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Abstract

DNA barcoding can be an effective tool for fast and accurate species-level identification based on sequencing of the
mitochondrial cytochrome c oxidase subunit (COI) gene. The diversity of this fragment can be used to estimate the richness
of the respective species. In this study, we explored the use of DNA barcoding in a group of ornamental freshwater fish of
the genus Hyphessobrycon. We sequenced the COI from 10 species of Hyphessobrycon belonging to the ‘‘Rosy Tetra Clade’’
collected from the Amazon and Negro River basins and combined our results with published data. The average conspecific
and congeneric Kimura 2-parameter distances were 2.3% and 19.3%, respectively. Six of the 10 species were easily
distinguishable by DNA barcoding (H. bentosi, H. copelandi, H. eques, H. epicharis, H. pulchrippinis, and H. sweglesi), whereas
the remaining species (H. erythrostigma, H. pyrrhonotus, H. rosaceus and H. socolofi) lacked reciprocal monophyly. Although
the COI gene was not fully diagnostic, the discovery of distinct evolutionary units in certain Hyphessobrycon species under
the same specific epithet as well as haplotype sharing between different species suggest that DNA barcoding is useful for
species identification in this speciose genus.
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Introduction

Characidae is the largest family of the order Characiformes with

approximately 163 genera and 1,057 valid species. This species

richness represents approximately 52% of all species in the order.

Hyphessobrycon is among the largest genera of Characidae and

presently is placed in either ‘‘incertae sedis’’ or the ‘‘Hemigrammus’’

clade [1], [2].

Native to the Neotropics, Hyphessobrycon is widely distributed

from southern Mexico to Argentina (Rio de la Plata) with the

greatest species diversity found in the Amazon River basin [3], [4].

Approximately one-third of the Hyphessobrycon species are of

commercial interest because they exhibit an attractive coloration

pattern. Governmental regulations allow 45 Brazilian Hyphesso-

brycon species to be used for ornamental trade [5]. The Amazon

basin is the primary fishing ground for South American

ornamental fishes, including the Hyphessobrycon species [6], [7].

The morpho-anatomical characteristics used to distinguish

Hyphessobrycon from other characids are not entirely diagnostic.

These characteristics include the lack of scales on the caudal fin,

an incomplete lateral line, more than one row of pre-ventral scales,

the presence of an adipose fin, two series of pre-maxillary teeth

with the inner series containing five teeth, a lack of ventral contact

between the second suborbital and the preopercle, and few

maxillary teeth [6], [8–10].

Based on their color patterns, Hyphessobrycon species have been

divided into six admittedly artificial species groups: (a) species

without black markings on the body, (b) species with one or two

humeral spot(s), (c) species with a caudal spot, (d) species with

both humeral and caudal spots, (e) species with a longitudinal

pattern, usually a band uniting the humeral and caudal spots, and

(f) species with a black spot on the dorsal fin, including two

subgroups (bentosi and compressus) [6].

Because the primary grouping of this genus relies on similarities

in the pigmentation patterns, it is difficult to identify characteristics

that are useful to formulate hypotheses on the relationships among

the species; therefore, some researchers do not accept or follow this

classification. Conversely, other groups [11], [12] have concluded

that the pigmentation patterns of Hyphessobrycon might be useful for

ordering the complex systematic relationships within the genus.

Despite being considered the most speciose genus in Char-

acidae, the inter- and intraspecific relationships within Hyphesso-

brycon remain largely unresolved. According to recent phylogenetic

hypotheses on Characidae, Hyphessobrycon is clearly polyphyletic

[7], [13–17]. However, ongoing studies and unpublished phylo-

genetic hypotheses on Hyphessobrycon have revealed that at least two

groups are monophyletic: 1) the ‘‘true’’ Hyphessobrycon, which

partially encompasses the Rosy Tetra clade, and 2) the ‘‘hetero-

rhabdus’’ clade [Carvalho, pers. comm. Universidade Estadual

Paulista; Garcı́a-Alzate, pers. comm Universidad del Atlántico].
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Morphological characteristics are not always sufficient to

identify certain species, especially when their phenotypes are

diverse. In addition, the use of species identification keys, often

effective only at a certain stage of life, does not always allow for the

correct diagnosis of a taxon. Therefore, DNA has been used as an

alternative tool for the diagnosis of species with or without an

integrative taxonomic approach [18–20].

