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Circulating platelets consist of subpopulations with different age, maturation state and 
size. In this review, we address the association between platelet size and platelet function 
and summarize the current knowledge on platelet subpopulations including reticulated 
platelets, procoagulant platelets and platelets exposing signals to mediate their clear-
ance. Thereby, we emphasize the impact of platelet turnover as an important condition 
for platelet production in vivo. Understanding of the features that characterize platelet 
subpopulations is very relevant for the methods of platelet concentrate production, 
which may enrich or deplete particular platelet subpopulations. Moreover, the concept 
of platelet size being associated with platelet function may be attractive for transfusion 
medicine as it holds the perspective to separate platelet subpopulations with specific 
functional capabilities.
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inTRODUCTiOn

Platelets recognize vessel damage, trigger coagulation and enhance clot formation at the site of injury 
(1). Beyond hemostasis, platelets also act as mediators in immunity and inflammation (2–5).

Circulating platelets differ in age, maturation state, or density. An obvious physical feature of 
platelets is their size, which can vary substantially among platelets of one individual. It was an early 
concept, that large platelets represent a rather young and reactive platelet subpopulation (6). Later, 
this concept was abandoned when consecutive experiments demonstrated no clear correlation 
between platelet size and age (7, 8).

The observation that some platelets have particular procoagulant capabilities led to the concept 
of platelet subpopulations with different biological functions (9). Other examples for platelet sub-
populations are reticulated (rather young) platelets and platelets exposing signals mediating their 
clearance from the circulation (rather old platelets). It is conceivable albeit unclear, whether other 
platelet subpopulations exist which play a more pronounced role in immunological or inflammatory 
processes, e.g. by expression of CD40 or release of CD40L (10, 11).

Epidemiological studies found an association between an increased platelet size and thrombotic 
outcomes in patients with cardiovascular disease (12) resulting in a revival of the “old” hypothesis of 
an association between a larger platelet size and enhanced platelet function in hemostasis.

Clarifying the hypothesis of different biological features of platelet subpopulations is potentially 
relevant for transfusion medicine. Enrichment of distinct platelet subpopulations in platelet concen-
trates (PCs) during production may modulate the biological effects of PCs.

http://www.frontiersin.org/Medicine
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2018.00017&domain=pdf&date_stamp=2018-02-05
http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine/editorialboard
http://www.frontiersin.org/Medicine/editorialboard
https://doi.org/10.3389/fmed.2018.00017
http://www.frontiersin.org/Medicine
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:thielet@uni-greifswald.de
https://doi.org/10.3389/fmed.2018.00017
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00017/full
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00017/full
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00017/full
http://loop.frontiersin.org/people/153999
http://loop.frontiersin.org/people/504844


2

Handtke et al. Platelet Subpopulations in Transfusion Medicine

Frontiers in Medicine | www.frontiersin.org February 2018 | Volume 5 | Article 17

In this review, we summarize the current knowledge on 
platelet subpopulations with a special emphasis on platelet size, 
its association with platelet function and the impact of platelet 
turnover on platelet production.

SiZe AS A PLATeLeT CHARACTeRiSTiC

Platelet Formation, Turnover, and their 
Role for Platelet Size
Platelet size is genetically determined and relatively stable over 
the lifetime in healthy individuals. Genome wide association 
studies in healthy subjects identified several genes associated with 
platelet size (13–18).

Under steady-state conditions, platelets are generated from 
megakaryocytes in the bone marrow after stimulation with 
thrombopoietin. The amount of circulating thrombopoietin is 
regulated by the mass of circulating platelets. They bind throm-
bopoietin, providing a negative feedback mechanism to control 
thrombopoiesis (19). In mice, thrombopoietin administration 
increases platelet size (20) whereas in humans the opposite seems 
to be the case (21).

