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Abstract
Recently it has been shown that cancer mutations selectively target protein-protein interac-

tions. We hypothesized that mutations affecting distinct protein interactions involving estab-

lished cancer genes could contribute to tumor heterogeneity, and that novel mechanistic

insights might be gained into tumorigenesis by investigating protein interactions under posi-

tive selection in cancer. To identify protein interactions under positive selection in cancer, we

mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimen-

tally determined protein structures and analyzed their spatial distribution. In total, 20% of

mutations on the surface of known cancer genes perturbed protein-protein interactions

(PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors

(Odds Ratio 1.28, P-value < 10−4) and oncogenes (Odds Ratio 1.17, P-value < 10−3). To

study this further, we constructed a bipartite network representing structurally resolved PPIs

from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs).

Analysis of frequently mutated cancer genes within this network revealed that tumor-sup-

pressors, but not oncogenes, are significantly enriched with functional mutations in homo-

oligomerization regions (Odds Ratio 3.68, P-Value < 10−8). We present two important exam-

ples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at inter-

faces provide insights into specifically perturbed biological circuits. In patients with TP53

mutations, patient survival correlated with the specific interactions that were perturbed.

Moreover, we investigated mutations at the interface of protein-nucleotide interactions and

observed an unexpected number of missense mutations but not silent mutations occurring

within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces

ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate

cancer genes that encode proteins participating in interactions that are perturbed recurrently

across tumors. In summary, mutation of specific protein interactions is an important contribu-

tor to tumor heterogeneity and may have important implications for clinical outcomes.
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Introduction
Tumor genome sequencing is increasingly being used to inform clinical decisions for cancer
patients. This is motivated in large part by the availability of targeted therapies that selectively
kill cells harboring specific protein-coding mutations. However, each tumor is characterized by
a unique profile of mutated genes with little overlap between patients. Few of these genes can
be effectively targeted and nearly one fourth of patients do not harbor any clinically actionable
mutations[1]. The recent discovery that protein-protein interfaces are enriched with cancer
mutations suggests that interaction-specific perturbations may play a critical role in tumori-
genesis[2]. Thus investigation of patterns of mutation at protein interaction interfaces in
tumors may provide novel insights into mechanism of tumorigenesis and into factors that
influence patient outcome and response to therapy.

Most tumor genome analyses to date assign a binary functional status to a gene or pathway
if it harbors a mutation predicted to alter protein activity; however, this simple classification
may be inadequate. Recent studies of Mendelian diseases, a class of genetic disorders that
include cancer predisposing syndromes, have found that distinct mutations in the same gene
can cause different phenotypes. In 2009, Zhong et al.[3] suggested that mutations that
completely disrupt a protein’s activity have different functional consequences than mutations
that affect a subset of protein-protein interaction (PPI). This idea of “edgetic” perturbations in
diseases motivated several groups to integrate structural bioinformatics with biological net-
works to construct structurally resolved PPI networks[4, 5]. Using these networks, three inde-
pendent groups observed that many Mendelian disease mutations are located at interaction
interfaces[5–7]. Notably, mutations affecting different interfaces on the same protein were
sometimes associated with distinct disease phenotypes, whereas mutations on interacting part-
ners more frequently caused the same phenotype[5, 8]. More recently Sahni et al.[9] experi-
mentally confirmed that mutations affecting distinct protein-protein and protein-DNA
interactions cause different molecular phenotypes.

Somatic mutations arising in tumors have characteristics similar to Mendelian disease
mutations[10], and thus may also cause interface-specific molecular phenotypes. During
tumorigenesis, cancer genes—oncogenes and tumor suppressors—are frequently inappropri-
ately activated or inactivated by mutations respectively. Protein sequence changes are more
likely to inactivate a protein than to activate it[11]. Indeed, oncogenes are characterized by fre-
quently mutated hotspots (e.g., PIK3CA residues E542, E545 and H1047 or KRAS residues
G12, G13 and Q61) whereas tumor suppressors tend to display a random distribution of pro-
tein altering mutations[12]. However, tumor suppressors have also been shown to harbor non-
random patterns of somatic mutation at the level of protein domains[13, 14]. Miller et al.
recently grouped mutations from The Cancer Genome Atlas (TCGA) by gene families with
shared homologous domains to identify rare functional mutations similarly perturbing a
domain [15]. More broadly, cancer genes have different somatic mutation rates in functionally
important regions [16], harbor an excess of mutations at protein interaction interfaces [2], and
spatial localization of a mutation is correlated with oncogenicity[17].

To aid researchers in exploring mutation distribution on their protein of interest, Vazquez
et al.[18] recently mapped over 170,000 cancer specific single nucleotide variants (SNVs) onto
Interactome3D. Several prior studies demonstrated the utility of this approach for analyzing
cancer mutations; both analyses using 3D protein structure4 and early efforts using structurally
resolved PPIs [19, 20] provided clear evidence that mutations altering PPIs are important for
phenotypic outcomes. We recently reported a strategy to extract more specific cancer pathways
from a PPI network by using edge-specific cancer mutations profiles[21]. Forty-three cancer
genes were found to harbor mutations at core residues and/or at distinct protein interfaces,
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and thus could potentially contribute to multiple molecular phenotypes. However, the extent
to which cancer mutations perturb protein interaction networks and how these perturbations
contribute to phenotypic diversity remains largely unexplored.

