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ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) out-
break urgently necessitates sensitive and convenient COVID-19 diagnostics for the
containment and timely treatment of patients. We aimed to develop and validate a
novel reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assay
to detect SARS-CoV-2. Patients with suspected COVID-19 and close contacts were re-
cruited from two hospitals between 26 January and 8 April 2020. Respiratory sam-
ples were collected and tested using RT-LAMP, and the results were compared with
those obtained by reverse transcription-quantitative PCR (RT-qPCR). Samples yielding
inconsistent results between these two methods were subjected to next-generation
sequencing for confirmation. RT-LAMP was also applied to an asymptomatic COVID-19
carrier and patients with other respiratory viral infections. Samples were collected
from a cohort of 129 cases (329 nasopharyngeal swabs) and an independent cohort
of 76 patients (152 nasopharyngeal swabs and sputum samples). The RT-LAMP assay
was validated to be accurate (overall sensitivity and specificity of 88.89% and
99.00%, respectively) and diagnostically useful (positive and negative likelihood ra-
tios of 88.89 and 0.11, respectively). RT-LAMP showed increased sensitivity (88.89%
versus 81.48%) and high consistency (kappa, 0.92) compared to those of RT-qPCR for
SARS-CoV-2 screening while requiring only constant-temperature heating and visual
inspection. The time required for RT-LAMP was less than 1 h from sample prepara-
tion to the result. In addition, RT-LAMP was feasible for use with asymptomatic pa-
tients and did not cross-react with other respiratory pathogens. The developed RT-
LAMP assay offers rapid, sensitive, and straightforward detection of SARS-CoV-2
infection and may aid the expansion of COVID-19 testing in the public domain and
hospitals.

IMPORTANCE We developed a visual and rapid reverse transcription–loop-mediated
isothermal amplification (RT-LAMP) assay targeting the S gene for SARS-CoV-2 infec-
tion. The strength of our study was that we validated the RT-LAMP assay using 481
clinical respiratory samples from two prospective cohorts of suspected COVID-19 pa-
tients and on the serial samples from an asymptomatic carrier. The developed
RT-LAMP approach showed an increased sensitivity (88.89%) and high consis-
tency (kappa, 0.92) compared with those of reverse transcription-quantitative PCR
(RT-qPCR) for SARS-CoV-2 screening while requiring only constant-temperature heat-
ing and visual inspection, facilitating SARS-CoV-2 screening in well-equipped labs as
well as in the field. The time required for RT-LAMP was less than 1 h from sample
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preparation to the result (more than 2 h for RT-qPCR). This study showed that the
RT-LAMP assay was a simple, rapid, and sensitive approach for SARS-CoV-2 infection
and can facilitate COVID-19 diagnosis, especially in resource-poor settings.

KEYWORDS RT-LAMP, SARS-CoV-2, COVID-19, asymptomatic carriers, clinical
diagnosis

The skyrocketing COVID-19 outbreak has become a public health emergency of
international concern. A total of 18,354,342 confirmed cases and 696,147 deaths

have been reported in 133 countries since early December of 2019, as of 5 August 2020,
according to the WHO COVID-19 report (1). At present, no effective drugs or vaccines
have been reported for COVID-19, and prompt diagnosis, close contact tracking, and
quarantine management are the hallmarks for the containment of this new pandemic.

Early and accurate diagnosis of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection is crucial to prevent virus transmission and provide appropriate
treatment for patients. Due to its nonspecific symptoms and radiological features
overlapping those of the common cold and influenza, the confirmation of SARS-CoV-2
infection depends entirely on viral RNA detection (2, 3). Reverse transcription-
quantitative PCR (RT-qPCR) is the standard and most widely used method for SARS-
CoV-2 RNA detection in clinical laboratories (4). Despite its outstanding analytical
performance, RT-qPCR-based approaches to detect COVID-19 still suffer from many
limitations, such as long turnaround times (2 to 4 h), poor availability (it is currently
restricted to public health laboratories), the need for expensive instrumentation, and a
high proportion of false-negative results or equivocal values (up to 38%) (5, 6) in upper
respiratory samples due to insufficient viral materials. These limitations render the
RT-qPCR test far from adequate to meet the current challenge of a tremendous
undocumented infected population, asymptomatic transmission (7), and convalescence
with viral RNA conversion (8), highlighting the pressing need for a more rapid, simple,
and sensitive approach to quickly identify infected patients in different settings.