DNA barcoding is a taxonomic method that uses a standardized

short fragment of DNA to identify previously known species and

facilitate the rapid recognition of new species [18]. The

cytochrome c oxidase subunit I (COI) gene is most commonly

used, but the use of other loci has been proposed [21]. In DNA

barcoding, there are two main underlying assumptions: the

reciprocal monophyly of species and an intraspecific divergence

Figure 1. Map showing the sample distribution in the Amazon Basin.
doi:10.1371/journal.pone.0098603.g001

Table 1. The mean and maximum intra-specific values compared to the nearest neighbor distance in Hyphessobrycon species from
the Brazilian Amazon basin.

Species Mean Intra-Sp Max Intra-Sp Nearest Species Distance to NN

Hyphessobrycon bentosi 0.12 0.31 Hyphessobrycon socolofi 0.62

Hyphessobrycon copelandi 2.28 6.05 Hyphessobrycon eques 10.45

Hyphessobrycon epicharis 1.76 4.66 Hyphessobrycon sweglesi 3.33

Hyphessobrycon eques 0.11 0.16 Hyphessobrycon copelandi 10.45

Hyphessobrycon erythrostigma 1.88 3.99 Hyphessobrycon pyrrhonotus 0.46

Hyphessobrycon pulchripinnis N/A N/A Hyphessobrycon rosaceus 22.55

Hyphessobrycon pyrrhonotus 1.82 3.66 Hyphessobrycon socolofi 0

Hyphessobrycon rosaceus 8.92 22.28 Hyphessobrycon sweglesi 7.06

Hyphessobrycon socolofi 4.35 11.60 Hyphessobrycon pyrrhonotus 0

Hyphessobrycon sweglesi 0 0 Hyphessobrycon epicharis 3.33

N/A corresponds to a singleton for intra-specific values. Bolded distances correspond to the nearest neighbor (NN) that is less than 2% divergent.
doi:10.1371/journal.pone.0098603.t001
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less than interspecific divergence [22]. DNA barcode-based

identification is effective in discriminating species. However, the

error rates can be high when there are no reference data, when

samples do not reflect a species entire range, and when data for

closely related species are unavailable [23], [24].

DNA barcoding has been used for Neotropical ichthyofaunal

surveys of specific rivers [25] or regions [26–28] and to study

specific taxa [29], describe new species [30], identify cryptic

species [31], and identify commercial products [32]. This study

aimed to improve the accuracy of identification of the Rosy Tetras

and allied species of Hyphessobrycon and investigate whether the

COI gene is effective for the efficient DNA-based identification of

Hyphessobrycon congeners.

Materials and Methods

Ethics Statement
This survey was conducted in strict accordance with the

recommendations of the National Council for Control of Animal

Experimentation and Federal Board of Veterinary Medicine. The

protocol was approved by the Committee on the Ethical Use of

Animals (040/2012) of the Instituto Nacional de Pesquisas da

Amazônia (INPA). All specimens for this study were collected in

accordance with Brazilian laws under a permanent scientific

collection license approved by the Brazilian Institute of Environ-

ment and Renewable Natural Resources (IBAMA) through the

System Authorization and Information on Biodiversity (SISBIO

#11489-1and 25890-1).

Figure 2. Neighbor-joining (NJ) tree of select Hyphessobrycon taxa showing H. rosaceus (marked in red) and H. socolofi (marked in
blue) as probable evolutionary units. Node values are the bootstrap test results (1,000 pseudo-replicates). The stars indicate species for which
sequences were obtained from the GenBank database.
doi:10.1371/journal.pone.0098603.g002
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Taxon sampling
We collected 158 fishes belonging to 10 species at 28 different

sites located throughout the Amazon and Negro River basins

(Figure 1 and Table S1). Whole specimens (adult fish and

juveniles) were collected for genetic analysis and storage as

voucher specimens. All of the specimens were anesthetized by

immersion in Eugenol and preserved in 96% ethanol. Morpho-

logical identification was performed by taxonomists and confirmed

using published and unpublished identification keys. After

identification, morphological vouchers were deposited in the

Zoological Collection at the National Institute for Amazonian

Research (INPA). Specimen data, including the geospatial

coordinates of the collection sites and other relevant details, are

available in the BOLD database (http://v3.boldsystems.org/)

under the project ‘‘DNA Barcoding of Hyphessobrycon – HYP’’.