To investigate the mechanisms by which cancer mutations peturb protein-protein interac-
tions, we analyzed the distribution of 1,297,414 somatic missense mutations using 3D protein
structures. We first focused on a set of 103 genes that are frequently mutated in cancer due to
strong positive selection in tumors. These genes are likely to be enriched for causal mutations.
We then extended our analysis to interaction partners and finally to all genes for which protein
structures were available. To explore whether somatic mutations contributed to tumorigenesis
by perturbing protein interactions, we built a PPI network incorporating atomic level details of
interfaces, which also included protein-DNA and protein-RNA interactions (Fig 1a). We
found that specific molecular interactions are targeted during tumorigenesis for many known
cancer genes and that mutations affecting different interfaces on the same protein can be asso-
ciated with distinct patient outcomes. These findings are consistent with those of Porta-Pardo
et al. [2], who recently catalogued cancer driver interactions based on mutations from a smaller
cancer cohort using a hybrid structural proteomics dataset consisting of experimental and
modeled protein complexes.

Fig 1. An overview of the analyses performed. a) A workflow describing the data processing steps from protein structures in the PDB and cancer-related
somatic mutations in COSMIC and ICGC to residue-level bi-partite protein interaction networks. b) The percentage of residues within surface, intermediate
and core regions that harbor mutations for oncogenes (n = 56) and tumor suppressors (n = 47) with 3D structures. c) Focusing only on surface residues, the
percentage of residues within interface and non-interface regions that harbor mutations for oncogenes and tumor suppressors with 3D structures.

doi:10.1371/journal.pone.0152929.g001
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Results

Large-scale Analysis of Missense Mutations Affecting Cancer Genes
We performed an in depth analysis of the localization of cancer-associated missense muta-
tions on three-dimensional protein structure, considering only somatic mutations which are
present in the tumor exome but not in patient-matched normal tissue. A total of 1,297,414
somatic mutations observed in 17,028 tumor exomes from the combined International Can-
cer Genome Consortium (ICGC)[22] and Catalogue of Somatic Mutations In Cancer (COS-
MIC)[23] databases were mapped onto human protein structures from the protein databank
(PDB)[24] (Fig 1a) where available. Each amino acid position in every protein structure was
labeled as core, intermediate or surface based on solvent accessibility. Using co-crystal struc-
tures of protein interactions, we further determined the interface residues on each protein
responsible for mediating the physical interaction between binding partners. We observe a
similar proportion of mutations (16%) mapping to residues on the surface of oncogenes and
tumor suppressors, while oncogenes tend to have fewer mutations at intermediate (13% vs
19%) and core residues (12% vs 18%) (Fig 1b). Interestingly, tumor suppressors harbor
slightly more (17% vs 19%) mutations at interface sites than oncogenes (Fig 1c).

Missense Mutations in Cancer Genes are More Frequent at Core and
Interface Residues
Our study focused initially on 138 genes known to play a causal role in cancer[12] (S1a–S1c
Fig). Of the 138 cancer genes, 103 (56 tumor-suppressors, 47 oncogenes) had monomeric
structural information, and 89 had one or more co-crystal structures in complex with a binding
partner. We compared results for cancer genes to another 4600 human proteins for which we
had structural information. Since these genes are most likely predominantly not cancer-related,
we expect they are representative of a population not undergoing strong selection for causal
cancer mutations.

Two-sided Fisher’s exact tests were used to test whether the incidence of mutated residues
in a particular structural niche (core, intermediate, surface or interface) deviated from random
expectation for proteins encoding oncogenes, tumor suppressors or other genes. We observed
that mutated residues tended to occur in the core of tumor suppressors (P-value< 3.6 x 10−2,
Odds Ratio 1.19) but on the surface of oncogenes (P-value< 1.3x10-6, Odds Ratio 1.30) and
other genes (P-value< 2.2×10−16, Odds Ratio 1.18) (Fig 2a and S1 Table). As core mutations
are often destabilizing to a protein’s 3D structure[25], this finding is consistent with tumor
suppressor genes harboring frequent loss-of function mutations. Analyzing the frequency of
specific mutations across tumors, we observed that the most recurrent mutations in tumor sup-
pressors occurred primarily at core residues (S1d Fig), whereas recurrent mutations in onco-
genes occurred primarily at interface residues (S1e Fig).

We next focused on surface residues, dividing them into residues at protein interaction
interfaces versus other surface residues. In total 20% (783) of the 3837 genetic variants
mapped to surface residues on cancer gene products occurred at PPI interfaces. Analyzing
each group of genes separately, we observed an excess of missense mutations at interface resi-
dues relative to surface non-interface residues in both tumor suppressors (P-value < 1.4x10-
4, Odds Ratio 1.28) and oncogenes (P-value < 7.92x10-3, Odds Ratio 1.17) (Fig 2b and S1
Table), but not other genes. Since different interfaces mediate distinct protein activities, this
finding suggests that specific activities of both tumor suppressors and oncogenes are targeted
in cancer, and complete loss of function may not be necessary for some tumor suppressor
genes to promote tumorigenesis.
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Silent mutations are often used to represent the background mutation rate in tumorigenesis
[26–28], since most silent mutations are unlikely to alter protein activity and therefore are
probably not undergoing positive selection. We repeated our tests using silent mutations to
determine whether random mutations showed similar preference for core, surface and inter-
face residues. As we did not observe the same trends (S2 Fig), this suggests that positive selec-
tion is acting to specifically target protein sequence alterations to functionally important sites
on proteins in cancer.