Loop-mediated isothermal amplification (LAMP) is regarded as a promising point-
of-care test (POCT) due to its advantages of high sensitivity and specificity, rapid
reaction, and low laboratory infrastructure requirements (9). Reverse transcription-
LAMP (RT-LAMP) is a type of LAMP method used to detect target RNA with the avian
myeloblastosis virus (AMV) reverse transcriptase. This approach allows reverse tran-
scription and DNA amplification to be rapidly accomplished at a constant 60 to 65°C
temperature in less than 1 h and in one step, and detailed amplification mechanisms
were previously reported (10). RT-LAMP results can be detected by visual turbidity or
fluorescence in real time, rendering this method a practical near-patient assay. In recent
years, RT-LAMP has been widely used in specialized laboratory testing as well as field
surveys to identify various pathogens, including Mycobacterium tuberculosis (11), Zika
virus (12), Middle East respiratory syndrome coronavirus (MERS-CoV) (13), and SARS-
CoV (14). Shirato et al. (13) reported the development of a useful RT-LAMP assay for the
diagnosis of MERS that was developed in this manner, with a detection limit of 3.4
copies per reaction and no cross-reactivity with other respiratory viruses. In addition,
Hong et al. (14) developed a real-time quantitative RT-LAMP assay for early and rapid
diagnosis of SARS-CoV that demonstrated 100-fold greater sensitivity than conven-
tional RT-qPCR assays.

To accelerate clinical diagnostic testing for COVID-19, we conducted a prospective
cohort study to develop and validate a novel RT-LAMP assay capable of detecting
SARS-CoV-2 RNA for potential use in centralized facilities and point-of-care settings.
Moreover, we compared RT-qPCR and RT-LAMP using clinical samples and demon-
strated that RT-LAMP had higher sensitivity and cost effectiveness for SARS-CoV-2
detection. To the best of our knowledge, this study is the first to comprehensively
assess a rapid RT-LAMP test for both COVID-19 patients and an asymptomatic carrier,
the results of which demonstrated that the test has improved diagnostic value over
that of current diagnostics for SARS-CoV-2 infection.
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RESULTS
Development of an RT-LAMP assay. As described in Materials and Methods, in this

study, we developed a rapid and simple RT-LAMP assay to detect SARS-CoV-2 RNA,
where positive reactions resulted in a color change from purple to blue due to a
decreased magnesium concentration in the presence of extensive Bst DNA polymerase
activity, while negative reactions retained the purple color. Figure S3 in the supple-
mental material shows the overall procedure of the RT-LAMP assay. RT-LAMP primers
for COVID-19 were specific and had a 9.14% to 37.56% nucleotide mismatching with
SARS, MERS, and other coronavirus sequences (see Table S2). Furthermore, the cross-
reactivity experiment results demonstrated that the RT-LAMP assay did not cross-react
with other human-pathogenic coronaviruses and common viral pathogens, supporting
the specificity of this assay for COVID-19 (see Fig. S4). Dilution experiments with the
synthetic SARS-CoV-2 S gene were performed to determine the limit of detection (LOD)
of RT-LAMP relative to that of the RT-qPCR assay for the detection of SARS-CoV-2 (see
Fig. S5). The observed LOD values for the RT-LAMP and RT-qPCR assays were approx-
imately 1.5 � 10�8 ng per 25-�l reaction solution (i.e., 4.23 copies/reaction) and
1.5 � 10�7 ng/reaction solution (i.e., 42.3 copies/reaction), respectively. The RT-LAMP
assay exhibited a 10-fold higher sensitivity than the RT-qPCR assay currently being used
in clinical settings, which is similar to the results of previous LAMP-based assays (15, 16).

Characteristics of the subjects. We ultimately collected a prospective cohort of 129
patients from Guangdong Provincial People’s Hospital (cohort I: 24 COVID-19 patients
[37 nasopharyngeal swab samples] and 105 COVID-19 exclusion cases [292 nasopha-
ryngeal swabs]) and an independent cohort of 76 patients from Guangdong Second
Provincial General Hospital (cohort II: 28 COVID-19 patients [56 nasopharyngeal swabs]
and 48 non-COVID-19 patients [96 nasopharyngeal swabs]).

The laboratory-confirmed COVID-19 patients had a median age of 46.5 years (inter-
quartile range [IQR], 31 to 60 years), 69.23% (36/52) were male, and most of the patients
reported an exposure history and presented primarily with fever, cough/expectoration,
and muscle pain/fatigue (Table 1). Most of the COVID-19 patients (94.23%) were
identified as nonsevere cases, and only 3 patients were severe cases on admission.
Forty of all 52 COVID-19 patients (76.92%) manifested with chest computed tomogra-
phy (CT) imaging abnormalities, with the most common chest CT patterns being
ground-glass opacities (53.85%) and bilateral patchy shadowing (38.46%). The remain-
ing 12 (23.07%) cases showed normal CT images. Twenty-one (40.38%) patients had
comorbidities, 15.38% of whom had hypertension and 7.69% had diabetes. Forty
(76.92%) patients presented with hematologic abnormalities. The demographic and
initial clinical characteristics of the COVID-19 patients in the two cohorts are provided
in Table 1.

