
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Tatiana Novikova,
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Differentiation of glioblastoma
tissues using spontaneous
Raman scattering with
dimensionality reduction and
data classification
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Arseniy Orlov2, Alexander Kravchuk3, Sergey Goryaynov3,
Denis Golbin3, Galina Pavlova3,4, Igor Pronin3

and Victor Loschenov1,2

1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia,
2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
Moscow, Russia, 3N.N. Burdenko National Medical Research Center of Neurosurgery,
Moscow, Russia, 4Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy
of Sciences, Moscow, Russia
The neurosurgery of intracranial tumors is often complicated by the difficulty of

distinguishing tumor center, infiltration area, and normal tissue. The current

standard for intraoperative navigation is fluorescent diagnostics with a

fluorescent agent. This approach can be further enhanced by measuring the

Raman spectrum of the tissue, which would provide additional information on

its composition even in the absence of fluorescence. However, for the Raman

spectra to be immediately helpful for a neurosurgeon, theymust be additionally

processed. In this work, we analyzed the Raman spectra of human brain

glioblastoma multiforme tissue samples obtained during the surgery and

investigated several approaches to dimensionality reduction and data

classificatin to distinguish different types of tissues. In our study two

approaches to Raman spectra dimensionality reduction were approbated and

as a result we formulated new technique combining both of them: feature

filtering based on the selection of those shifts which correspond to the

biochemical components providing the statistically significant differences

between groups of examined tissues (center of glioblastoma multiforme,

tissues from infiltration area and normally appeared white matter) and

principal component analysis. We applied the support vector machine to

classify tissues after dimensionality reduction of registered Raman spectra.

The accuracy of the classification of malignant tissues (tumor edge and center)

and normal ones using the principal component analysis alone was 83% with

sensitivity of 96% and specificity of 44%. With a combined technique of
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dimensionality reduction we obtained 83% accuracy with 77% sensitivity and

92% specificity of tumor tissues classification.
KEYWORDS

glioblastoma multiforme, raman spectroscopy, dimensionality reduction, principal
component analysis, biochemical components, optical biopsy
1 Introduction

Brain tumors such as gliomas, and especially glioblastomas,

are the hardest ones to determine the borders and surgically

remove. Precise identification and total disposal of brain tumors

are significant for radical removal while preserving the

surrounding healthy tissue as much as possible. Studies,

including our own, have shown that the content of 5-ALA-

induced protoporphyrin IX (Pp IX) in glial brain tumors is a

highly specific criterion for demarcating tumor boundaries, as

well as determining the degree of its malignancy (1). However, in

30% of cases, we observed only a slight accumulation of Pp IX in

tumor cells, only 10–20% of low-grade gliomas showed visible

fluorescence upon administration of 5-ALA, which does not

allow using it as an exhaustive criterion for determining tumor

tissues. In this case, to demarcate the boundaries of low-grade

gliomas, one can take the path of increasing the sensitivity of

fluorescence analysis (2) or choosing another optical-spectral

approach. For example, Raman spectroscopy is a sensitive and

fast tool for analyzing the molecular composition of tissues in

order to differentiate between tumor and normal tissues.

Raman spectroscopy has become a powerful tool due to its

ability to investigate biological samples with high molecular

specificity without significant sample preparation. It is widely

used to identify various biomolecules, including nucleic acids,

proteins, carbohydrates, and lipids, both in vitro and in vivo. The

fast advances in recent decades in laser and fiber optic

technologies, as well as in chemometrics and machine learning

that help extract information hidden from direct perception,

have led to translation of the technologies of Raman

spectroscopy into clinical conditions (3). The problem of

increasing the radicality of intracranial glial tumor resection

has led to the use of this method in neurosurgery. To date,

various modes of Raman spectroscopy and tools that implement

them have been used, including handheld probes for obtaining

spontaneous Raman spectra in vivo during neurosurgery (4),

spontaneous and stimulated Raman scattering microscopy of

fresh human brain tumor specimens ex vivo (5, 6), resonance

Raman spectroscopy for optical biopsy identification and

grading of gliomas (7) and many other approaches (8).