DNA isolation, amplification and sequencing
DNA was isolated from the muscle tissue of each specimen using

two methods: a DNeasy Tissue Kit (Qiagen) according to the

manufacturer’s instructions or a modified phenol-chloroform

protocol described by Sambrook et al. [33]. Subsequently, the

650-bp barcode region of the mitochondrial COI gene (hereafter

referred to as COI-5P) was amplified using the primers LCO1490

and HCO2198 [34].

The polymerase chain reaction (PCR) was performed in a total

volume of 15 ml containing 10–50 ng of DNA template, 1X buffer

(750 mM Tris-HCl, pH 8.8, 200 mM (NH4)2SO4, 0.1% (v/v)

Tween 20), 1 unit of Taq polymerase (Fermentas -Thermo

Scientific), 0.2 mM dNTPs, 0.2 mM of each primer, 2 mM MgCl2
and ultrapure water. The PCR program was as follows: 95uC for

2 min; 35 cycles at 93uC for 30 s, 41uC for 40 s and 72uC for

1 min and 20 s; and a final extension at 72uC for 7 min.

All PCR products were purified using a GFX kit (GE

Healthcare) according to the manufacturer’s protocols, and bi-

directional sequencing was performed using an ABI BigDye

Terminator v.3.1 Cycle Sequencing Ready Reaction Kit and an

ABI 3130xl DNA Analyzer (Applied Biosystems, Inc.) according to

the manufacturer’s instructions. The cycle sequencing conditions

included an initial denaturation step of 1 min at 96uC followed by

15 cycles of 96uC for 10 s, 50uC for 10 s, and 60uC for 1 min and

15 s followed by 5 cycles at 96uC for 10 s, 50uC for 10 s and 60uC
for 1 min and 30 s and a final step of 5 cycles at 96uC for 10 s,

50uC for 10 s and 60uC for 2 min.

Data analysis
The forward and reverse COI-5P sequences were aligned using

the ClustalW Multiple Alignment tool in the software BioEdit

v7.0.1 [35] and edited manually. The COI nucleotide sequences

were translated to amino acid sequences to detect insertions,

deletions, or stop codons. The sequences were aligned using the

tools available on BOLD v3.0 (http://v3.boldsystems.org).

Genetic distances between specimens were calculated with the

‘‘Distance Summary’’ command implemented by BOLD. The

genetic distances were calculated using the Kimura 2-parameter

(K2P) distance model [36]. Neighbor-joining [37] analyses of K2P

distances was performed using the MEGA v5.0 [38] software to

provide a graphical representation of the pattern of divergence

among the species. Node support was evaluated based on 1000

bootstrap replicates. A maximum-likelihood analysis was per-

formed using the program PhyML [39] with the HKY85

substitution model, which was the optimum model calculated

using jModeltest [40] specifications.

We supplemented the data gathered in this study with the

following sequences from the GenBank and BOLD databases:

Hyphessobrycon anisitsi (FJ749040-GBGCA516-10), Hyphessobrycon

bifasciatus (HM064999) Hyphessobrycon erythrostigma (FJ749055-

GBGCA501), Hyphessobrycon eques (FJ749057-GBGCA499-10 and

JF752341-ANGBF1897-12), Hyphessobrycon herbertaxelrodi (FJ749053-

gbgca503-10), Hyphessobrycon megalopterus (FJ749058-GBGCA498-

10), and Hyphessobrycon santae (HM405129). Sequences from

Hyphessobrycon pulchripinnis and Moenkhausia hemigrammoides were also

included as outgroups to the Rosy Tetra clade.