Diagnostic potential of the RT-LAMP assay for COVID-19 patients and an
asymptomatic carrier. We first evaluated the clinical application of the RT-LAMP assay
on 329 nasopharyngeal specimens from cohort I. Of these 329 nasopharyngeal swabs,
35 swabs were confirmed to be SARS-CoV-2 positive according to the combined criteria
of positive test results (28 samples) and next-generation sequencing (NGS) confirma-
tion (7 samples) (Table 2, see also Table S3 and Fig. S6). Thirty-one of 35 clinically
positive samples were determined to be positive using the RT-LAMP assay, and 3 of 294
clinically negative samples were observed to show a positive reaction, which were
confirmed to be false-positive reactions by NGS. The performance of the RT-LAMP assay
was as follows: sensitivity, 88.57% (95% confidence interval [CI], 74.05% to 95.46%);
specificity, 98.98% (97.04% to 99.65%); positive predictive value, 91.18% (77.04% to
96.95%); negative predictive value, 98.64% (96.57% to 99.47%); positive likelihood ratio,
86.8 (44.8 to 168.2); and negative likelihood ratio, 0.12 (0.07 to 0.19) (Table 2). Com-
pared with that of the RT-qPCR assay, the RT-LAMP assay had significantly better
sensitivity (88.57% versus 80.00%) and comparable specificity (98.98% versus 100%) for
the diagnosis of SARS-CoV-2 infection (Table 2). The detection results obtained using
the RT-LAMP assay showed good concordance with those obtained using the RT-qPCR

Application of RT-LAMP for SARS-CoV-2

July/August 2020 Volume 5 Issue 4 e00808-20 msphere.asm.org 3

https://msphere.asm.org


TABLE 1 Clinical characteristics of COVID-19 patients in different cohorts

Clinical features

Value

Cohort I (n � 24) Cohort II (n � 28) All patients (n � 52)

Sex (no. male/no. female) 16/8 20/8 36/16
Age (yrs) (median [IQR]) 52.50 (30.75–61.00) 42.50 (31.75–51.50) 46.50 (31.00–60.00)

Nationality (n)
Chinese 23 27 50
African 1 1 2

Exposure history (n [%]) 22 (91.67) 25 (89.29) 47 (90.38)

Symptoms (n [%])
Any 23 (95.83) 25 (89.29) 48 (92.31)
Fever 20 (83.33) 15 (53.57) 35 (67.31)
Cough or expectoration 16 (66.67) 6 (21.43) 22 (59.62)
Muscle pain or fatigue 3 (12.50) 9 (32.14) 12 (42.31)
Sore throat 6 (25.00) 14 (50.00) 20 (38.46)
Shortness of breath 6 (25.00) 5 (17.86) 11 (21.15)
Diarrhea 3 (12.50) 5 (17.86) 8 (15.38)
Rhinorrhea 4 (16.67) 3 (10.71) 7 (13.46)
Headache 1 (4.17) 5 (17.86) 6 (11.54)
Nausea or vomiting 1 (4.17) 3 (10.71) 4 (7.69)

Radiologic findings (n [%])
Abnormalities on CT 14 (58.33) 26 (92.86) 40 (76.92)
Ground-glass opacity 10 (41.67) 18 (64.29) 28 (53.85)
Bilateral patchy shadowing 12 (50.00) 8 (28.57) 20 (38.46)
Local patchy shadowing 5 (20.83) 8 (28.57) 13 (25.00)
Interstitial abnormalities 1 (4.17) 12 (42.86) 13 (25.00)

Comorbidities (n [%])
Any 9 (37.50) 12 (42.86) 21 (40.38)
Hypertension 4 (16.67) 4 (14.29) 8 (15.38)
Diabetes 2 (8.33) 2 (7.14) 4 (7.69)
Coronary heart disease 1 (4.17) 2 (7.14) 3 (5.77)
Bronchitis 3 (12.50) 3 (5.77)
Cancer 2 (8.33) 2 (3.85)
Hypohepatia 1 (4.17) 1 (3.57) 2 (3.85)
Chronic obstructive pulmonary disease 1 (3.57) 1 (1.92)
Kidney injury 1 (3.57) 1 (1.92)

Coinfection
Any 9 (37.50) 3 (10.71) 12 (23.08)
Mycoplasma 9 (37.50) 1 (3.57) 10 (19.23)
Hepatitis B virus infection 1 (3.57) 1 (1.92)
Mycobacterium tuberculosis 1 (3.57) 1 (1.92)
Influenza A 1 (4.17) 1 (1.92)