In the bone marrow, preplatelet intermediates are formed 
as extensions of elongated megakaryocyte-pseudopodia and 
released into the sinusoidal blood vessels (22, 23). Glycoprotein 
Ib mediates transmigration of megakaryocytes into the sinusoids 
via the small GTPases Cdc42 and RhoA (24). Preplatelets convert 
into barbell-shaped proplatelets that form platelets (23, 25) medi-
ated by integrin αIIbβIII signaling (26). Platelet size is established 
during the formation of barbell proplatelets from circular pre-
platelets and limited by microtubule bundling, elastic bending, 
and actin-myosin-spectrin cortex forces (27).

Thrombopoiesis in the bone marrow is spatially regulated 
(28) but platelet maturation does not end in the bone marrow. 
Preplatelets are also formed from proplatelets in the circulation 
(29) and can maturate in the lungs (30).

In vivo, the mechanisms of proplatelet formation are very 
dynamic and influenced by platelet turnover (31). In case of 
inflammation an alternative pathway of platelet production 
can occur. Nishimura et  al. found that increased serum levels 
of the inflammatory cytokine IL-1α induce platelet release by 
the rupture of megakaryocytes as a distinct mechanism in the 
absence of elevated thrombopoietin (32). Via this mechanism, 
larger platelets are produced than in thrombopoietin-stimulated 
megakaryocytes in mice.

We have established a model of enhanced platelet produc-
tion in healthy volunteers using platelet apheresis showing that 
platelet apheresis stimulated platelet production leads to revers-
ible changes in the platelet proteome (33). This further indicates 
an impact of platelet turnover on the phenotype of circulating 
human platelets.

Platelet Size and Function during Steady-
State Platelet Production
Most studies identified large platelets as a subpopulation with a 
higher prohemostatic capacity, if generated under steady state. 
However, it is still debated whether a larger size alone contributes 

to this higher capacity (34), or if there are specific features in large 
platelets which over-proportionally increase their prohemostatic 
potential. Table 1 provides an overview of functional compari-
sons between large and small human platelets. The majority of 
experiments included adjustments for cell size, suggesting a 
hyperproportional prohemostatic capacity of large platelets.

Steady-state large platelets have a higher capacity for glucose 
metabolism, resistance to osmotic shock (36), and lipid peroxida-
tion (38). They aggregate faster and release more ATP and alpha 
granule proteins (34, 37), contain more fibrinogen, and serotonin 
(40), and express more human leukocyte antigen-I molecules 
(41) and membrane glycoproteins (43).

Platelets synthesize proteins (50) and large platelets have more 
ribosomes and incorporate more amino acids (35). Probably,  
large platelets have a higher capacity to translate mRNA. This 
needs to be demonstrated by future studies, which adequately 
control for residual leukocytes in the large platelet fraction.

Opper et al. found different patterns of cGMP synthesis and 
protein phosphorylation patterns after stimulating platelets of 
different size (44, 46), suggesting differences in signal transduc-
tion between large and small platelets.

The ability to mobilize Ca2+ in the cytosol is pivotal for platelet 
activation. Li et al. showed that the cytosolic Ca2+-concentration 
is similar in resting large and small platelets, whereas higher 
amounts of Ca2+ are mobilized by large platelets (45).

Large platelets express more surface-bound fibrinogen, bind 
more von Willebrand factor, and metabolize more arachidonic 
acid (39), express more P-selectin, activate more integrin αIIbβ3 
after ADP-stimulation (42, 47, 51), and release more thromboxane 
after collagen- and thrombin-induced aggregation in proportion 
to platelet size (39).

A recent study indicates that large-size platelets are function-
ally different compared to small platelets. Brambilla et al. found 
that large platelets express not only significantly higher amounts 
of tissue factor and tissue factor mRNA compared to small plate-
lets. Large platelets also expose functionally active tissue factor  
on their cell membranes whereas the activity of tissue factor in 
small platelets is almost completely quenched by tissue factor 
pathway inhibitor (48). These results extent previous findings 
showing that platelets translate tissue factor (52) and point toward 
specific roles of large and small platelets in hemostasis.

