcomes of this study are applicable to a 
clinical program for human diseases. It is argued that there is considerable room to increase prediction accuracy 
for polygenic phenotypes so that genomic prediction can be useful for clinical applications in the near future.

Methods
Accuracy of genomic prediction. Genomic prediction uses phenotypes alongside genome-wide SNPs or 
sequence data to estimate the effects of observed variants that are projected onto independent subjects and to 
estimate the subjects’ individual genetic profile scores (i.e. breeding values in the context of animal and plant 
breeding). The accuracy of the genomic prediction depends on the captured genetic variance as a proportion 
of the total variance, the number of phenotypic observations and the number of independent genomic regions 
expressed as the effective number of chromosome segments20–22,40, that is

=
+

ˆr bh
bh M N/g g

e
,

2

2

where ˆr g g,  is the correlation coefficient between the true and estimated genetic profile scores, h2 is the heritability 
of the trait, Me is the effective number of chromosome segments, N is the number of phenotypic observations and 
b is the proportion of genetic variance captured by observed variants (e.g. SNPs) that can be written as20–22

= +b M M M/( )e

where M is the number of observed variants. Owing to dense SNP genotypes or sequence data being available, b is 
often close to unity. Therefore, with dense markers, the genomic prediction accuracy can be simplified as
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The correlation coefficient between phenotypes and estimated genetic profile scores in a target data set is
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When using case-control studies for human diseases, the correlation coefficient between true and estimated 
genetic profile scores can be written as41,42

=
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where u is a genetic profile score on the 0, 1 disease scale41,43, K is the population prevalence for the disease, P is 
the proportion of cases in the total sample N of cases and controls, and z is the density at the threshold on the 
normal distribution in the liability threshold model. The AUC as a measure of the accuracy of genomic prediction 
in a target data set for case-control studies is44,45
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where i is the mean liability for cases, i2 is the mean liability for controls, t is the threshold on the normal dis-
tribution that truncates the proportion of disease prevalence K and Φ is the cumulative density function of the 
normal distribution. Another approach to assess the predictive utility of a continuous risk score of diseases, which 
is common in epidemiology studies, is to stratify individuals into percentiles according to ranked values of the 
genetic profile scores and estimate the odds ratio of case-control status by contrasting the top percentile with the 
bottom percentile5, that is

=
−
−
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where the probability of being a case in the top/bottom percentile is
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where itop and ibottom are the mean genetic profile scores for the top and bottom percentiles, respectively, ttop and 
tbottom are the thresholds on the normal distribution that truncates the proportion of the top and bottom percen-
tiles (for detailed derivation, see Supplementary Note).

In more general terms, one can obtain the odds ratio of case-control status by contrasting the top percentile 
against the general population, that is

=
−
−

.OR
P case top P case top

K K
( )/[1 ( )]

/[1 ] (5)top population

Effective number of chromosome segments. The effective number of chromosome segments (Me) is a 
key parameter for determining the accuracy of the genomic prediction as fewer segments require fewer independ-
ent parameters to be estimated from the same data, i.e. a higher accuracy. Me depends on the effective population 
size (Ne) and the length of genomic region (L)20–22. There are several studies that derive Me based on population 
parameters but there are some inconsistencies between these20–22. We revisit the theory and provide another 
derivation of Me as a function of Ne and L, using the theory of a squared correlation matrix between all SNPs46.

Considering a genomic region spanning 1 Morgan with M SNPs that are equally distributed over the region, 
one can construct an M × M squared correlation matrix S in which the elements are the squared correlation 
coefficients between each pair of SNPs (r2)46. The squared correlation coefficients can be approximated as  
r2 = 1/(1 + 4Ne × c) where Ne is the effective population size and c is the distance in Morgan between each pair of 
SNPs under a standard neutral model without mutation47. Unless the off-diagonal elements in S are all zero, the 
effective number of SNPs (or chromosome segments) is less than M. In order to obtain the effective number of 
SNPs, each SNP can be weighted and the weights can be obtained as46

=Sw e

and
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= −w S e1

where w is an M vector of SNP weights derived from the correlation structure among the SNPs and e is a vector 
of length M with all elements equal to one. In fact, the effective number of chromosome segments is calculated 
from the sum of the SNP weights as

∑=
=

M w
(6)e

i

M

i
1

The underlying linear system of order M can be written as

=

=

=

=

− −

− −

− − − −

− −

�

�
� � � � � �

�

�

w r w r w r w

r w w r w r w

r w r w w r w

r w r w r w w

1

1

1

1

M M M M

M M M M

M M M M M M

M M M M M M

1 1,2
2

2 1, 1
2

1 1,
2

2,1
2

1 2 2, 1
2

1 2,
2

1,1
2

1 1,2
2

2 1 1,
2

,1
2

1 ,2
2

2 , 1
2

1

where ri j,
2  is a correlation coefficient between the ith and jth SNPs in the matrix S. This linear system can be simpli-

fied as

+ . + ... + + =− −t w t w t w t w MM M M M1 1 2 2 1 1

where = ∑ =t ri j
M

j i1 ,
2 .