Clinical classification
Nonsevere 22 (91.67) 27 (96.43) 49 (94.23)
Severe 2 (8.33) 1 (3.57) 3 (3.57)

Hematologic abnormalities (n [%])
Any 20 (83.33) 20 (71.43) 40 (76.92)
C-reactive protein (�5 mg/liter) 14 (58.33) 12 (42.86) 26 (50.00)
Lymphocytes (�1.1 � 109/liter or �3.2 � 109/liter) 12 (50.00) 5 (17.86) 17 (32.69)
Hemoglobin (�130 g/liter) 3 (12.50) 8 (28.57) 11 (21.15)
Neutrophils (�3.5 � 109/liter or �9.5 � 109/liter) 3 (12.50) 11 (39.29) 14 (26.92)
Leukocytes (�3.5 � 109/liter or �9.5 � 109/liter) 4 (16.67) 5 (17.86) 9 (17.31)
Platelets (�125 � 109/liter) 4 (16.67) 3 (10.71) 7 (13.46)
Lactate dehydrogenase (�250 U/liter) 5 (20.83) 2 (7.14) 7 (13.46)
Interleukin-6 (�7 pg/ml) 4 (16.67) 2 (7.14) 6 (11.54)

Samples collected for SARS-CoV-2 testing (n)
Nasopharyngeal swabs 37 28 65
Sputum 28 28
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assay, with a Cohen’s kappa of 0.89 (0.79 to 1.00), 100% positive predictive agreement,
and 98.01% negative predictive agreement. These observations are in line with data
reported in studies by Baek et al. (17) and others (15, 16).

In addition to exploring the diagnostic potential of RT-LAMP in active COVID-19
patients, we also tested the RT-LAMP assay on an asymptomatic COVID-19 carrier. A
22-year-old female patient presented to our hospital on 13 January 2020 with a 16-year
history of congenital heart disease and aggravation of shortness of breath symptoms
for 1 month. After admission, she tested positive for SARS-CoV-2 infection by RT-qPCR
in our hospital without any COVID-19/viral pneumonia clinical symptoms or CT find-
ings. Her oropharyngeal swabs were also sent to the Guangzhou CDC for repeat
RT-qPCR testing and were confirmed to be SARS-CoV-2 positive on 12 February and 15
February. Respiratory samples were collected throughout her illness from 11 February
to 11 March and subjected to parallel RT-LAMP and RT-qPCR assays for SARS-CoV-2
detection (Fig. 1). NGS was simultaneously performed for samples yielding inconsistent
results between the RT-LAMP and RT-qPCR assays. The number of positive test results
obtained by RT-LAMP was 1.37-fold higher than that observed by RT-PCR (11 versus 8),
and 4 RT-LAMP-positive but RT-qPCR-negative samples were verified as SARS-COV-2
positive using NGS (Fig. 1 and Table S3). During her hospitalization, the RT-qPCR
threshold cycle (CT) values fluctuated and became negative after 26 February, suggest-
ing a continuous viral shedding pattern and a decreased viral load over time (data not
shown, available upon request). This case demonstrated that compared to that of
RT-qPCR, RT-LAMP has higher sensitivity in detecting SARS-COV-2, particularly in sam-
ples with a low viral load, and also suggested that RT-LAMP can be used for the
diagnosis of asymptomatic COVID-19 carriers.

Validation of the RT-LAMP assay. We next validated the RT-LAMP assay in an
independent cohort (cohort II) of 28 COVID-19 patients and 48 COVID-19 exclusion
cases. One nasopharyngeal swab and one sputum specimen were collected from every
participant in cohort II. The 152 samples included 46 positive samples (28 swabs and 18
sputum specimens) and 106 negative samples (Tables 2 and S3). Nasopharyngeal swabs
from COVID-19 patients showed a higher positive rate than sputum specimens in both
the RT-qPCR and RT-LAMP assays (RT-qPCR: swab, 71.43% [20/28]; sputum, 64.29%
[18/28]; RT-LAMP: swab, 78.57% [22/28]; sputum, 71.43% [20/28]). The RT-LAMP assay
had a sensitivity of 89.13%, whereas that of the RT-qPCR assay was only 82.61%. The
specificity of the RT-LAMP assay was roughly equivalent to that of the RT-qPCR assay
(99.06% versus 100.00%) (Table 2), and the agreement between the two assays was
excellent (kappa, 0.93 [0.77 to 1.00]) (Table 2). These observations corroborate the
results obtained from cohort I as well as previous RT-LAMP findings (15–17), suggesting
that the use of RT-LAMP may improve the sensitivity of pathogenic diagnosis for
COVID-19.