Resonant Raman scattering is observed when using exciting

radiation, the frequency of which corresponds to a real, rather
02
than a virtual, electronic transition. This leads to a significant

increase in the signal, but is accompanied by a significant

fluorescent background, which can be an obstacle for

intraoperative navigation due to the presence of both

endogenous and exogenous fluorophores in tissues. The use of

stimulated Raman scattering limits us to the choice of the

wavelength of the wavelength of Stokes component. Surface-

enhanced methods also provide a significant increase in

sensitivity, but signal amplification is achieved only in a thin

layer near the substrate, which provides plasmon resonance,

which limits the depth of tissue probing. Spontaneous Raman

scattering is inferior in sensitivity to enhanced methods of

Raman spectroscopy, however, the simplicity of signal

detection makes it the most accessible for clinical applications.

Despite the advantages of Raman spectroscopy, it must be

taken into account that the Raman spectra of biological systems

are complex and diverse due to their heterogeneous nature,

complex molecular composition and structure. Hence, the

interpretation of the results obtained by Raman spectroscopy is

difficult, and in order to overcome these difficulties and for a

deeper understanding, we need to use various methods of data

mining. The article (9) considers a large number of methods for

preprocessing and postprocessing of Raman spectra. Among them

the methods of dimensionality reduction play a crucial role (10).

Sometimes minor differences can contain important information,

but many peaks are common for both healthy and tumor tissues,

that is, they do not contribute to their differentiation. In statistics,

machine learning, and information theory, dimensionality

reduction is the transformation of data that reduces the number

of variables by deriving the principal variables. The

transformation can be divided into feature selection and feature

projection methods. The feature selection method tries to find a

subset of the original variables (called features or attributes) (11).

Feature projection transforms data from a high-dimensional space

to a low-dimensional space. Data transformation can be linear, as

in principal component analysis (PCA) (12), but there are many

techniques for nonlinear dimensionality reduction. Non-linear

approaches could be more powerful than PCA but they can be

slow to optimize and they get different, locally optimal solutions

each time while repeatability is important for clinical applications.

Feature selection can be implemented through wrapping

approaches, filtering algorithms, and nesting methods.
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Filters usually require less complex computations than

wrappers, but they give opportunity to use features that are not

configured to a specific type of predictivemodel. To evaluate subsets

of features, filter techniques appeal to a proxy metric instead of an

error metric. The metric is chosen for easy computation without

affecting the utility metric of the feature set. Usually applied are such

metrics as correlation coefficient of mixed Pearson moments,

mutual information, pointwise mutual information, the result of

significance tests for each class/attribute combination or distance

between classes/within a class.

In this work on the first step we have implemented a filter

approach with the result of significance test as measure of feature

extraction quality. As the classes under consideration, spectra

were taken from samples from the center of the tumor, from the

edge of the tumor (from the tumor cells infiltration area) and

from the normally appeared white matter. The purpose of this

consideration was to detect spectral features characteristic of

tumor tissues and tissues at the tumor border.

Another less commonly used but powerful method is

biochemical component analysis (BCA). In BCA, the Raman

spectrum is considered by the contribution of several known

biochemical components, such as proteins, lipids, nucleic acids,

glycogen groups, etc. In work (13), the authors used both methods

(PCA and BCA) to analyze the Raman spectra measured on living

cells, apoptotic and necrotic leukemia cells. The comparison shows

that the two methods give comparable sample classification

accuracy when the number of principal components is the same.

Changes in the contribution of biochemical components to BCA

can be interpreted using the principles of cell biology during

apoptosis and necrosis. On the contrary, the contribution of most

of the principle components to the PCA is difficult to interpret,

except for the first one. The ability of BCA to detect small

biochemical changes in the spectra of cells and the excellent

classification accuracy may prompt the widespread use of Raman

spectroscopy in biological research.

In this work, we also focused on comparing and, moreover,

on the combination of these two approaches, namely, comparing

such groups of Raman spectroscopy data dimensionality

reduction methods as feature projection methods (which

include PCA) and feature filtering methods (which are used by

BCA, when we select significant peaks corresponding to certain

biochemical components).
2 Materials and methods

2.1 Studied tissue samples

The studied material was obtained during routine surgical

removal of intracranial tumors (8 patients diagnosed with

glioblastoma multiforme, 10 samples in total) at N.N.