As the covariance between t and w is usually small, it can be approximated as

+ + ... + + = .−t w w w w M( )M M1 2 1

From eq. (6), the term + + ... + +−w w w wM M1 2 1  can be replaced with Me, resulting in

=
∑ ∑

.
= =

M
r M

1
/ (7)

e
i
M

j
M

i j1 1 ,
2 2

This agrees with Goddard (2009)20 who derived this same expression from the covariance statistic between 
two linked variants while we derived it from the SNP squared correlation matrix theory46.

It is noted that the pattern of the same values is repeated in the matrix S because of the SNPs being equally 
distributed. For example, the values for ri j,

2  are the same for all combinations for which |i−j| is the same, e.g. 
= = ... = =− − −r r r r r, , M M M M2,1

2
3,2
2

4,3
2

2, 1
2

1,
2 . Therefore, the sum in eq. (7) can be written as

∑∑ ∑= + − ⋅ − + + − ⋅ −
= = =

−
r N M M N i M M i1/[1 4 (0/( 1))] ( 0) 1/[1 4 ( /( 1))] 2( )

i

M

j

M

i j e
i

M

e
1 1

,
2

1

1

where the first part of each term refers to the estimated r2 based on the distance, and the second part refers to the 
frequency of SNP pairs with such an r2 value. When scaling the equation by M2, this can be rewritten as

∑∑ ∑= + + − ⋅ − ⋅
= = =

−
r M M N i M i M M/ (1/ ) 1/[1 4 ( /( 1))] 2(1 / ) (1/ )

i

M

j

M

i j
i

M

e
1 1

,
2 2

1

1

For the right hand side with M approaching infinity, the expression can be approximately transformed to a 
function of x with infinity data points ranging from 0 to 1, which can be written as

= + ⋅ ⋅ − .f x N x x( ) 1/[1 4 ] 2(1 )e

The sum of the function f(x) in the variable x ranging from 0 to 1 is defined by an integration. Therefore the 
denominator in eq. (7), ∑ ∑= = r M/i

M
j
M

i j1 1 ,
2 2 can be obtained as

∫ = + + + − .f x dx N N N N( ) [ln(4 1) 4 (ln(4 1) 1)]/8e e e e
0

1 2

It is straightforward to extend this formula to a genomic region with length L rather than 1 Morgan (see 
Supplementary Note). For an L Morgan region, this is

∫ = + + + − .f x dx N L N L N L N L( ) [ln(4 1) 4 (ln(4 1) 1)]/(8 )e e e e
0

1 2 2

Therefore,

= + + + − .M N L N L N L N L8 /[ln(4 1) 4 (ln(4 1) 1)] (8)e e e e e
2 2
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When accounting for mutation48, therefore using the correlation coefficients between SNPs from the formula  
1/(2 + 4Ne × c), eq. (8) is slightly modified to

= + + + − .M N L N L N L N L4 /[ln(2 1) 2 (ln(2 1) 1)] (9)e e e e e
2 2

The equivalence between eqs (6) and (7), and the approach linking eqs (7) and (8) (or (7) and (9)) were vali-
dated with actual analyses of the squared correlation matrix (Supplementary Tables 1 and 2).

Equations (8) and (9) are analytically confirmed and agreed well with eq. (7) (Supplementary Tables 1 and 2) 
and improved from the previous derivations20–22 (Supplementary Table 3). Difference became more remark-
able when using more chromosomes. It is noted that a genomic length of 30 Morgan is more realistic 
(Supplementary Table 3). Previous studies20–22 ignored the correlation between chromosomes, however this is not 
negligible. Following Goddard (2009)20 but based on the individual level (rather than the gametic level), the prob-
ability of a random pair of individuals having the same parents (i.e. full sibs) in the last generation is (2/Ne)2 and 
that of having one parent in common (i.e. half sibs) is 4/Ne − (2/Ne)2. This generates a variance of the relationships 
among the pairs, which can be analytically approximated as 1/(4Ne). For the previous generations, the variance 
is 1/(16Ne), 1/(32Ne), 1/(64Ne) and so on. Summing all these variances gives 1/(3Ne), therefore, the covariance of 
the pairwise relationships between two chromosomes is 1/(3Ne).