To further assess whether the RT-LAMP assay was specific for COVID-19, 60 swab
specimens from 40 patients with influenza (n � 14) or other respiratory viral infections
(n � 26, representing Mycoplasma pneumoniae [MP], human metapneumovirus [HMPV],

FIG 1 Time line of detection for an asymptomatic COVID-19 carrier.
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human parainfluenza virus types II, III, and IV [HPIV-2/3/4], respiratory syncytial virus
[RSV], human adenovirus [HAdV], CoV-OC43/229E/NL63, human bocavirus [HBOV],
and human rhinovirus [HRV]), and 20 healthy individuals were assessed using the
RT-LAMP assay (see Table S4). No positive results were observed, demonstrating that
the RT-LAMP-based detection approach can distinguish SARS-CoV-2 with no cross-
reactivity for other common respiratory viruses, similar to reports in recent studies
(15–17).

The RT-LAMP assay results reported in this study for SARS-CoV-2 detection in the
two cohorts are summarized as follows. The RT-LAMP assay exhibited an overall
sensitivity of 88.89% (higher than the 81.48% for RT-qPCR), an overall specificity of
99.00%, high consistency (kappa, 0.92) with the RT-qPCR assay, and a median turn-
around time less than 1 h from sample preparation to the result in the detection of 481
clinical specimens from two cohorts (Fig. 2). Additional advantages of RT-LAMP include
cost effectiveness, simple operation, and visual determination capability, which facili-
tate SARS-CoV-2 screening in well-equipped labs as well as in the field (Fig. 2).

DISCUSSION

Rapid and reliable diagnosis is of particular importance for the containment of
COVID-19 outbreaks. In this study, we described a simple and sensitive RT-LAMP
approach to rapidly diagnose SARS-CoV-2 infection. The robustness of the present
study was demonstrated, as the RT-LAMP assay was useful for the diagnosis of active
COVID-19 patients and an asymptomatic carrier and was generally not confounded by
other respiratory pathogen infections by using clinical samples from two hospitals.

Existing methods to detect SARS-CoV-2 are primarily based on RT-qPCR, NGS, and
IgM and IgG immunological tests. Comparing the results between the RT-LAMP and
RT-qPCR assays, RT-LAMP provided better sensitivity (88.89% versus 81.48%) than
RT-qPCR for SARS-CoV-2. This added sensitivity is important considering that a signif-
icant number of COVID-19 patients have presented with negative qPCR (7) results or
the “relapse after negative” phenomenon (8) due to potentially large variability be-
tween clinical samples, low-viral-titer samples, and even disrupted binding of RT-qPCR
primers due to variation in the viral genome (18). In this study, we used Bst DNA
polymerase isolated in-house for the developed RT-LAMP assay, which was demon-
strated to have higher polymerization activity than the commercial Bst DNA polymerase
(19) and ensured the high sensitivity of this RT-LAMP method. Based on these findings,
we propose that the RT-LAMP assay can detect viral RNA not only in samples testing
positive by RT-qPCR but also in inconclusive samples.

We observed that the RT-LAMP assay was less sensitive and informative than

FIG 2 Comparison of the RT-LAMP and RT-qPCR assays for COVID-19 detection in two cohorts. Eighty-one clinically positive samples
consisted of 35 nasopharyngeal swabs from cohort I and 46 nasopharyngeal swab and sputum samples from cohort II, which were
determined to be positive based on the combined criteria of positive RT-qPCR detection (n � 66) or positive NGS confirmation (n � 15).
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multiplex PCR-based NGS in our study and other literature (20–24). NGS is a robust tool
for obtaining extensive genetic information, allowing LOD values as low as 10 cop-
ies/ml for SARS-CoV-2 and serving as a reference test for COVID-19, especially for those
challenging samples with a low viral content (2, 22–24). However, several experimental
issues, such as erroneous barcode sequencing, the production of primer dimers, and
potential cross-contamination between runs, may complicate sequence-based analyses
and impact the validity of NGS results (25, 26). Compared to the complex and costly
NGS platform, RT-LAMP has the advantages of low-threshold infrastructure, less data
processing, and cost effectiveness, enabling this user-friendly assay to be immediately
deployed in hospitals and communities. RT-LAMP also showed no cross-reactivity with
other viruses that manifest similar respiratory diseases such that the specificity of this
assay was higher than that reported for IgM-/IgG-based detection methods (27).

