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Genome-Wide Meta-Analysis 
of Cotinine Levels in Cigarette 
Smokers Identifies Locus at 4q13.2
Jennifer J. Ware1,2,*, Xiangning Chen3,*, Jacqueline Vink4,*, Anu Loukola5, Camelia Minica4, 
Rene Pool4, Yuri Milaneschi6, Massimo Mangino7, Cristina Menni7, Jingchun Chen3, Roseann 
E. Peterson3, Kirsi Auro8,9, Leo-Pekka Lyytikäinen10,11, Juho Wedenoja5, Alexander I. Stiby2, 
Gibran Hemani1,2, Gonneke Willemsen4, Jouke Jan Hottenga4, Tellervo Korhonen5,8,12, 
Markku Heliövaara8, Markus Perola8,9,13, Richard J. Rose14, Lavinia Paternoster1,2, 
Nic Timpson1,2, Catherine A. Wassenaar15, Andy Z. X. Zhu15, George Davey Smith1,2, Olli  T. 
Raitakari16,17, Terho Lehtimäki10,11, Mika Kähönen18,19, Seppo Koskinen8, Timothy Spector7, 
Brenda W. J. H. Penninx6, Veikko Salomaa8, Dorret I. Boomsma4, Rachel F. Tyndale15,20, 
Jaakko Kaprio5,9,8,# & Marcus R. Munafò1,21,#

Genome-wide association studies (GWAS) of complex behavioural phenotypes such as cigarette smoking 
typically employ self-report phenotypes. However, precise biomarker phenotypes may afford greater 
statistical power and identify novel variants. Here we report the results of a GWAS meta-analysis of levels 
of cotinine, the primary metabolite of nicotine, in 4,548 daily smokers of European ancestry. We identified 
a locus close to UGT2B10 at 4q13.2 (minimum p = 5.89 × 10−10 for rs114612145), which was consequently 
replicated. This variant is in high linkage disequilibrium with a known functional variant in the UGT2B10 
gene which is associated with reduced nicotine and cotinine glucuronidation activity, but intriguingly is not 
associated with nicotine intake. Additionally, we observed association between multiple variants within 
the 15q25.1 region and cotinine levels, all located within the CHRNA5-A3-B4 gene cluster or adjacent 
genes, consistent with previous much larger GWAS using self-report measures of smoking quantity. 
These results clearly illustrate the increase in power afforded by using precise biomarker measures in 
GWAS. Perhaps more importantly however, they also highlight that biomarkers do not always mark the 
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phenotype of interest. The use of metabolite data as a proxy for environmental exposures should be 
carefully considered in the context of individual differences in metabolic pathways.

Genome-wide association studies (GWAS) have enjoyed considerable success in identifying genetic variants asso-
ciated with complex behaviours such as cigarette smoking1–4. However, given the need for large sample sizes in 
GWAS, behavioural phenotypes are often assessed using self-report measures (e.g., number of cigarettes smoked 
per day). These may be subject to reporting biases (e.g., a smoker may report smoking less than he or she actually 
smokes) or error. Objective assessment of behavioural phenotypes, using a relevant biomarker, can address these 
limitations and provide greater measurement precision, therefore improving statistical power.

The rs16969968-rs1051730 single nucleotide polymorphism (SNP) within the CHRNA5-A3-B4 gene cluster 
on chromosome 15 accounts for ~1% phenotypic variance in self-reported cigarettes per day, but ~4% phenotypic 
variance in cotinine levels (the primary metabolite of nicotine)5,6. It has previously been established that cigarette 
smokers modify their smoking behaviour to self-titrate nicotine to a level appropriate to individual need7,8. This 
may be achieved, for example, through timing of smoking in the day, varying number of puffs taken per cigarette, 
or volume of smoke inhaled per puff. Given individual differences in smoking topography, cotinine may provide a 
more accurate assessment of total tobacco exposure than cigarettes per day (self-reported or objectively assessed).

Previous, consortium-based GWAS of self-reported smoking quantity have identified a handful of independ-
ent genetic loci1–4. However, even these very large studies (n >  70,000) can only account for a small proportion 
of phenotypic variation. Using a biomarker phenotype may provide a valuable alternative approach given meas-
urement precision and biological proximity. We therefore conducted a meta-analysis of genome-wide association 
data on cotinine levels in current, daily cigarette smokers, in order to identify genetic variants associated with 
smoking behaviour.