Core and Interface Regions are More Likely to Harbor Functional
Mutations
We annotated all somatic missense mutations with functional scores generated by VEST[29].
While not cancer-specific, VEST scores can still be helpful for determining whether the
observed mutations are likely to perturb protein activity (Methods). We observed that muta-
tions in the core of proteins and those affecting interface residues were more likely to receive
functional VEST scores, while mutations at surface non-interface residues had a bimodal distri-
bution, suggesting that these mutations may be affecting as yet undiscovered binding sites or
other functionally important classes of residue on the surface (S1f Fig). In general, functional
mutations were enriched at interface residues compared with surface non-interface residues
(P-value< 2.6×10−2, Odds Ratio 1.06)(S2 Table), which could indicate that amino acid substi-
tutions at an interface are more likely to have functional consequences in general, or that func-
tional mutations at interfaces are under positive selection in cancer, even amongst genes that
are not frequently mutated.

Functional mutations at protein interaction interfaces could affect protein binding affinities.
Nishi et al. [20] found that 97 missense mutations from 68 genes in general had a destabilizing
effect on binding affinities of protein-protein interactions. To investigate this on a larger scale,
we calculated the change in binding free energy between wild type and mutant cancer protein
sequences for 5857 interface amino acid substitutions reported in ICGC and COSMIC (for this
analysis we used all mutations in COSMIC). Of these, 1225 altered binding affinity (S1 File):

Fig 2. Characterizing the structural location of missense mutations in tumor suppressors (TS), oncogenes (OG) and other genes. Fisher’s exact
tests were performed separately for each set of genes. Shown are the odds ratios and 95% confidence intervals within each set of genes when making
comparing the number of mutations located at a) surface versus core residues, b) surface interface versus surface non-interface residues.

doi:10.1371/journal.pone.0152929.g002
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903 were predicted to destabilize interactions, whereas the other 322 were predicted to stabilize
interactions. To determine whether the effect on binding affinity was consistent with the func-
tion of the interactions we annotated them as activating or inhibitory using the Reactome Path-
way Database[30]. One hundred fifty two interactions could be annotated as activating and 15
as inhibitory. We observed that activating interfaces on tumor suppressor genes were highly
enriched for destabilizing mutations as compared with activating interfaces on oncogenes
(Fisher’s Exact Test P-value< 8.36×10−4, Odds Ratio 3.65) (S3 and S4 Tables).

A Bipartite Protein-Residue Interaction Network Highlights Mutation
Patterns in Cancer Genes
To investigate the extent to which cancer mutations at interface residues target specific protein
interaction interfaces, we constructed a bi-partite network of protein-interactions. This net-
work explicitly depicts the residues mediating PPIs on each partner, thus the network includes
two distinct classes of nodes: circles represent proteins and triangles represent amino acid resi-
dues (Fig 3a). We focused first on the subnetwork of frequently altered cancer genes and their
interaction partners (Fig 3), This subnetwork consisted of 185 protein nodes of which 65 are
cancer genes and 120 are interaction partners. Residues mediating homo-dimerization were
not included in this figure but are present in the complete network. In Fig 3b, all residues par-
ticipating in interfaces are shown, whereas Fig 3c shows only the interface residues that are
mutated in cancer.

We found that on average, 2.2 binding sites per cancer gene harbored mutations, with some
tumor suppressors (FUBP1, KMT2D, NOTCH2 and MLH1) and oncogenes (CCND1 and
SKP2) having no interface mutations and some cancer genes having mutations at multiple dis-
tinct interfaces (including TP53 with mutations at 8 different interfaces, CTNNB1 with muta-
tions at 7 different interafaces, APC with mutations at 6 different interfaces and EGFR with
mutations at 4 different interfaces). This observation suggests that phenotypic pleiotropy aris-
ing from distinct alteration of interaction profiles of cancer genes could be contribute to tumor
heterogeneity.

Two particularly interesting regions of the bi-partite network center on tumor suppressor
genes B2M and TP53. These network modules show distinct patterns of mutation localization
at interfaces that are suggestive of different selective pressures acting to target mutations in
each case. We describe these two modules in more detail in the following sections.

B2M Network Module
Unlike most cancer genes in our network, interface mutations affecting the tumor suppressor
beta-2 microglobulin (B2M) were located predominantly on partner genes. Most of those part-
ners compete with each other to bind the same site on B2M (Fig 4a). The most frequently
observed mutations among B2M partners were residues 121 and 33 on HLA-A and residues
140 and 118 on HLA-B.

Apart from LILRB1 and LILRB2, the other 10 interaction partners of B2M (Fig 4b) are all
involved with antigen presentation. These include MHC class 1 proteins (HLA-A, HLA-B,
HLA-G, HLA-E) and members of a class of closely related proteins involved with the presenta-
tion of non-peptide antigens (CD1A, CD1B, CD1D, HFE, MR1 and FCGRT). Surface expres-
sion and antigen presentation of MHC class I requires binding to B2M[31]. MHC class 1 genes
are highly polymorphic, which enables them to present a variety of different endogenous pep-
tides[31]. Mutations affecting B2M binding with partners in the antigen presentation pathway
could decrease the efficiency of self-antigen presentation and thereby facilitate immune
response evasion by tumor cells. The enrichment of mutations at partner interfaces may reflect
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that selection in tumors is acting to interfere specifically with the presentation of self-antigens,
such that tumors with different mutation profiles need to interfere with different aspects of the
antigen presentation pathway.