Platelet Size during increased  
Platelet Turnover
If platelet production is enhanced in healthy humans by applica-
tion of thrombopoietin, the peripheral platelet concentration 
increases whereas platelet size measured by the mean platelet 
volume (MPV) slightly decreases without changes in platelet 
viability, platelet responsiveness to physiologic agonists, or 
expression of platelet activation markers (21).

In contrast, disease-related increased platelet turnover is 
often associated with an increase in platelet size (6, 53), e.g., 
in case of enhanced destruction of platelets by autoantibodies 
(54–56), during recovery after bone marrow suppression by 
chemotherapy (49), or in  situations with increased consump-
tion in patients with severe arterial disease (57, 58). These 
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TAbLe 1 | Functional characterization of human large and small platelets.

Reference Results Size adjustment evidence for a hyperproportional 
difference between large and 
small platelets

Steady-state platelet production

Booyse et al. (35) Only large platelets contain ribosomes Not performed Yes

Karpatkin (36) Large platelets: higher glycogen, higher 
orthophosphate, higher total adenine nucleotide, 
higher glucogenolysis capacity, higher glycolysis 
activity, higher protein synthesis, higher glycogen 
synthesis, higher resistance to osmotic shock

Ratios of analytes compared to ratios of 
platelet volumes

Yes

Karpatkin (37) Large platelets: lag time to aggregation shorter; 
higher ATP release; following aggregation higher 
ADP release; higher release of platelet factor 4

Not performed Not applicable

Karpatkin and Strick (38) Large platelets: higher activity of glycolysis 
enzymes, less lipid peroxidation product, more 
resistant to lipid peroxidation

Equal amount of protein extract taken  
from large and small platelets

Yes

Thompson et al. (34) Large platelets: maximal aggregation 
after activation by collagen or thrombin 
increased; contain larger amounts of ATP and 
beta-thromboglobulin

Relative change within each size fraction 
(aggregometry); relative comparison of  
ATP and beta-thromboglobulin before  
and after stimulation

Yes

Jakubowski et al. (39) Large platelets: release more thromboxane after 
collagen or thrombin stimulation

Correlation to MPV No

Platelet size correlates with the amount of 
metabolized arachidonic acid

Mezzano et al. (40) Large platelets: more fibrinogen, more serotonin 
and more absolute protein

Not performed Not applicable

Pereira et al. (41) Large platelets: more P1a1 molecules; small 
platelets: more HLA-A2 molecules, more total  
HLA class I-molecules

Not performed Not applicable

Frojmovic et al. (42) Large platelets: more fibrinogen receptor 
expressed on membrane when activated; faster 
aggregation rate

Correlation of ratios large/small with size 
ratio large/small

No

Polanowska-Grabowska et al. (43) Large platelets: faster adhesion to collagen, less 
sensitive to inhibition by prostacyclin, increased 
content of glycoprotein Ia/iia complex

Not performed Not applicable

Opper et al. (44) Large platelets: higher basal level of cgmp,  
higher cgmp synthesis rate after stimulation with 
sodium nitroprusside, lower activity of camp-
dependent phosphodiesterases

Adjustment of protein content and  
platelet size 

Yes

Li et al. (45) Large platelets: higher maximal aggregation after 
stimulation with thrombin, increased ATP  
secretion, higher degree of calcium mobilization

Relative change within each size fraction 
(aggregometry)

Yes

Opper et al. (46) Large platelets: higher degree of protein 
phosphorylation after thrombin stimulation, higher 
rate of ADP-ribosylation by cholera toxin; small 
platelets: higher basal phosphorylation levels 
of several proteins, higher ADP-Ribosylation by 
pertussis toxin and C3 exoenzyme, higher basal 
Ca2+-level