In addition, we described the accuracy of the RT-LAMP assay in detecting SARS-
CoV-2 by determining likelihood ratios. Likelihood ratios are not affected by disease
prevalence, and values higher than 10 and lower than one strongly support the
diagnostic value of a test (28). Based on this metric, the near-patient RT-LAMP assay
used in this study is diagnostically useful for COVID-19. Taken together, the RT-LAMP
assay established in this study may be a powerful complementary method for moni-
toring massive numbers of exposed individuals as well as facilitating screening efforts
in hospitals and public domains, especially in areas with limited laboratory capacities.

Nasopharyngeal swabs from COVID-19 patients had a higher positive rate than
sputum specimens in both the RT-qPCR and RT-LAMP assays. Liu et al. (29) reported
that the detection rate of SARS-CoV-2 RNA in nasopharyngeal swabs was lower than
that observed in bronchoalveolar lavage fluid and sputum. This inconsistency is most
likely due to poor sputum quality and fluctuations in viral RNA levels during different
stages of the disease course (30). Despite this inconsistency, nasopharyngeal swabs are
noninvasive and easy to acquire, and evidence has shown that SARS-CoV-2 replicates
actively in upper respiratory tissue (31). Therefore, we argue that nasopharyngeal swabs
are suitable for the detection of SARS-CoV-2 detection at an early stage of infection.

We note that four samples from non-COVID-19 cases tested positive in the RT-LAMP
assay but negative by RT-qPCR (Table 2), as reported previously (17). The four false-
positive results by RT-LAMP were caused by aerosol contaminants, as we retested these
samples in another clean room and obtained the expected negative RT-LAMP result.
Contaminant issues are not uncommon for nucleic acid testing, even when the best
available reference laboratory tests are used. Precautions to prevent cross-
contamination or aerosol contaminants during assays are highly recommended, includ-
ing the use of a spray solution to eliminate potential RNA fragments and changing
gloves frequently. The RNA extraction-free RT-LAMP assay can address this important
issue (17). Since this study was completed, the SARS-CoV-2 RT-LAMP test has been
optimized further with the use of lyophilized reagents and the direct detection of
SARS-CoV-2 without the need for RNA extraction. This one-step single-tube RT-LAMP
assay decreases reaction time and minimizes false-positive reactions, making it an ideal
POCT for COVID-19 if validated in future studies.

One limitation of our study was the relatively small sample size of positive COVID-19
cases, which resulted in widened confidence intervals for our estimates of diagnostic
accuracy. We tested the samples using RT-LAMP in a blind manner, and the designation
of the actual status of SARS-CoV-2 infection in clinical samples was based on a set of
combined criteria of RT-qPCR results and subsequent NGS confirmation to obviate
potential false-negative or false-positive results. We further validated the diagnostic
potential of RT-LAMP in another independent cohort with nasopharyngeal swabs and
sputum samples. Therefore, despite our small sample size, our study was sufficiently
robust for the RT-LAMP assay.

In summary, in this study, we developed a simple and rapid RT-LAMP assay for
SARS-CoV-2 detection and demonstrated its high diagnostic sensitivity and specificity
among clinical samples. Our findings suggest that RT-LAMP can be an appropriate
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auxiliary assay for the diagnosis and epidemiologic surveillance of COVID-19 in different
hospital and community settings.

MATERIALS AND METHODS
This study was designed as a prospective observational cohort study with three sequential phases.

In the initial stage, we developed a visual and rapid RT-LAMP assay for SARS-CoV-2 detection and
assessed its anti-cross-interface ability, stability, and detection limit. Subsequently, we evaluated the
RT-LAMP and standard RT-qPCR assays on 329 nasopharyngeal swabs from a cohort of 129 suspected
COVID-19 patients and on serial upper respiratory samples from an asymptomatic carrier, and the
inconsistent samples between RT-LAMP and RT-qPCR were further subjected to next-generation se-
quencing (NGS) for SARS-CoV-2 confirmation. Finally, we analyzed an additional 40 patients with other
viral infections, 20 healthy individuals, and an independent cohort of 76 cases suspected of having
COVID-19 to further validate the detection capacity of RT-LAMP for SARS-CoV-2. The overall study
strategy is shown in Fig. 3.

Subjects and sample enrollment. (i) Cohort I. Inpatients with clinical-radiological suspicion of
COVID-19 presenting to Guangdong Provincial People’s Hospital between 26 January and 8 April 2020,
were eligible for inclusion. Close contacts with exposure to confirmed COVID-19 cases were simultane-
ously enrolled in the present study. Every participant underwent a standard set of SARS-CoV-2 investi-
gations to test COVID-19. The patients’ demographic, clinical, laboratory, and radiological findings were
collected from their medical records. Serial nasopharyngeal swabs were collected from patients during
hospitalization and close contact screening. The sample sizes for swabs were defined by their availability.
At least one nasopharyngeal swab from suspected COVID-19 patients was simultaneously sent to the
CDC for double checking as required, where RT-qPCR was routinely utilized for SARS-CoV-2.