TP53 Network Module
TP53 is the most commonly mutated gene in human cancers with mutations distributed
throughout the open reading frame3. Mutations in this gene have been reported to have differ-
ent consequences for TP53 activity[32]; some of the mutations cause gain of function while
others suppress TP53. Even distinct amino acid substitutions at the same residue can lead to

Fig 3. A bipartite protein-residue interaction network constructed for cancer genes and their interaction partners. Edges involved in self-interaction
are not shown. a) An example of a network describing how proteins, interface residues and mutations are represented in the bipartite network model. In a
protein-protein interaction network, the nodes representing proteins A–D are directly connected to one another. In our bi-partite protein residue interaction
network, interface residues are displayed between proteins. For example, residue 1 on protein A (A_1) is involved in the protein-protein interface between A
and B along with A and C. Residues mutated in cancer are shown in the bi-partite protein mutated residue interaction network. For example, A_1 is mutated
in at least one cancer in one patient whereas residue B_1 –present above but absent here—is not. b) A bipartite network showing cancer genes and their
immediate interactors. c) A bipartite network displaying only residues that were mutated in one or more tumors. The circled interface residues interact with
multiple proteins.

doi:10.1371/journal.pone.0152929.g003
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different phenotypes[32]. Here we used the protein-residue bipartite interaction network of
TP53 to examine the possible biological outcomes of distinct mutations.

Several of the mutated interface residues in the TP53 network module mediate multiple
protein interactions. Mutated TP53 residues 18 and 27 interact with both MDM2 and EP300

Fig 4. Bipartite B2M interaction networks. a) A bipartite network of the tumor suppressor B2M, its partners and the interface residues by which they
interact. b) A bipartite network showing only the subset of residues that were observed to harbor missense mutations in cancer patients. The size here of the
residue nodes represent the number of tumors in which the residue was mutated.

doi:10.1371/journal.pone.0152929.g004

Structure-Based Analysis of Cancer Missense Mutations

PLOS ONE | DOI:10.1371/journal.pone.0152929 April 4, 2016 8 / 21



(Fig 5a and 5b). Shared residues are particularly interesting because mutations at these sites
could simultaneously interfere with multiple intracellular signals, or could shift the equilib-
rium of binding between interaction partners. According to Kohn’s 2-state model[33] EP300
has two roles in the TP53 network. When in the inactive state (in the absence of cellular
stress), TP53 can be inactivated via ubiquitination by either MDM2 or EP300. In this sce-
nario, EP300 cooperates with MDM2. However in the active state (triggered by DNA dam-
age) phosphorylation of TP53 (residues 18 or 20) inhibits MDM2 binding, while it promotes
EP300 binding. MDM2 is a negative regulator of TP53 whereas EP300 stimulates TP53’s
transcriptional activity. Thus EP300 has an opposing role to MDM2 in the TP53 active state.
By destabilizing the TP53-EP300 interaction, which is unfavorable for tumor progression,
mutations at these residues could specifically inhibit EP300 binding, thereby freeing the bind-
ing site to interact with MDM2.

Fig 5. Mutations affecting TP53 interaction interfaces and their impact on patient survival. a) A bipartite network of the tumor suppressor TP53, its
partners and the interface residues by which they interact. b) A bipartite network showing only the subset of residues observed to harbor missense mutations
in cancer patients. The size here of the residue nodes represent the number of tumors in which the residue was mutated. c) A Kaplan Meier survival plot of
patients from TCGA harboring mutations in TP53 at residues 175, 248 or 273. d) The TP53 mutations R175, R273 and R248 displayed on the crystal
structure of TP53 as a homotetramer.

doi:10.1371/journal.pone.0152929.g005
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TP53 residues 181, 247 and 249 interact with TP53BP1 and TP53BP2 (Fig 5a and 5b).
TP53BP1 contributes to DNA repair and cell cycle control, as well as enhancing TP53-me-
diated transcriptional activity[34], and TP53BP2 enhances damage-induced apoptosis[35]. In
contrast to the MDM2-EP300 example, the most advantageous outcome for the tumor would
seem to result if mutations at residues 181, 247 and 249 compromised both TP53BP1 and
TP53BP2 interactions. Interestingly, mutations at residue 249 were predicted to stabilize the
interaction with TP53BP1 but destabilize the interaction with TP53BP2 (S1 File) suggesting a
more complex role for these TP53 binding partners in tumorigenesis

TP53 residue 45 is important for binding to RPA1 and HGMB1. The TP53-RPA1 complex
is important for homologous recombination and essential for tumor suppression[36], whereas
HMGB1 has both oncogenic and tumorigenic activities[37]. It has been proposed that in the
absence of TP53, HMBG1 promotes autophagy and HMGB1-mediated autophagy stimulates
tumor cell survival through TP53-dependent processes[38]. Disrupting both RPA1 and
HMBG1 interactions with TP53 may therefore be advantageous for tumor maintenance.

Certain mutations in TP53 are known to have a prognostic value for cancer patients. These
mutations are categorized according to whether they affect DNA binding capacity (R248Q,
R273H) or overall protein stability (R249S, G245S, R175H and R282W)[39]. Poeta et al.[40]
classified TP53 mutations as disruptive or non-disruptive according to whether or not they are
located in the DNA binding domain (DBD). Mutations in the disruptive category were associ-
ated with shorter survival. Particular mutation hotspots (248, 273 and 175) were recently
observed to influence chemotherapy sensitivity and overall survival in ovarian cancer[41].
Although the DNA binding and oligomerization domains of TP53 are usually treated sepa-
rately, our interface mappings highlight that many amino acids involved in TP53 dimerization
are within the DBD, a fact that has been reported previously[42].