Equal amount of protein extract  
taken from large and small platelets

Yes

Mangalpally et al. (47) Large platelets: express more surface-bound 
fibrinogen, bind more von Willebrand factor after 
arachidonic acid- or ADP-stimulation, express 
more P-selectin, more activated glycoprotein iib/
iiia after ADP stimulation; higher proportion of 
reticulated platelets

Adjustment to the platelet surface area Yes

Brambilla et al. (48) Large platelets: contain higher amounts of tissue 
factor and tissue factor mrna; mainly large  
platelets expose functionally active tissue factor

Not performed Not applicable

(Continued)
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Reference Results Size adjustment evidence for a hyperproportional 
difference between large and 
small platelets

increased platelet turnover

Balduini et al. (49) Old platelets: MPV and P-LCR reduced; young 
platelets: MPV and P-LCR higher compared to  
old and to control; aggregation response faster  
in young platelets

Relative change within each size fraction 
(aggregometry)

Yes

MPV, mean platelet volume; P-LCR, platelet large cell ratio; HLA, human leukocyte antigen.

TAbLe 1 | Continued
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studies suggest that platelet size in disease is regulated by 
other mechanisms than the ones regulating platelet size during 
thrombopoietin-mediated megakaryocytopoiesis in healthy 
volunteers. Severe thrombocytopenia induced by disseminated 
intravascular coagulation in children is also associated with an 
increase in platelet size (59). However, in view of the findings of 
Nishimura et al. (32), this likely results from platelet production 
by the alternative pathway involving IL-1α induced fragmenta-
tion of megakaryocytes.

Platelet Size and Platelet Age
The first attempts to characterize young platelets were driven by 
the hypothesis, that large platelets are considerably younger than 
small platelets because they are more functionally active (37, 38). 
However, later studies did not reveal a direct relationship between 
platelet size and age. This was convincingly underscored by an 
experiment in baboons under conditions of steady-state platelet 
production. The animals received radioactively labeled methio-
nine being incorporated by megakaryocytes (8). Radioactively 
labeled platelets were afterwards present in each assessed size 
fraction of platelets indicating that size and age of platelets do 
not correlate under steady-state conditions. Also in humans 
platelet size is likely not strongly associated with platelet age (7). 
After transfusion of radioactively labeled autologous platelets, the 
mean survival of a high-density platelet population was shorter 
than that of platelets with low density. The mean volumes of 
high- and low-density platelets were not different suggesting that 
platelet size is unrelated to platelet age under normal conditions, 
but implicating a role of platelet density for the age of circulating 
platelets.

Platelet Size as Risk Factor for Adverse 
Clinical Outcomes
Epidemiological studies in patients with cardiovascular disease 
found an association between an increased MPV and a higher 
prevalence of thromboembolic complications (12, 60–62). An 
increased platelet size due to increased platelet turnover also 
correlates with refractoriness to antiplatelet therapy (58) and 
predicts a higher incidence of adverse outcomes after coronary 
intervention (63).

It is unclear, whether the increased MPV is the cause or the 
consequence of an increased risk for thromboembolic outcomes 
(60, 64). An alternative explanation is that individuals with large 
platelets have per se an increased risk for thrombotic complica-
tions because genetic traits have been identified, which are at the 

same time associated with an increased MPV and an increased 
risk for cardiovascular disease (65).

An increased MPV also characterizes inherited bleeding 
disorders with dysfunctional large platelets (66).

PLATeLeT SUbPOPULATiOnS

Reticulated Platelets
Ingram et al. first observed a unique population of newly formed 
platelets soon after the induction of acute blood loss in beagle 
dogs. They stained platelets with methylene blue and noticed 
coarse and punctate condensations in platelets similar to those 
seen in reticulocytes of red cells. Therefore, this platelet fraction 
was named “reticulated platelets” (67). Later, reticulated platelets 
were shown to contain more RNA, staining with nucleic acid-
specific fluorescent dyes, such as thiazole orange (68).