Burdenko National Medical Research Center of Neurosurgery.

The samples were kept in saline at 4°C in a sealed tube for no
Frontiers in Oncology 03
more than three hours after removal. Before the Raman

investigation, the material was removed from the tube and

placed on a sterilized aluminum foil to remove the potential

Raman spectrum of the substrate, where it was observed with the

Raman probe. After this, the sample was put into an Eppendorf

tube containing formalin and sent for histological investigation.

As a result, the samples were separated into three groups: normal

brain tissue (3 samples), tumor edge (3 samples), tumor center (4

samples). The localization was reported by the operating surgeon.
2.2 Set-up for registration and
processing of spontaneous Raman
spectra

Raman spectra were measured using a Raman spectrometer

Raman-HR-TEC-785 (StellarNet, USA) under excitation with

785 nm laser radiation from Ramulaser™-785 laser source

(StellarNet, USA) delivered with a fiber-optic confocal

probe (Figure 1).

All measurements were conducted in a darkened room. Prior

to measuring the Raman signal from each sample, the background

signal was measured 5 times with 30 sec exposition, then averaged.

Each sample was measured 5 times at various angles. Spectra where

the measured signal exceeded 90% of the spectrometer dynamic

range were excluded to avoid errors due to oversaturation. As a

result, the total number of measurements was 14 for normal brain

tissue, 15 for tumor edge and 19 for tumor center.

Each measured spectrum consisted of 2050 points in the

range of 127–2830 cm-1. For each sample, the previously

measured background spectra were averaged. This average

background spectrum was subtracted from each Raman

spectrum to remove the background illumination. Each

spectrum was then smoothed to reduce noise using a Savitzky-

Golay filter (15 pixel width, 3rd order polynomial) from

SavitzkyGolay.jl Julia language package. The resulting spectra

were characterized by intense fluorescence signal, which was

approximated as a sum ofMorlet wavelets (14) and removed (15).

According to (16), the primary Raman peaks of interest for

identifying brain tumors are located between 900 and 1800 cm-1.

In our case, this range corresponded to 646 data points. The

spectra were then normalized by their integral intensity. The

averaged spectra for each group of tissue after preprocessing are

presented on Figure 2.
2.3 Dimensionality reduction techniques
for Raman spectra

Raman spectra of biological tissues in general and

intracranial tumors in particular are characterized by a well-

developed structure, which sets researchers the task of reducing

the considered characteristic peaks (features) in order to ensure
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optimal classification of the studied samples by tissue type. As

mentioned in the introduction, dimensionality reduction

methods fall into two broad classes: feature selection methods

and feature projection methods. The feature selection method is

designed to find a subset of initial features (peaks, attributes).

Methods based on feature projection transform data from high-

dimensional space to low-dimensional space, while new features

are a combination of a number of old features. In our study, we

tried both approaches and also used a combination of them.

2.3.1 The feature selection method and
biochemical components

Among the feature selection methods, we chose not

wrapping approaches, but filtering methods that use third-

party estimates to assess the quality of selection. As such a

metric, we chose the result of a test of statistical significance of

differences between the studied types of tissues: the norm, the

edge of the tumor and the center of the tumor. Based on the
Frontiers in Oncology 04
findings of the pathologist, our measurements were divided into

three classes, including 14 measurements of normal-appearing

brain tissue, 15 measurements of the margin of glioblastoma,

and 19 measurements of the center of glioblastoma. Then, for

each point of the spectrum, the value of the Fisher criterion was

calculated. If it exceeded the critical value, we assumed that the

given point of the spectrum was significant and left it for further

consideration; otherwise, we discarded it from the data vector.

Since one of the important advantages of feature selection

methods over feature projection methods is the clarity of their

result for the end user, the next step was to search for a match

between the remaining features and the known peaks of

biochemical components. As such a library of peaks, we used

the work (16).