Results

We sequenced the COI gene in 158 specimens; the number of

specimens per species varied from 1 to 36 with an average of 15

(Table S1). The ten Hyphessobrycon species examined in this study

were collected in the Negro River basin (H. bentosi, H. copelandi, H.

epicharis, H. pyrrhonotus, H. rosaceus, H. socolofi, and H. sweglesi) and

the Amazon River Basin (H. copelandi, H. eques, H. erythrostigma, and

H. pulchripinnis). Additionally, we sequenced Moenkhausia hemigram-

moides from Guyana as an outgroup (Figure 1, Table S1). We

performed taxonomic identification at the species level for all 158

individuals based on the identification key (morphology). We

found that 155 specimens belonged to the genus Hyphessobrycon and

that three belonged to the genus Moenkhausia.

DNA sequencing yielded 650 COI-5P barcodes, and no stop

codons, deletions, or insertions were observed. Nucleotide

composition analysis revealed that the mean frequencies for the

complete data set were 19.6% G, 27.3% C, 22.5% A, and 30.0%

T.

Almost all species had mean conspecific divergence values

below 2%, with the exceptions of H. copelandi (2.2%), H. rosaceus

(8.9%), and H. socolofi (4.3%). The absence of a ‘‘barcode gap’’

(when the minimum between-species sequence distance is less than

the maximum within-species distance) was evident between some

closely related species-pairs (H.bentosi x H. socolofi – 0.6%, H.

erythrostigma x H. pyrrhonotus – 0.4%, H. pyrrhonotus x H. socolofi – 0%)

(Table 1). The mean conspecific divergence found in Hyphessobrycon

was 2.3%, and the mean congeneric divergence was 19.3%

(Table 1).

The K2P neighbor-joining tree showed that most species in this

study formed reciprocally monophyletic groups. The following

nominal Hyphessobrycon species were readily distinguishable using

the DNA barcoding approach: H. anisitsi, H. bifasciatus, H. bentosi,

H. eques, H. epicharis, H. herbertaxelrodi, H. megalopterus, H.

pulchripinnis, H. santae, and H. sweglesi. However, four species could

not be accurately identified: Hyphessobrycon erythrostigma, H.

pyrrhonotus, H. socolofi, and H. rosaceus (Figure 2). The outgroup

Moenkhausia hemigrammoides was found to be paraphyletic. The ML

and NJ methods yielded nearly identical tree topologies (Figure 3,

File S2).

Two Hyphessobrycon species, H. rosaceus and H. socolofi, were

paraphyletic and yielded the two highest observed maximum

intraspecific genetic distances (22.2% and 11.6%, respectively). H.

rosaceus consisted of two distinct groups: 1) four specimens from the

Amazon River and two from the Upper Negro River; and 2) 22

specimens distributed along the Upper and Lower Negro River

Figure 3. Maximum likelihood (A) and neighbor-joining (B) COI trees of all Hyphessobrycon species sequenced to date including the
outgroup Moenkhausia hemigrammoides.
doi:10.1371/journal.pone.0098603.g003
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and the Amazon River basin that formed a clade with H. epicharis

and H. sweglesi. However, H. socolofi constituted two distinct groups:

1) 29 specimens that clustered with H. erythrostigma and H.

pyrrhonotus; and 2) seven specimens (four from the Urubaxi River in

the Middle Negro River basin and three from Benevides, Eastern

Amazon) that clustered with H. bentosi (from the Middle Negro

river) (Figure 2, File S2, Table 1, Table S1).

A large clade consisting of specimens of H. erythrostigma, H.

pyrrhonotus, and H. socolofi was observed. In this clade, haplotype-

sharing events between H. socolofi and H. pyrrhonotus were detected.

An apparent geographical segregation between specimens of H.

pyrrhonotus was observed, as evidenced by a distinct sub-clade

consisting exclusively of specimens from the Urubaxi river at the

right bank of the Negro River (n = 9) that differed from a sub-clade

of specimens from the Daraá river at the left bank of the Negro

river (n = 10) and specimens from the Urubaxi river (n = 2)

(Figure 4, File S1).

Distinct lineages were also observed in H. copelandi. The first

group includes 12 specimens from the Marauiá River (upper

Negro River). The second group includes three specimens from

the Urumutum River (Tabatinga - Western Amazon) and one

from the Maicá Lake (Santarém city - Eastern Amazon) (File S1).