While both residues 248 and 273 contribute to DNA binding, their topological affects on
the PPI network differ. We observed 3 mutational hotspots (frequently mutated residues) that
are involved with different sets of interactions: TP53 residue 273 specifically affects DNA bind-
ing, residue 175 specifically affects TP53 oligomerization and residue 248 is important for olig-
omerization, binding to DNA and interactions with two protein partners, TP53BP1 and
TP53BP2. When patients were grouped according to mutation at these three sites, we observed
a statistically significant difference in survival trends (Chi-Square = 11.1, P-value< 3.8×10−3,
Log-Rank Test) (Fig 5c). The three-dimensional localization of residues 175, 248 and 273 on a
TP53 tetramer is shown in Fig 5d.

Functional Mutations Are Enriched at Tumor Suppressor but not
Oncogene Homo-Oligomerization Sites
Mutations could be mapped onto homo-oligomerization sites of 46 cancer genes. Since crystal-
lization sometimes detects protein-protein contacts that do not happen in the cell, our analysis
focused on 23 of the cancer genes that were confirmed to form biological oligomerizations by
PISA[43], and directly from the literature (S5 and S6 Tables). Since failure to oligomerize is
likely to interfere with protein function, we found it interesting that mutated oligomerization
sites were approximately equally represented among oncogenes and tumor suppressors (Fig 6).
We speculated that mutations at these sites in tumor suppressors but not oncogenes would be
enriched for functional amino acid substitutions. To test this, VEST score distributions for
mutations were compared across oligomerization sites in oncogenes, tumor suppressors and
other genes. We found that tumor suppressors are significantly enriched with functional muta-
tions in their homo-oligomerization regions compared to other genes (P-value< 1.73×10−8,
Odds Ratio 3.68) (S7 Table) but did not observe this enrichment for oncogenes (Fig 6).
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Nucleic Acid Binding Sites Harbor an Unexpected Number of Missense
Mutations
We next examined protein-DNA binding sites in our network. Mendelian mutations at DNA
binding sites were experimentally found either to abrogate DNA binding or to alter DNA bind-
ing specificity for binding motifs in DNA sequence[9]. The PDB included structures for 10
tumor suppressors, 2 oncogenes and 168 additional genes bound to DNA (S8 Table). Among
these, 9 tumor suppressors, 1 oncogene and 131 other genes had mutations in their DNA bind-
ing regions (S9 Table). DNA binding regions generally do not overlap with protein-interacting
regions of proteins in Mendelian diseases[9]. The proteins in our network similarly showed
almost no overlap of protein interaction sites with structurally resolved DNA binding inter-
faces (P-value< 8.86×10−5, Odds Ratio 0.77). In addition, an unexpected number of missense
mutations but not silent mutations occurred within DNA binding sites (P-value < 3.38×10−3,
Odds Ratio 1.19) (S10 Table), suggesting that the DNA binding activity of some of these pro-
teins could be important for tumorigenesis.

Of the 180 DNA-binding proteins in our network, ten were transcriptional master regula-
tors (ETS1, SRF, FOXO4, GATA3, HNF1B, HNF4A, MAX, MYC, NFKB1 and NFATC1[44,
45]), eight of which (SRF and HNF1B are the exceptions) had mutations in their DNA binding
regions. Transcriptional master regulators, genes at the top of the regulatory hierarchy, are
capable of controlling the expression of multiple target genes and are determinants of cell fate.
Thus mutations in these genes that either abrogate DNA binding or alter its specificity are
likely to cause widespread changes to gene expression.

Fig 6. Bipartite protein-residue interaction networks of 34 cancer genes known to form homo-oligomers displaying only those residues involved
in oligomerization. Edges are colored according to functional predictions made using VEST. Red lines indicate that mutations affecting that residue were
predicted to be functional (VEST > 0.75), blue lines indicate a neutral prediction (VEST < 0.25), and dashed grey lines indicate mutations could not
confidently be assigned a functional or neutral label.

doi:10.1371/journal.pone.0152929.g006
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We hypothesized that mutations altering RNA binding sites of proteins would have similar
consequences to those altering DNA binding sites. Our network included one RNA-binding
oncogene and 73 RNA-binding other genes supported by co-crystal structures in the PDB (S11
Table). Unlike what has been reported for DNA binding domains, we did not observe mutual
exclusivity between residues mediating protein-protein interactions and those mediating pro-
tein-RNA interactions. Fifty-six of the genes, including the single oncogene, harbored muta-
tions in their RNA binding region (S12 Table). This represented an overall enrichment for
somatic mutations at RNA binding sites in these genes relative to random expectation (P-
value< 1.27×10−2, Odds Ratio 1.23) (S13 Table).

Protein Interactions are Targeted by Somatic Mutations in Cancer
Our results suggest that specific targeting of molecular interactions is widespread in tumori-
genesis. To further investigate this, we assembled 3,072 high quality interfaces from our net-
work, which included 199 interactions between 89 cancer genes and 145 immediate interaction
partners. By grouping the reciprocal interface residues on two binding partners, we can test
whether edges in our network are enriched for mutations. Taking this approach we found a
strong enrichment for mutations on edges involving a cancer gene (P-value< 2.2×10−16, Odds
Ratio 1.62) (S14 Table).