COVID-19 was diagnosed based on acute respiratory infection syndromes and/or the presence of
chest imaging features consistent with viral pneumonia accompanied by confirmation of positive
RT-qPCR test results for SARS-CoV-2 by the CDC, according to the criteria published in the updated
COVID-19 diagnostic criteria, 7th edition, China. Suspected COVID-19 patients from Guangdong Provin-
cial People’s Hospital were defined as cohort I in this study and classified into two groups: COVID-19 and
non-COVID-19. COVID-19 patients were further classified as nonsevere cases and severe cases; nonsevere
cases included patients with mild and moderate pneumonia, and severe cases indicated patients with
severe and critically severe acute respiratory distress syndrome (ARDS) or oxygen saturation at rest of
�93% who required mechanical ventilation or intensive care unit (ICU) monitoring (2).

FIG 3 Overview of the study design. Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV,
negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio.
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(ii) Cohort II. We enrolled an independent cohort of suspected COVID-19 patients from Guangdong
Second Provincial General Hospital for validation. SARS-CoV-2 testing and the diagnostic procedures for
COVID-19 were identical in the two hospitals. A nasopharyngeal swab and 5 ml of morning sputum were
collected from suspected COVID-19 patients to validate the diagnostic performance of RT-LAMP for
SARS-CoV-2.

In addition, nasopharyngeal swab samples obtained from 20 healthy subjects and 40 patients with
other respiratory viral infections were used to test the specificity of RT-LAMP for SARS-CoV-2 detection.

RNA extraction. Swabs were preserved in 500 �l of virus preservation solution (TianLong, China),
which inactivates viruses and preserves all RNA in the specimen. Sputum samples were preprocessed by
standard N-acetyl-L-cysteine (NALC)-NaOH digestion. Total RNA was extracted from specimens within 2
h of collection using a magnetic bead-based viral RNA isolation kit with a DA3200 system instrument
(Daan Gene, China) according to the manufacturer’s instructions. The extracts were stored at �70°C until
use. RNA extracted from each specimen was tested for SARS-CoV-2 in parallel by RT-qPCR and RT-LAMP
in a double-blind manner in a biosafety level 2 laboratory. Samples yielding inconsistent results between
these two methods were further analyzed by NGS for verification.

RT-qPCR amplification. RT-qPCR was performed using an officially approved clinical RT-qPCR kit for
the ABI COVID-19 QuantStudio Dx real-time PCR system (Applied Biosystems, USA) according to the
manufacturer’s protocol (Daan Gene). Primer and probe sets targeting the ORF1ab and N genes of
SARS-CoV-2 are provided in Table S1 in the supplemental material. For RT-qPCR, each 25-�l reaction
mixture comprised 17 �l of reaction buffer, 3 �l of enzyme solution, and 5 �l of template RNA. The
cycling program started at 50°C for 15 min for reverse transcription, followed by 95°C for 15 min for PCR
initial activation and 45 cycles of 94°C for 15 s and 55°C for 45 s. A cycle threshold value of less than 40
was defined as a positive test. Patients were defined as having laboratory-confirmed COVID-19 when
both targets (ORF1a/b and N genes) yielded positive results, and repeated tests using another approved
RT-qPCR kit were necessary for single-target-positive (ORF1a/b- or N-positive) samples.

RT-LAMP assay. (i) RT-LAMP primer design and testing. The complete genome sequence of
SARS-CoV-2 (GenBank accession number MN908947.3) was aligned and compared with the GenBank
nucleotide database gene sequences of all species, including other coronaviruses, to identify conserved
sequences. A conserved sequence of the S gene (nucleotide 22269 to 22494, no. MN908947.3) was
selected as the target to design our RT-LAMP primers because it is highly homologous among various
COVID-19 sequences and highly divergent from those of other coronaviruses examined. We designed 4
sets of RT-LAMP primers targeting the SARS-CoV-2 S gene sequence (no. MN908947.3) using the online
PrimerExplorer V5 software (available at https://primerexplorer.jp/e/). One set of RT-LAMP primers with
the best parameters was selected, including two outer primers (F3 and B3), two inner primers (forward
inner primer [FIP] and backward inner primer [BIP]), and two loop forward (LF) and backward (LB) primers
(see Fig. S1), all of which were synthesized by Invitrogen (Shanghai, China). Primer specificity was verified
with a BLAST search of the GenBank nucleotide database via comparisons with other coronaviruses and
published SARS-CoV-2 sequences, and the percent mismatch results are presented in Table S2.