Discussion

The isolated application of morphological or DNA character-

istics for species identification has been criticized and has various

caveats, especially when very few individuals are sampled per

species or only a small fraction of the global species richness is

considered [23], [24]. Our study on 158 specimens belonging to

10 species of Hyphessobrycon showed that six species (60%) were

easily distinguishable by DNA barcoding: H. bentosi, H. copelandi, H.

eques, H. epicharis, H. pulchripinnis, and H. sweglesi. Three species

(Hyphessobrycon erythrostigma, H. pyrrhonotus, and H. socolofi) could not

be delineated based on COI gene sequences because each lacked

reciprocal monophyly, and two species (H. socolofi and H. rosaceus)

might possess hidden diversity because they consisted of two clades

(Figure 2, File S1).

Overall, studies on North American and Neotropical freshwater

ichthyofauna have revealed that the mean congeneric and

conspecific genetic distances are usually approximately 6.8% and

0.7%, respectively [25], [27], [28], [41–43]. The mean genetic

divergence observed in Hyphessobrycon (19.3%) was three times

higher than the aforementioned genetic distances. One possible

explanation could be the higher rates of evolution or ancient

divergences in Hyphessobrycon.

In the clade that includes H. bentosi, H. erythrostigma, H.

pyrrhonotus, and H. socolofi, a group of species with few morpho-

logical divergences [7], we observed the absence of a barcode gap

(Table 1, Figure 4). In the DNA Barcode literature, the absence of

barcode gaps and the paraphyly/polyphyly of conspecific DNA

sequences have been explained as results of incomplete lineage

sorting [44]. The minimum pairwise differences observed between

the species forming this clade were below 0.6%. The compara-

tively low sequence divergence observed among these species may

occur because they most likely are recently diverged species and

Figure 4. Neighbor-joining (NJ) tree of select Hyphessobrycon
taxa showing the non-monophyletism of Hyphessobrycon
erythrostigma, H. pyrrhonotus and H. socolofi (marked in blue)
and the possible geographic segregation of H. socolofi. Node
values are the bootstrap test results (1,000 pseudo-replicates). Stars
indicate species for which sequences were obtained from the GenBank
database.
doi:10.1371/journal.pone.0098603.g004
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present incomplete lineage sorting. Apparently, these species have

not had sufficient time to accumulate mutations in the COI gene

due to recent speciation. Thus, DNA barcoding would fail to

identify them.

Additionally, if we examine the present distribution pattern of

the endemic species H. socolofi and H. pyrrhonotus in the Negro River

Basin, we cannot rule out an event of peripatric speciation in

which a small population, at the extreme edge of the species range,

became separated into a different species. In this particular case,

H. socolofi possesses a distribution pattern that encompasses the

entire Negro River Basin, whereas H. pyrrhonotus shows a more

restricted distribution pattern by occurring in only in three Negro

River tributaries (Daraá, Ererê and Urubaxi).

Furthermore, we detected evidence for haplotype sharing

between H. pyrrhonotus and H. socolofi. Freshwater fish are among

the groups of animals with the most frequent interspecific

haplotype sharing, reported at 2% in Australian marine fishes,

8% in Canadian freshwater fish, 4% in Cuban freshwater fishes,

10% in North American freshwater fish and 11.4% in Nigeria

freshwater fish [41–43], [45], [46]. The haplotype sharing

observed in these studies appears to have resulted from

hybridization, incomplete lineage sorting, inadequate taxonomy,

and erroneous identification. In Hyphessobrycon, the detection of

interspecific haplotype sharing in two of ten analyzed species leads

us to infer that the likely explanations are incomplete lineage

sorting or hybridization. In contrast, poor taxonomy is a likely

cause of this pattern.