While we see strong evidence that specific interactions are targeted by cancer, we note that
in many cases there is clear bias for mutations to occur on the cancer gene side of the interac-
tion (P-value< 4.59x10-9, Odds Ratio 1.53) (S14 Table). Perhaps altering more than one activ-
ity of a cancer gene is beneficial to the tumor, and this is done more easily by mutating the
cancer gene itself than mutating 2 or more of its interaction partners. We note that among the
145 1st degree interaction partners of the cancer genes used for this study, 13 have recently
been reported to frequently harbor mutations in tumors[46] (S15 Table). This suggests that
genes mutated at an interaction interface that bind the protein product of a known cancer gene
may also be candidate cancer genes.

To identify candidate ‘cancer interactions’, we ranked all 3,072 interactions in our network
based on evidence for positive selection at the interfaces as quantified by the ratio of missense
mutations to silent mutations, divided by the ratio of their probabilities given the amino acid
composition of the interface (S2 File). Values of this ratio greater than 1 are suggestive of posi-
tive selection for non-synonymous mutations. While interactions involving cancer genes domi-
nated the top of the list, we observed a number of other interactions in the network that
harbored an excess of mutations. Specifically, among the 557 interactions with a value> 1,
there were 282 interactors (586 if we include homo-oligomerization interactions) that were not
in our list of cancer genes (S16 Table) but nonetheless participated in interactions showing evi-
dence of positive selection during tumorigenesis. Furthermore, some interactions involving
cancer genes received very low ranks, suggesting that these interactions might be important to
preserve tumor cell viability. Among the 71 novel cancer driver genes reported by Porta-Pardo
et al. [2] only 10 of them (GLUL, A2M, CYP2B6, CSNK1E, SLIT2, C3, SERPINB3, HLA-DRB1,
SEC13 and TLR4) are present in our set of positively selected 557 interactions (only C3 and
HLA-DRB1 if we exclude homodimer-oligomerization interactions).

Discussion
Understanding the specific functional consequences of mutations is essential for uncovering the
molecular mechanisms underlying disease and for effectively tailoring precision therapies. Many
sequencing-based studies of cancer have focused on identifying genes, pathways or both based on
the assumption that most mutations in a gene or pathway lead to similar phenotypes. However,
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genes often play multiple roles, each of which can be perturbed resulting in distinct phenotypic
consequences. Mutations with pleiotropic phenotypic effects in the same gene have recently been
established experimentally for inheritedMendelian disease mutations[9]. The observation that
specific protein interactions are targeted by somatic cancer mutations suggests that distinct cancer
mutations in oncogenes and tumor suppressors may also confer different phenotypes.

Our protein structure-based analysis of cancer genes found an excess of core mutations in
tumor suppressors, consistent with their frequent inactivation in cancer. However, when only
surface residues were considered, we observed that mutations in both oncogenes and tumor sup-
pressors tended to be located at PPIs. Relative to mutations on other genes, mutations affecting
tumor suppressors, but not oncogenes, were significantly enriched with functional mutations in
homo-oligomerization regions (Odds Ratio 3.68, P-Value< 10−8) suggesting that interfering
with tumor suppressor oligomerization may be a common mechanisms in tumorigenesis.

As further evidence that cancer mutations can affect specific protein activities, we found
that mutations affecting known cancer genes, both oncogenes and tumor suppressors, are
enriched at interfaces between proteins and their interaction partners and that many cancer
genes had mutations at multiple distinct interfaces. This observation strongly suggests that
mutated genes will contribute to tumorigenesis in different patients in different ways, depend-
ing on where the mutation is located. As support for this hypothesis, we show that hotspot
mutations at distinct interaction interfaces on TP53 are associated with significant differences
in patient survival.

Mutations on direct interaction partners of cancer genes occurred less frequently than
mutations on cancer genes themselves, suggesting that there may be a greater biological advan-
tage for mutating the interface on the side of the cancer gene. The most notable exception was
B2M, where most mutations were distributed on the reciprocal interfaces of binding partners.
This may reflect that antigen presentation, a process to which B2M is central, may need to be
specifically altered according to the set of mutations already present in the tumor genome.
Alternatively, it might suggest that even minor changes in the efficiency of antigen presenta-
tion, such as might be caused by a shift in B2M binding affinity for one partner relative to oth-
ers, can be beneficial to tumorigenesis.

Our findings raise important considerations for the design and application of precision can-
cer therapies. In cases where a cancer gene itself is considered un-druggable, its binding part-
ners could represent attractive alternatives. One such success is the use of Nutlin to target
MDM2, in order to relieve inhibition of TP53. Furthermore, protein interaction interfaces can
be specifically targeted by therapies. Extending our analysis to all genes with high quality struc-
turally resolved interfaces, we found a number of genes with one or more interfaces harboring
similar numbers of somatic mutations to known cancer genes. Several of these genes have not
previously been implicated as cancer genes, and thus may represent novel therapeutic targets.

In addition to PPIs, protein-nucleotide interfaces also harbored mutations. A number of
these proteins were also recently reported master transcriptional regulators (8 out of 140
genes). Sahni et al.[9] reported that more than 80% of tested Mendelian missense mutations in
transcription factors altered DNA binding patterns, with a number of mutations resulting in
new protein-DNA binding interactions. We also found that mutations were enriched in the
RNA binding sites of RNA binding proteins. Other examples of somatic cancer mutations
capable of altering specific aspects of protein activity including post-translational modification
sites and enzyme substrate specificity have also been reported[47, 48].