Assuming there are multiple chromosomes having an equal genomic length, the chromosome covariance 
matrix (with order equal to the number of chromosomes) can be written as

�
�

� � � � �
�
�

M N N N
N M N N

N N M N
N N N M

1/ 1/(3 ) 1/(3 ) 1/(3 )
1/(3 ) 1/ 1/(3 ) 1/(3 )

1/(3 ) 1/(3 ) 1/ 1/(3 )
1/(3 ) 1/(3 ) 1/(3 ) 1/

e e e e

e e e e

e e e e

e e e e

where the diagonal (1/Me) can be obtained from eqs (8) or (9) and the off-diagonal (1/(3Ne)) is the covariance of 
the pairwise relationships between two chromosomes. As in eq. (7), the inverse of the overall Me across the mul-
tiple chromosomes can be obtained such that all elements in the covariance matrix should be averaged. Hence, 
eqs (8) and (9) for multiple chromosomes can be expressed as

=
+ + + − + ⋅ −

M N
N L N L N L N L N N[ln(4 1) 4 (ln(4 1) 1)]/(8 ) (1/3 ) ( 1) (10)

e
chr

e e e e e chr
2 2

and when considering historical mutations,

=
+ + + − + ⋅ −

M N
N L N L N L N L N N[ln(2 1) 2 (ln(2 1) 1)]/(4 ) (1/3 ) ( 1) (11)

e
chr

e e e e e chr
2 2

where Nchr is the number of chromosomes each with length L.

Me from the genomic relationship matrix. Me can be empirically obtained when a GRM is given21, 
which can be interpreted as an observed Me from the genotype data on which the GRM is based, which can be 
written as21

=M A1/var( ) (12)e ij

where Aij is the genomic relationship between individual i from the target and j from the discovery sample. More 
details are in the Supplementary Note.

Estimated genetic profile scores. The MTG2 software9,49 was applied to a discovery data set to estimate 
SNP effects jointly. The estimated SNP effects were projected onto the target samples, resulting in a genomic best 
linear unbiased prediction (GBLUP)50 of the genetic profile score for each target individual in the target data set. 
Dudbridge (2013)42 showed that the standard genetic profile score method8,51 and GBLUP have the same power 
and accuracy using theory that assumed all causal variants are unlinked and observed. However, in real situations 
where there are complex LD structures among SNPs, GBLUP is a preferred method, therefore, we used GBLUP 
in this study.

Simulation I. Equations (10) and (11) were validated with a stochastic coalescence simulation and genomic 
prediction approach. A stochastic gene-dropping method52,53 was used to simulate 20,000 SNPs across a single 
chromosome of L = 1 Morgan with Ne = 500, 1000, 2000 and 4000 for 500, 1000, 2000 and 4000 generations, 
respectively. Recombinations occurred across the genomic region according to the genetic distance between SNPs 
that were equally distributed across the region. The mutation rate was 1e-08 per site per generation54. Random 
mating and random selection were used according to the standard genetic drift model55. In the final generation, as 
a discovery data set, we generated 2000 or 5000 individuals having genotype data for 10,000 causal SNPs, a subset 
of the 20,000 SNPs, of which the minor allele frequency was more than 1%. For the discovery data set, phenotypes 
were simulated such that the variance explained by the SNPs was 1% of the total phenotypic variance where SNP 
and residual effects were drawn from normal distributions. For the target data set, another set of 1000 or 2500 
individuals was chosen to estimate the observed accuracy of genomic prediction, i.e. the correlation between true 
and estimated genetic profile scores. We also conducted simulations of 5 chromosomes each being L = 1 Morgan 



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:42091 | DOI: 10.1038/srep42091

long, with a total number of 50, 000 SNPs, resulting in variance explained by the SNPs being 5% of the total phe-
notypic variance.

Using the genotype data of the discovery data set, a GRM was constructed and Me was estimated from eq. (12) 
as the observed Me from the simulated data. We used eqs (10) and (11) to get the expected Me given Ne and L. The 
observed and expected Me values were compared. In addition, the expected accuracy of the genomic prediction 
was obtained from eq. (1) using the observed Me, which was compared to the correlation (as the observed accu-
racy) between true and estimated genetic profile scores (GBLUP) in the target data set.

Simulation II. In order to confirm the theory in deriving AUC and odds ratios (eqs (3), (4) and (5)), we 
simulated disease data (binary responses) using a liability threshold model with a population prevalence of 10% 
(K = 0.1). In the discovery data set, cases were over-sampled such that the ratio of cases and controls was equal 
(P = 0.5), mimicking a typical case-control design. The total number of samples in the discovery set was N = 3000. 
We simulated Me independent SNPs, the effects of which were normally distributed, and a residual effect such that 
the heritability on the liability scale was h2 = 0.5. We used 5 different values for Me = 254, 1188, 4506, 10891 and 
21248, reflecting the expected values for Ne = 100, 500, 2000, 5000 and 10000, respectively when using a genomic 
length of 30 Morgan (30 chromosomes each with 1 Morgan long) and the coalescence formula 1/(2 + 4Ne × c) 
(eq. (9)). SNP effects were estimated in the discovery data set and these estimates were used to predict genetic 
profile scores in an independent population sample of N = 30000 as the target data set. For the target sample, we 
used a large population sample to reduce empirical sampling error and mimic a realistic situation, e.g. screening 
newborn babies. We obtained AUC from the genetic profile scores predicting the disease status in the target data 
set. Additionally, we obtained the odds ratio contrasting the top and bottom 20% of the normal population sam-
ple according to the genetic profile scores. We also obtained the odds ratio contrasting the top 1% according to the 
genetic profile scores and the normal population. These observed AUC and odds ratios from the simulated data 
were compared to the expected values from the theory (eqs (3), (4) and (5)).