After publication of the results of Ward and colleagues [47],

several research groups used a threshold of 2% for conspecific

genetic divergence in fishes. In Hyphessobrycon, most of the studied

species were within the threshold of 2% for conspecific genetic

distance. However, the observed maximum conspecific divergence

in six out of the 10 species showed a remarkably high level of

intraspecific genetic distances (3.6%–22.2%). These values are

more likely to be congeneric than conspecific. Considering that

Hyphessobrycon species are not readily distinguishable by their

external morphology, we suggest that there are cryptic species for

at least some of these six species. On average, the conspecific

genetic divergence detected in previous fish surveys is lower than

our observations using Hyphessobrycon (e.g., Australian marine fishes

(0.3%), Canadian fishes (0.2%), North American fishes (0.7%),

African fishes (0.1%), Persian fishes (0.1%), and Neotropical fishes

(1.3%)) [28–41], [43], [46], [48]. Obviously, if the hidden species

are properly identified and taxonomically validated then the

conspecific genetic divergence in Hyphessobrycon will be decreased.

There have been several reports of DNA barcodes being used to

discriminate cryptic fish species e.g., [49–51]. Usually, cryptic

species complexes cannot be easily identified based on classical

morphology despite high levels of conspecific genetic distance [52].

This appears to be true for H. socolofi and H. rosaceus. Although

groups of specimens within H. socolofi and H. rosaceus were

indistinguishable using morphological methods, molecular char-

acteristics unequivocally separated these groups. In the Neotrop-

ical fish species, more than 20 cases of possible cryptic speciation

were detected when the conspecific divergence was greater than

2% [28], [53].

The Amazon basin has the most diverse freshwater fish fauna in

the world [54], [55]. The large number of described Hyphessobrycon

species (131 spp.) and the new species described every year reveal

the astonishing species richness of the genus. Within in the past 10

years, 35 new species have been described [2]. Several factors

including the unique geomorphological features of the Neotropics

and preservation of the extraordinary species richness characterize

the modern Neotropical ichthyofauna [56].

Historically, Hyphessobrycon species have been described based on

morphological characteristics, including similarities in the pig-

mentation patterns, using a low number of individuals per species.

DNA barcoding in Hyphessobrycon can be used to discriminate

species and identify new ones and reveals that it is not always

possible to differentiate good species based solely on their

morphology. Because our study revealed likely cryptic speciation

in Hyphessobrycon, we recommend the use of DNA barcodes for

future descriptions of new species to increase our understanding of

this speciose genus.

Supporting Information

Table S1 List of the 158 analyzed specimens.

(XLS)

File S1 Neighbor-joining (NJ) tree of the genus Hyphes-
sobrycon. The NJ tree of the COI sequences of 158 specimens

calculated using the Kimura 2-parameter distance model. Node

values are the bootstrap test results (1,000 pseudo-replicates). Stars

indicate species for which sequences were obtained from the

GenBank database.

(TIF)

File S2 Maximum likelihood phylogenetic tree of 155
COI barcodes from 10 species of Hyphessobrycon.
Hyphessobrycon pulchripinnis and Moenkhausia hemigrammoides were

used as outgroups.

(PDF)
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(2010) Morfologı́a de las especies de Hyphessobrycon (Characiformes: Characidae)
grupo Heterorhabdus en Colombia. Rev. Bio.Trop 59: 709–725.

13. Weitzman SH, Malabarba LR (1998) Perspectives about the phylogeny and
classification of the Characidae (Teleostei: Characiformes). In: Malabarba LR,

Reis RE, Vari RP, Lucena ZMS, Lucena CAS, editors. Phylogeny and

Classification of Neotropical Fishes. pp. 161–170.
14. Mirande JM (2009) Weighted parsimony phylogeny of the family Characidae

(Teleostei: Characiformes). Cladistics 2009:385-568. doi:10.1111/j.1096-
0031.2009.00262.x

15. Javonillo R, Malabarba LR, Weitzman SH, Burns JR (2010) Relationships

among major lineages of characid fishes (Teleostei: Ostariophysi: Characiformes)
based on molecular sequence data. Molecular Phylogenetics and Evolution 54:

498–511. doi:10.1016/j.ympev.2009.08.026.
16. Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, et al. (2011)

Phylogenetic relationships within the speciose family Characidae (Teleostei:
Ostariophysi: Characiformes) based on multilocus analysis and extensive in

group sampling. BMC Evol. Biol. 11: 275. doi:10.1186/1471-2148-11-275

17. Carvalho FR, Langeani F (2013) Hyphessobrycon uaiso: new characid fish from the
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