Results
Variants in two genomic regions were found to be associated with cotinine levels, including 15q25.1 (a region previ-
ously identified in association with smoking quantity1,3,4) and a locus at 4q13.2 (see Figs 1 and 2, Table 1, Table S2).  
All 96 variants that met or exceeded the threshold for genome-wide significance (p <  5 ×  10−8) on chromosome 
4 lay between 69.6 and 69.9 Mb within a region of UGT genes, including UGT2B10 and UGT2A3 (see Fig. 2). 
The variant with the lowest p-value in this region was rs114612145 (rs77107237 in GRCh38) (p =  5.89 ×  10−10), 
which lies between UGT2B10 and UGT2A3 (Table 1, Fig. 2). The minor allele (G) was associated with a 0.22 SD 
increase in cotinine level, equating to ~39 ng/ml increase in plasma/serum cotinine (Table 1, Fig. 2). The cotinine 
quantification method did not affect the result. This SNP accounted for 0.87% of the variance in cotinine levels.

To investigate whether the association with cotinine at 4q13.2 could be completely explained by rs114612145, 
we repeated the association analysis conditioning on this SNP (Figure S1, bottom panel). No residual signal was 
detected, suggesting that the variants identified in this region represent a single independent signal. For further 
confirmation of the cotinine association signal at 4q13.2, selected variants from this region were examined in 
relation to cotinine levels in two independent samples (see Tables S3 and S4). Strong evidence for association was 
observed in both (Table S4). The rs114612145 SNP identified in our sample is in high LD with a functional mis-
sense variant in UGT2B10, rs144647471 (also known as Asp67Tyr or rs61750900 in build GRCh38) (r2 =  0.90). 
Whilst this missense variant did not reach the threshold for genome-wide significance in our discovery sample 
(p =  1.91 ×  10−5), this is likely due to the reduced sample size upon which association was determined (SNP 
imputed in only 2,585 individuals). However, we observed evidence of association in an independent sample, in 
the same direction to that observed in the discovery sample (p =  0.020; Table S3).

Figure 1.  Manhattan and quantile-quantile plots illustrating genome-wide meta-analysis results. 
Manhattan plot (A): All SNPs plotted on x-axis according to their position on each chromosome, against their 
association with cotinine level, as shown on the y-axis as –log10 p-value. QQ plot (B): The observed distribution 
of p-values (y-axis) against the expected distribution of p-values under the null hypothesis (x-axis). Plots 
includes variants which were genotyped or imputed in at least 3,000 individuals only (~7 M SNPs).
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Our meta-analysis also highlighted a locus on chromosome 15, which has consistently been identified in 
GWAS of smoking quantity. All 279 genome-wide significant variants identified on this chromosome lay within 
the CHRNA5-A3-B4 nicotinic receptor gene cluster, adjacent genes (IREB2, AGPHD1, PSMA4 and ADAMTS7), 
or intergenic regions (see Fig. 2). The variant with the lowest p-value (both in this region and overall) was 
rs10851907 (p =  1.46 ×  10−19), located in an intergenic region between CHRNB4 and CHRNA3 (Table 1, Fig. 2). 
The minor allele (A) was associated with a 0.19 SD increase in cotinine levels, equating to a ~34 ng/ml increase 
in plasma/serum cotinine (Table 1, Fig. 2). This SNP, which is in LD with rs16969968 (r2 =  0.71), accounted for 
1.75% of the variance in cotinine levels.