2.3.2 Principal component analysis
This is one of the main ways to reduce the dimensionality of the

data, losing the least amount of information. Invented by C.
FIGURE 2

Normalized mean Raman signal from normal brain tissue (blue), tumor edge (magenta) and tumor center (orange) with standard error of the
mean indicated by a translucent color.
FIGURE 1

Raman spectra measurement setup.
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Pearson in 1901 (17) and has since found application inmany areas,

including chemometrics, bioinformatics, artificial intelligence

systems, wherever there is a redundant set of features. The

calculation of the principal components consists in calculating the

eigenvectors and eigenvalues of the covariance matrix of the initial

data, ordering them, and choosing the principal components

corresponding to the maximum eigenvalues.
2.4 Classification model

We chose the support vector machine (SVM) as the

classification method. This method belongs to the family

of linear classifiers and can also be considered as a special

case of Tikhonov regularization. Each data object is

represented as a vector (point) in p-dimensional space.

Each of these points belongs to only one of the considered

classes. The question is whether the points can be separated

by a hyperplane of dimension (p − 1). There can be many

such hyperplanes, so it is believed that maximizing the gap

be tween c la s s e s cont r ibu te s to a more confident

classification. If such a hyperplane exists, it is called an

optimal separating hyperplane, and the corresponding

linear classifier is called an optimal separating classifier.

The linear classifier does not always give an optimal

partition, so it is possible to move to a higher-dimensional

space in order to obtain a separating hyperplane of a more

complex shape in the original space (18). Such a transition is

made with the help of a kernel function, which in our case

was radial basis function.

The accuracy, sensitivity and specificity measures were used

to evaluate the performance of the SVM classifier.
Frontiers in Oncology 05
3 Results and discussion

3.1 The feature selection and
corresponding biochemical components

As a result of feature filtering, statistically significant differences

were found between the studied groups of tissues in a number of

values of shifts in the Raman spectra. After that, a transition was

made to summing the intensities within the remaining spectral

ranges, which correspond to important biochemical components

of healthy and tumor tissues (Figures 3–6).

Analysis of changes in the amide bands showed ambiguous

results (Figure 3), however, a significant contribution of

hemoglobin to the 3rd amide band needs to be taken into

account and interpreted during further data collection for

statistical analysis.

Based on our data, we found a statistically significant

decrease in the intensity at shifts corresponding to

cholesterol for the tumor compared to the norm and for

the tumor compared to the edge, while the edge in some

cases (by 960 and 1228 cm-1) showed a higher content

cholesterol (Figure 4). For phospholipids at this stage of

the study, there are no unambiguous conclusions. Proteins

showed an ambiguous pattern in those peak positions that

merge with the peaks of cholesterol (926 and 1178 cm-1). At

the same time, for the C-N region of the protein (1097 cm-1),

we see an increase in intensities in the tumor compared to

the norm.

Comparison of the characteristic values for carotenoids

showed a statistically significant decrease in the intensity during

the development of the tumor process in the center of the tumor

(Figure 5). Carotenoids play an important role in the healthy
FIGURE 3

Mean Raman signal in amide bands (blue – normal tissue, magenta - tumor edge, orange - tumor center). Numbers in horizontal labels denote
the range of Raman shifts. *p<0.05, **p<0.001.
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brain’s antioxidant defense system. The concentration of

carotenoids in blood plasma is inversely related to the risk of

developing cancer according to epidemiological and experimental

studies (19). In the work of (7) a distinct decrease in the intensity

of the peaks at 1157 and 1521 cm-1 with an increase in the grade of

gliomas also was observed.

An increase in hemoglobin content at shifts of 1546-1558

cm-1 is in good agreement with the known increase in the blood

filling of tumor tissues compared to normal ones (Figure 6). One

of the most widely used prognostic criteria in determining the

degree of malignancy of a tumor is a change in the vascular

structure and, as a consequence, the blood filling of the tumor,

usually determined by preoperative MRI (20). Blood filling

correlates with the level of vascularization and the degree of

malignancy of gliomas. H.J. Aaronen et al. showed that the ratio

of blood filling of the altered tissue relative to the normal one is
Frontiers in Oncology 06
3.64 ± 1.59 for glioblastoma (average ± SD), while for benign

tumors this value is close to one (21).