Reticulated platelets likely represent the youngest platelet  
fraction. After in vivo biotinylation, freshly formed platelets car-
rying reduced levels of biotin were shown to be reticulated (69). 
These platelets are younger than 24 h (70) and decay their RNA 
during aging (71).

In healthy humans with steady-state platelet production around 
8% of circulating platelets are reticulated (72). Furthermore, the 
proportion of reticulated platelets is enriched in the fraction of 
large platelets compared to the fraction of small platelets (47), 
suggesting a relationship between platelet size and age.

A limitation of studies applying thiazole orange to stain 
reticulated platelets is, however, the tendency of this dye to bind 
unspecifically to alpha-granule contents (73). Therefore, a higher 
proportion of thiazole orange positive platelets observed in larger 
platelets could in part result from unspecific binding and may not 
represent young platelets (74). This limitation may be overcome 
by more RNA-specific dyes (75), which may finally elucidate the 
relationship between the size and age of platelets under steady-
state platelet production.

In patients with high platelet turnover, the MPV is increased 
and likewise the proportion of reticulated platelets (72, 76, 77). 
One example that these changes may have biological relevance 
is their response to antiplatelet therapy. Despite dual antiplatelet 
therapy, large platelets with a higher proportion of reticulated 
platelets show increased in  vitro reactivity compared to small 
platelets (78). Moreover, newly formed reticulated platelets show 
increased thrombogenicity after stopping prasugrel (75). Both 
observations suggest consequences for individualized antiplatelet 
therapy.
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Procoagulant Platelets
About 30% of circulating platelets (range of 15–55%) can exhibit 
a procoagulant phenotype after stimulation with the agonists col-
lagen and thrombin (79, 80). They were named COAT-platelets, 
which was later changed to coated platelets. Coated platelets 
express high levels of functional α-granule derived Factor V (FV) 
(79) and other α-granule proteins on their surface, including 
fibrinogen, von Willebrand factor, thrombospondin, fibronectin, 
and α2-antiplasmin (81). Furthermore, coated platelets expose 
procoagulant phosphatidylserine (PS) on their surfaces (79, 82). 
PS exposure on the outer platelet membrane is closely related to 
disruption of inner mitochondrial membranes in the cells (83). In 
platelets, this process is controlled by calpain and not by caspases 
as in other cells (84). Therefore, PS exposure on procoagulant 
platelets is not necessarily related to apoptosis (85, 86). As not all 
PS-exposing platelets show the typical features of coated platelets, 
coated platelets seem to represent a procoagulant subgroup of 
PS-exposing platelets (82, 87).

Activation of the protease activated receptor 1 with thrombin, 
SFLLRN, and AYPGKF had strong additional effect (80) on 
the collagen-induced calcium peak and induced a sustained 
cytoplasmatic elevation of Ca2+ which is crucial for the forma-
tion of procoagulant platelets (88). Differential phosphorylation 
of PKCalpha and p38MAPK may drive the different calcium 
fluxes in coated compared to non-coated platelets (89). Increased 
cytosolic Ca2+ levels result in the inactivation of adenylatecyclase 
and activation of phosphatidylinositol 3-kinase and Src tyrosine 
kinase which further promotes procoagulant platelet segregation 
(90). On the other hand, elevated cytosolic Ca2+ levels can reverse 
integrin αIIbβ3 activation by stimulating intracellular cleavage of 
the β3-chain via calpain (91). PAC-1 binding is reduced in coated 
platelets although surface expression of αIIbβ3 is not diminished 
(89). The underlying mechanism is displacement of PAC-1 a 
stronger bond rather than inactivation of αIIbβ3 (92). This may 
explain why coated platelets do not take part in the formation of 
aggregates mediated by αIIbβ3.