Real data. Framingham heart study. Publicly available data from the Framingham heart study (phs000007.
v26.p10.c1)56 were used. Stringent quality control (QC) was applied to the available genotypes, including SNP call 
rate > 0.95, individual call rate > 0.95, HWE p-value > 0.0001, MAF > 0.01 and individual population outliers < 6 SD  
from the first and second principal components (PC). After QC, 6920 individuals and 389,265 SNPs remained. 
Among them, 4243 individuals from 628 families were phenotyped for height and body mass index (BMI). The 
mean number of members per family was 6.76 (SD 12.77). Phenotypes were adjusted for birth year, sex, and the 
first 10 PCs. We calculated the ancestry PCs from the POPRES reference sample57–59 because direct PC analysis 
on the sample could be confounded with family structure58,60.

In order to contrast designs with smaller and larger Ne (and Me) values, two kinds of cross-validation schemes 
were implemented. For a design with larger Ne, 80% of the 628 families were selected as the discovery data set, 
with the remaining 20% of families used as the target data set. Therefore, the discovery and target sample shared 
distant common ancestors, hence a larger Ne and Me. In contrast, for a design with smaller Ne, each member 
in every family was assigned an 80% chance to be a discovery sample and the rest was in the target sample. 
Therefore, the discovery and target sample shared recent common ancestors, hence a smaller Ne and Me.

Using the real genotype data, the genomic relationships between the discovery and target sample were con-
structed, and Me was estimated from eq. (12). The correlation between the phenotypes (that were not used in the 
analyses) and estimated genetic profile scores in the target data set was estimated.

Genetic epidemiology research on adult health and aging cohort. As a second real data set, we used genetic data 
from the European ancestry participants of the Kaiser Permanente genetic epidemiology research on adult health 
and aging (GERA) cohort (phs000674.v1.p1)61, an extensive population sample. The same QC process was 
applied to the available genotypes. After QC, 62,318 individuals each with 575,760 SNP genotypes remained. We 
used the trait “hypertension” and “dyslipidemia” for the prediction analyses. Phenotypes were adjusted for birth 
year, sex, and the first 10 PCs that were inferred from the POPRES reference sample57–59.

Unlike the Framingham data, GERA does not have an explicit family structure, i.e. the proportion of 
pair-wise relationship more than 0.2 was only 0.0002%. Therefore, the family-wise cross-validation schemes used 
in the Framingham data could not be used. Instead, we randomly selected 46,000 individuals, and randomly 
assigned 80% and 20% to a discovery data set (N = 36,800) and a target data set (N = 9,200), respectively, in 100 
cross-validation replicates. We calculated the variance of pair-wise relationships with the individuals in the dis-
covery data set for each individual in the target data set, and identified the top 25% of the target individuals with 
the highest variance of the relationships. Then, we tested if the prediction accuracy for the top group (N = 2,300) 
was higher than that for the entire target sample, to show if a larger variance, hence smaller Me, resulted in a 
higher prediction accuracy even when using a population-based sample without a substantial family structure. 
In addition, we obtained the prediction accuracy from a subset of the sample that excluded higher relationships 
(>0.025). We first applied the relatedness cut-off to all individuals, and then selected 46,000 individuals that were 
subsequently divided into the discovery (N = 36,800) and target data sets (N = 9,200). It is noted that for each tar-
get individual, the variance of pair-wise relationships (eq. (12)) with the discovery individuals was reduced due to 
the relatedness cut-off. In any case, we used the same number of discovery samples (N = 36,800) in order to have 
the same power and for fair comparisons.

Data access. We used publicly available data. Accession codes are in the following. The Framingham heart 
study (phs000007.v26.p10.c1). The European ancestry participants of the Kaiser Permanente genetic epidemiology  
research on adult health and aging (GERA) cohort (phs000674.v1.p1).
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Software. Theory, simulation models and GBLUP used in this study have been fully implemented in publicly 
available software, MTG2. The source code, executive binary file, manual and examples are readily available to 
use, and can be downloaded from https://sites.google.com/site/honglee0707/mtg2.
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