In conclusion, we find that missense mutations target interactions involving oncogenes and
tumor suppressors in different ways. Distinct perturbations to the protein interaction network,
even those involving the same protein, can result in different patient outcomes. Understanding
the mechanisms by which specific mutations influence tumor behavior and patient outcome
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will be essential in settings where massively parallel sequencing is used to optimize patient
care. Current efforts are limited by the availability of protein structural information along with
condition- and tissue-specific protein interaction networks. Our work highlights the impor-
tance of developing new tools and datasets to inform such efforts.

Materials and Methods

Assembling Structural Data on Proteins and Their Interactions
We downloaded the experimental structures associated with each human gene in the Protein
Data Bank (PDB)[24], which corresponded to 46,867 PDB chains for 4896 proteins (~9.6
chains per protein on the average). We also collected 10,238 PDB (protein-protein) complexes.
We based our structural analysis of protein complexes on 3,612 human protein-protein, 743
DNA-human protein and 198 RNA-human protein PDB complexes. We used VMD[49] to
visualize protein 3D structures.

Residue Annotation and PDB to Uniprot ID Mapping
We annotated every residue in each PDB structure as core, surface or intermediate according
to the solvent accessible surface area (ASA) calculated with Naccess [50]. Residues with a rela-
tive ASA of 0 were annotated as core residue, while residues with a relative ASA greater than
15 were annotated as surface. Any residues between these thresholds were annotated as inter-
mediate. When multiple PDB chains were available for the same protein, we used the consen-
sus designation as the final label; ties were labeled as intermediate since the annotation was
ambiguous.

Our methodology for defining the location of residues on protein structure (core/ surface/
intermediate) is limited by the availability and completeness of crystal structures in PDB.
Incomplete structures could result in mislabeling of amino acids in the protein core as being
located at solvent accessible sites. Residues with conflicting structural localizations (core/ inter-
mediate/ surface) in different PDB structures of the same protein were labeled intermediate
(Fig 1), and were excluded from all statistical analyses. Thus current limitations of crystallogra-
phy may result in some biases in annotating residues to specific structural sites on a protein.

Residues involved in protein-protein interactions were determined as described in one of
our earlier publications[21]. DNA and RNA binding residues were determined using the dis-
tance between 2 non-hydrogen atoms of amino acids and nucleotides (1 from the protein and
the other from DNA/RNA). If the distance was less than 3.5A, we designated those residues as
interface residues. Incomplete interfaces, those with fewer than 5 residues in either of the inter-
acting chains, were discarded.

PDB residue positions were mapped onto Uniprot residue positions using PDBSWS webser-
ver[51]. After this mapping, we had 4,896 proteins with residue annotations, of which 2,864
were involved in protein-protein interactions. There were 180 proteins involved in DNA bind-
ing and 73 proteins involved in RNA binding after the annotation and mapping steps. We
identified 90,527 interface residues.

Cancer Genes
For our main analysis, we used a list of 138 high confidence cancer genes, comprising 74 onco-
genes and 64 tumor suppressors, assembled by Vogelstein et al.[12]. To determine whether
genes in our network outside of the 138 had also previously been implicated in cancer, we used
a list of genes published by Lawrence et al.[46]. The number of publications per cancer genes
was determined using PubMed.
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Mapping Cancer Related Missense Mutations on Protein Structures
Somatic missense mutations were mined from the whole genomes in Catalogue of Somatic
Mutations in Cancer (COSMIC)[23] and the International Cancer Genome Consortium
(ICGC)[22]. The amino acid changes caused by mutations were available in both datasets. We
considered only mutations mapped onto canonical proteins in COSMIC and mapped ICGC
mutations onto canonical proteins via SNPEff [52]. In total, there were 1,297,414 missense
mutations and 543,146 silent mutations in 17,028 tumor samples. We removed any samples
from COSMIC that were already present in ICGC to ensure that no mutations were double
counted.

Bi-partite Protein-Residue Networks
Due to the inconsistencies in amino acid sequences between PDB and Uniprot databases, map-
ping can sometimes fail. When failed mapping resulted in data loss at protein-protein interac-
tion sites (fewer than 5 residues could be mapped for either interacting chain), we discarded
the interaction. After mapping PDB to Uniprot residues our network included 2,864 proteins
and 3,072 unique PPIs, 199 of which were between cancer genes and their interactors (homo-
dimers included).

To determine residues involved in homo-oligomerization, we automatically extracted the
self-interacting regions from PDB. If there was a contact region between two chains of the
same protein, we assumed that the protein was capable of homo-dimerizing. Since the crystalli-
zation process could result in non-biological interactions, we focused on those proteins for
which there was evidence in the literature and PDB structures that were predicted to be biologi-
cal by PISA[43].

Binding Affinity Calculations
To estimate the change in binding affinity due to a mutation at an interaction interface, we
used FoldX[53] version 3.0. As recommended in the FoldX tool’s manual, we discarded the
free energy changes smaller than 0.5. Mutations that led to a binding energy change greater
than zero were interpreted destabilizing, whereas the ones with binding energy change smaller
than zero were interpreted as stabilizing mutations. In cases where there were multiple PDB
structures per interaction, we used the consensus of the binding energies per interaction (S3
File). In total, we annotated 1,225 mutations as destabilizing/stabilizing (S2 File).

We used the Reactome Pathway Database[30] to label PPIs with a functional role, namely
activating or inhibitory. There were 167 mutations for which the stabilizing/destabilizing effect
was predicted and the functional role of the interaction could be assigned a label of activating/
inhibitory.