Thus, platelet subpopulations arrange differently in a thrombus 
(93). Within a thrombus platelets with activated αIIbβ3 integrins 
assemble to aggregates. Those with inactive αIIbβ3 integrins 
remain solitary and form blebs and shed microparticles (93–95), 
the typical features of coated platelets. Independently of αIIbβ3, 
coated platelets attach to aggregates by forming caps of colocal-
ized fibrinogen and thrombospondin on the PS-positive platelet 
surface (96). This allows coated platelets to become incorporated 
into thrombi independently of activated αIIbβ3 integrins.

Interestingly, platelet size has not yet been directly investigated 
as a feature of procoagulant human platelets. In rabbits, young 
platelets showed a similar size and the same ability to form 
procoagulant platelets under steady state compared to older 
platelets (74). If size is associated with the procoagulant capabil-
ity of human platelets, it could be applied to enrich or deplete 
procoagulant platelets in PCs.

Platelets exposing Signals for Clearance
Platelets survive for up to 10 days under normal conditions (97, 98).  
Platelets exposing signals to induce their clearance may be seen 
as another subpopulation with a limited life span. It would 

be desirable to reduce the amount of these platelets in PCs to  
prolong survival of transfused platelets.

Three main mechanisms have been identified by which 
platelets mediate their clearance (99). First, degraded glycans 
appear as a signal on platelet membranes which are recognized 
by the hepatic Ashwell Morrel Receptor (100). This has been 
demonstrated for cold stored platelets (101) and for platelets in 
sepsis (102, 103). Concomitantly, the removal of glycan deprived 
platelets via the Ashwell Morell Receptor in the liver induces 
hepatic thrombopoietin-mRNA expression and leads to increased 
megakaryocyte numbers and de novo platelet production (100).

The second mechanism is platelet apoptosis. Platelet survival is 
extended if the proapoptotic proteins Bak and Bax are lacking and 
reduced if the prosurvival proteins Bcl-2, Bcl-xL, and Mcl-1 are 
absent (104). Recently, protein kinase A was identified as a media-
tor of platelet life span by regulating apoptosis (105). However, 
the exact signals on the platelet surface and the corresponding 
receptor recognizing apoptotic platelets for platelet clearance are 
not yet identified. It is also unknown whether apoptotic signals 
appear differently in platelets of different size.

Finally, platelets are cleared after being opsonized with 
antibodies, which can be autoantibodies in diseases such as 
autoimmune thrombocytopenia, or alloantibodies in case of 
feto-maternal incompatibility, or after platelet transfusion (106). 
This mechanism is likely independent of platelet size.

Of note, P-selectin is an adhesion receptor for leukocytes 
expressed by activated platelets and was suggested to mediate 
platelet clearance. Berger et  al. demonstrated that P-selectin 
does not mediate platelet clearance but may modulate leukocyte 
recruitment or thrombus growth (107).

COnCLUSiOn AnD PeRSPeCTiveS

Understanding features differentiating platelet subpopulations 
has greatly improved. For example, platelet size correlates with 
platelet reactivity and mRNA content, which may classify large 
platelets as a prohemostatic subpopulation. These large platelets 
could be enriched in blood centers by differential or density 
gradient centrifugation, or special apheresis techniques in order 
to produce more potent PCs, e.g., for trauma patients.

It remains unclear, if large platelet fractions also include more 
procoagulant platelets. To gain further insight, PS-exposure, 
Ca2+-mobilization and the ability to form coated platelets should 
be assessed in large and small platelets. Additionally, no data 
exist whether immunological functions of platelets correlate with 
platelet size.

Highly relevant for the interpretation of any study on the asso-
ciation of platelet size and platelet function is the fact that platelet 
turnover is important for platelet formation. Large platelets under 
steady state are likely different from large platelets generated 
under conditions of increased platelet turnover. This difference 
may explain some of the conflicting results on large and small 
platelets reported in the literature. It will be mandatory for future 
studies to exactly define the conditions of platelet turnover 
under which the investigated platelet population is generated 
as well as the agonists mediating thrombopoiesis in health and  
disease (108).
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