(ii) RT-LAMP assay. For RT-LAMP, each 25-�l reaction mixture comprised 1 �l of 10� primer mix
(16 �M [each] FIP and BIP, 2 �M [each] F3 and B3 primers, 4 �M [each] LF and LB primers), 2.5 �l of 10�
Isothermal Amplification Buffer Pack (New England Biolabs), 4 �l of 10 mM deoxynucleoside triphos-
phates (dNTPs), 4 �l of 5 M betaine, 3 �l of MgSO4, 2 �l of Bst DNA polymerase (8 U/�l), 1 �l of AMV
reverse transcriptase (5 U/�l), 1 �l of 3 mM fluorescent detection reagent (HNB), 5 �l of RNA template,
and 2.5 �l of 1‰ diethyl pyrocarbonate (DEPC)-treated H2O. The reaction mixtures were incubated in a
PCR thermocycler or dry bath at 65°C for 35 min. The optimal incubation condition of 65°C for 35 min was
determined based on the banding pattern observed after gel electrophoresis and an absorption
spectrum analysis of the RT-LAMP reactions (see Fig. S2). Nontemplate controls (NTCs) were included in
each run to ensure the absence of contamination. Positive reactions could be observed by a visual color
change from purple to blue, fluorescent light in response to UV excitation, or by the laddering pattern
of bands after gel electrophoresis.

Cross-reactivity evaluation of the RT-LAMP assay. Synthesized plasmids of 12 common viral
pathogens, including SARS, MERS, influenza A H1N1/H3N2, influenza B, human parainfluenza viruses
(HPIV-1/2/3), respiratory syncytial virus (RSV-A/B), Epstein-Barr virus, human cytomegalovirus, human
mastadenovirus (HAdV-B/E), enterovirus (EB-U/71), human rhinovirus (HRV-2/14/16), and coxsackievirus
(CA16), were used to test potential cross-reactivity in the developed RT-LAMP assay. The RT-LAMP
products obtained using these plasmid templates were assayed by 3% agarose gel electrophoresis.

Detection limit of the RT-LAMP assay. To determine the lower detection limit of the RT-LAMP
assay, samples from a 10-fold gradient dilution series of synthetic SARS-CoV-2 S gene cDNA (1.5 � 102 to
1.5 � 10�9 ng/reaction) were used as the template in RT-LAMP reactions, and the minimum concentra-
tion of the positive reaction was recorded. This dilution series was assayed in parallel by RT-qPCR using
primers targeting the same region of the SARS-CoV-2 genome. The detection limit of the RT-LAMP assay
was determined by comparing the lowest concentration of the positive reaction with that obtained by
RT-qPCR.

Multiplex PCR-based next-generation sequencing. The samples yielding inconsistent results
between the RT-LAMP and RT-qPCR assays and those from COVID-19 patients who tested negative by
RT-qPCR were further analyzed by multiplex PCR-based enrichment and NGS to detect the SARS-CoV-2
genome. Briefly, total RNA was reverse transcribed to synthesize first-strand cDNA with random hexamers
and a Superscript III reverse transcriptase kit (Vazyme, China). Two-step SARS-CoV-2 genome amplifica-
tion was performed with two pooled mixtures of primer sets (designed by Genskey Medical Technology
Co., Ltd.) designed to cover the entire SARS-CoV-2 genome. cDNA was mixed with the components of
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the first PCR according to the manufacturer’s instructions. The 2nd PCR was performed using the index
primers, and the constructed libraries were sequenced on an Illumina NovaSeq paired-end (PE) 150
platform. Data analysis was primarily performed based on an in-house pipeline produced by Genskey
Medical Technology. Raw sequences were quality trimmed and subsequently filtered if shorter than 130
bases using fastp v0.19.5. Sequence reads were first filtered against the human reference genome and
then aligned to a reference genome of SARS-CoV-2 (NC_045512.2) using Bowtie v2.2.4. The mapped
reads were assembled with SPAdes v3.14.0 with kmers ranging from 19 to 109 to obtain the coronavirus
genome sequences.

Statistical analysis. The sensitivity, specificity, positive and negative predictive values, likelihood
ratios, and their respective 95% confidence intervals for the RT-LAMP and RT-qPCR assays of nasopha-
ryngeal specimens were calculated, and agreement analysis was performed using kappa concordance
coefficients (a value �0.75 was deemed good) and percentage agreement (�0.9 was considered good)
(32). Statistical analyses were performed in the R programming environment.

Ethics statement. Written informed consent was obtained from all participants before the study, and
the study was approved by the ethics committee of each participating institution. The analysis was
conducted on samples collected during standard COVID-19 tests, with no extra burden on patients.
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