Mutation Functionality Predictions
We used VEST[29] to classify mutations according to their predicted consequence for protein
activity. VEST uses a Random Forest classifier composed of multiple decision trees. VEST
scores represent the fraction of decision trees that predicted the mutation to be functional.
Thus scores range from 0–1, with 0 representing a unanimous prediction of neutrality, a score
of 1 representing a unanimous prediction of a functional mutation, and a score of 0.5 repre-
senting an inability to confidently assign either label. We therefore designated mutations
receiving a VEST score of 0.75 or higher as functional and mutations with a score of 0.25 or
lower as neutral.
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Survival Curves
Clinical data for the 353 patients with TP53 hotspot mutations was downloaded from TCGA.
Death due to old age or due to surgical complications can confound survival analysis, therefore
we removed individuals that died within the first 30 days after surgery and individuals older
than 75 years. We also removed patients that had glioblastoma multiforme or thyroid carci-
noma as these diseases have very short and very long survival times respectively relative to
most other solid tumors. After filtering, we retained 106 patients with a mutation at residue
273, 68 patients with a mutation at residue 175 and 73 patients with a mutation at residue 248.

We compared a univariate Cox proportional hazards model [54] regressing 5 year survival
on primary tumor type to a multivariate model including both tumor type and TP53 hotspot
mutations in order to determine whether differences in primary tumor type alone could
account for apparent survival differences. This analysis found that the model including TP53
hotspot mutations better explained observed survival differences among cancer patients (P-
value< 3.7×10−2, ANOVA Test) than a model with tumor type alone. Analyses were per-
formed using the survival package[55] in R[56].

Ranking Protein Interactions
Interactions were ranked on the basis of the ratio of missense mutations to silent mutations,
divided by the ratio of probabilities of the occurrence of a missense versus silent mutation
given the codon composition of the interface, similar to the approach in [57]. To determine the
probability of a missense mutation resulting from a random nucleotide substitution at an inter-
face, we counted the number of nucleotide sites at the interface that could results in a missense
versus a silent mutation. The number of missense versus silent substitutions was pre-calculated
for all codons corresponding to each amino acid. Since the exact codon encoding an amino
acid cannot be determined from a PDB file, we used the codon with the highest missense sub-
stitution count for the given amino acid, as this would give the most conservative estimate of
positive selection. A ratio> 1 was considered to be evidence of positive selection for missense
mutations at an interface.

Supporting Information
S1 Fig. Summary statistics for genes and mutations used in our analysis. a) Violin plots
showing the distribution of the number of PDB structures per protein for oncogenes (n = 56),
tumor suppressors (n = 47) and other genes (n = 4600) in our analysis. b) Violin plots showing
the distribution of the number of publications in PubMed associated per protein for oncogenes,
tumor suppressors and other genes. c) A summary of PDB structures available for cancer
genes. “Complex structure”means that there exists at least one structure with a cancer gene
bound to another protein or nucleic acid. “Protein structure”means that there is at least a ter-
tiary structure present in the PDB. “Driver genes” simply reflects the number of genes classified
as an oncogene or tumor suppressor. d) Violin plots showing the distribution of the number of
tumor samples with mutations at a given core residue. e) Violin plots showing the distribution
of the number of tumor sample with mutations at a given interface residue. In d) and e), the
most frequently altered residues for each set of genes are labeled. f) A density plot showing the
distribution of VEST scores for mutations occurring at protein core (green), surface non-inter-
face (blue) and interface residues (pink).
(EPS)

S2 Fig. Characterizing the structural location of silent mutations in tumor suppressors
(TS), oncogenes (OG) and other genes. Fisher’s exact tests were performed separately for each
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set of genes. Shown are the odds ratios and 95% confidence intervals within each set of genes
when making comparing the number of mutations located at a) surface versus core residues, b)
surface interface versus surface non-interface residues.
(EPS)

S1 File. Binding affinity calculations per PPI.
(XLSX)

S2 File. PPI Rankings.
(XLSX)

S3 File. Binding affinity calculations per PDB and SNP pair.
(XLSX)

S1 Table. Two-sided Fisher’s exact tests performed to determine structural site-specific
enrichment for somatic missense mutations.
(DOCX)

S2 Table. Two-sided Fisher’s exact test performed to determine enrichment for functional
mutations at protein interaction interface residues.
(DOCX)

S3 Table. The impact of mutations on cancer interactions. Cancer genes and their interac-
tion partners are listed using Entrez gene ids in columns 2 and 4.
(DOCX)

S4 Table. Two-sided Fisher’s exact tests performed to determine enrichment for destabiliz-
ing mutations in interactions that activate cancer genes.
(DOCX)

S5 Table. The list of PDB interfaces that were predicted to be biological via PISA webserver.

(DOCX)

S6 Table. Literature evidence for the homo-oligomerization of driver genes.
(DOCX)

S7 Table. Two-sided Fisher’s exact tests performed to determine enrichment for functional
mutations at homo-oligomerization site residues of cancer genes.
(DOCX)

S8 Table. The list of 180 proteins that have at least one PDB structure co-complexed with
DNA.
(DOCX)

S9 Table. The list of 141 proteins that have nsSNVs in their DNA binding region.
(DOCX)

S10 Table. Two-sided Fisher’s Exact Tests Performed to determine enrichment for DNA
binding site characteristics.
(DOCX)

S11 Table. The list of 73 proteins that have at least one PDB structure co-complexed with
RNA.
(DOCX)
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