We also found a statistically significant increase in the water

content in the samples, judging by the Raman spectra (Figure 6)

which is consistent with previous studies (22). The increased

water content in glial tumors is due to a combination of a

number of factors, such as the increased vascularization of tumor

tissues, which was mentioned above, the formation of edema,

and the presence of body fluids around the necrotic debris that

characterize the center of glioblastoma (23).
3.2 Principal component analysis

Another approach to dimensionality reduction which is the

most widely used in biological applications of Raman
FIGURE 4

Mean Raman signal in bands of cholesterol, phospholipids and protein (blue – normal tissue, magenta - tumor edge, orange - tumor center).
Numbers in horizontal labels denote the range of Raman shifts. *p<0.05.
FIGURE 5

Mean Raman signal in bands of carotenoids (blue – normal tissue, magenta - tumor edge, orange - tumor center). Numbers in horizontal labels
denote the range of Raman shifts. *p<0.05.
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spectroscopy is the principal component analysis. This approach

seeks to automatically minimize the dimensionality of the

measured data. For carrying out the PCA we used

MultivariateStats.jl module of Julia programming language.

Using PCA allowed reducing the number of dimensions for the

Raman shift range of 900-1800 cm-1 from 646 to two (Figure 7).

The data was then used to train Support-VectorMachine classifier

(Python 3 library scikit-learn) for automatic detection of

malignant samples (Figure 6, filled areas), which separated the

PC-space into three areas, corresponding to normal, tumor edge

and tumor center. We used 30% randomly selected samples to

train the classifier with at least 5 samples from each type of tissue.
Frontiers in Oncology 07
The accuracy of the used classifier for detecting malignant tissue

(joint tumor edge and center) was 83% with sensitivity of 96% and

specificity of 44%.
3.3 SVM classification of pre-filtered
features

We applied SVM to the 26 previously filtered features with

the same sampling for the training set as in section 3.2. The

accuracy of the trained classifier was 83% with 92% sensitivity

and 56% specificity.
FIGURE 7

PCA of all points in the range of 900–1800 cm-1 (blue – normal tissue, magenta - tumor edge, orange - tumor center). The background color
signifies the classification by SVM.
FIGURE 6

Mean Raman signal in bands of water and hemoglobin (blue – normal tissue, magenta - tumor edge, orange - tumor center). Numbers in
horizontal labels denote the range of Raman shifts. *p<0.05.
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3.4 Combined technique of
dimensionality reduction

A natural next step in utilizing both approaches is their

combination. For that, we applied PCA and SVM not to the

entire data range, but to the previously filtered data (Figure 8).

Using the same parameters for classification, we obtained 83%

accuracy with 77% sensitivity and 92% specificity for

differentiation of malignant (joint tumor edge and center) and

normal tissue.
4 Conclusion

In the present work, we have considered two different

approaches to dimensionality reduction of the Raman

spectroscopy data for analysis of molecular features of

intracranial glioblastoma multiforme. As a filtering feature

technique, we used the selection of spectral points that showed

statistically significant differences between the investigated

groups of tissues, followed by comparison of them and the

spectral ranges of known biochemical components. As a feature

projection method, we used the principal component analysis.

The support vector machine was used as a classification

algorithm. The approach that combines preliminary feature

filtering with PCA provided significantly higher specificity at

the cost of reduced sensitivity compared to both the approach

using only PCA over spectral data and the approach of the

classification algorithm for biochemical components without

PCA. The accuracy of each method remained the same. It

should be noted that to better train the classifier, the

measurements from the same patient should not be sampled
Frontiers in Oncology 08
into both the training and the testing sets. The obtained result

allows us to conclude about the advantages of the two-stage

dimensionality reduction algorithm both in terms of improving

the quality of classification and in terms of a more visually

convenient representation of the detected differences between

classes due to the preliminary selection of biochemical

components. In this paper, we propose a basic approach to

data analysis, but further expansion of the sample is required to

build an automatic classification system that works in the clinic.

We also plan to expand the set of optical-spectral features using

fluorescence and diffuse reflectance spectroscopy.
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