To investigate whether the association with cotinine at 15q25.1 could be explained completely by rs10851907, 
we repeated the association analysis conditioning on this SNP (Figure S2). Residual association was detected 
within the region, with strongest evidence for association at rs57064725 (pc =  2.92 ×  10−8), located in an intron 
of PSMA4 (Figure S2, middle panel). Conditioning on both of these variants left no residual signal (Figure S2, 
bottom panel). Given previous robust evidence linking measures of smoking quantity to the nonsynonymous 
SNP rs16969968, a variant which also exceeded the threshold for genome-wide significance in our analyses 
(p =  6.91 ×  10−17), we also re-ran the association analysis conditioning on this SNP (Figure S3). Residual associa-
tion similar to that observed after conditioning on rs10851907 was detected within the region, with strongest evi-
dence for association at rs7170068 (pc =  1.51 ×  10−9), located in an intron in CHRNA3 (Figure S3, middle panel). 
Conditioning on rs16969968 and rs7170068 left no residual signal in this region (Figure S3, bottom panel). It is 
notable that earlier dissection of the 15q25.1 region has suggested a third distinct signal for smoking quantity, 

Figure 2.  Forest and regional plots of associations for cotinine from genome-wide meta-analysis. 
Forest plots illustrate effect size and 95% confidence intervals (CIs) observed in each contributing study for 
chromosome 15 (A) and chromosome 4 (B) SNPs with smallest p-values (“top” SNPs). Regional plots show 
SNPs plotted by their positions on chromosomes against –log10 p-value for their association with cotinine level 
in genome-wide meta-analysis. The top SNP in each region is highlighted in purple. The SNPs surrounding 
each top SNP are colour coded to reflect their LD with this variant (see legend). Estimated recombination 
rates are plotted in pale blue to reflect local LD structure on secondary y-axis. Genome build =  hg19; LD 
population =  1000 Genomes March 2012 release (EUR). Regional plots generated using Locus Zoom.

SNP Chr Gene Position EA EAF n Beta SE p value

rs10851907 15 Intergenic (CHRNB4/CHRNA3) 78915864 A 0.41 4330 0.19 0.02 1.46 ×  10−19

rs114612145 4 Intergenic (UGT2B10/UGT2A3) 69746647 G 0.10 4290 0.22 0.04 5.89 ×  10−10

Table 1.   Summary information for top SNPs identified from cotinine genome-wide meta-analysis. A 
total of 279 SNPs on chromosome 15 and 96 SNPs on chromosome 4 exceeded genome-wide significance for 
association with cotinine. The top SNP on each chromosome is shown. Position refers to base pair position in 
genome build hg19/GRCh37. EA: effect allele; EAF: effect allele frequency; SE: standard error; Beta: change in 
standard deviation of cotinine level per copy of the effect allele in an additive model.
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marked by rs588765, apparent upon adjustment for rs169699689,10. However, this signal was not identified in 
three previous large GWAS meta-analyses after conditioning on rs169699681,3,4, and was not apparent in our data, 
before or after adjustment for rs16969968 (p =  0.10; pc =  1.18 ×  10−3).

Discussion
We conducted a meta-analysis of genome-wide association data on cotinine levels in current smokers, in order 
to identify genetic variants associated with smoking behaviour. We identified 375 genetic variants, representing 
three independent signals. Two of these signals were located within CHRNA5-A3-B4 on chromosome 15, a region 
that is now well-established as being associated with smoking heaviness. More importantly however, we also 
identified a signal within UGT2B10 on chromosome 4, a locus which has previously been found to associate with 
cotinine and nicotine metabolism, but not with nicotine dose, highlighting an important limitation of the use of 
metabolite data (such as cotinine) as a proxy for an environmental exposure.

UGT2B10 plays a key role in nicotine and cotinine glucuronidation, converting nicotine to nicotine-glucuronide 
(a minor nicotine metabolic pathway, accounting for 3–5% nicotine clearance11–13), and cotinine to 
cotinine-glucuronide (accounting for 12–17% of cotinine clearance11). The minor allele at rs144647471 (i.e., that 
associated with higher cotinine levels in our sample) is associated with a reduction in UGT2B10 function for both 
nicotine and cotinine glucuronidation14,15.

Several factors contribute to cotinine levels: consumption of nicotine (i.e., heaviness of smoking), conversion 
of nicotine to cotinine (catalysed primarily by CYP2A6), and cotinine clearance (including cotinine glucuroni-
dation). It is theoretically possible that the reduced function UGT2B10 variant identified in this GWAS function 
could alter consumption. Reduced clearance of nicotine through glucuronidation (a minor pathway) would theo-
retically result in modestly longer lasting circulating levels of nicotine, which could reduce smoking if individuals 
self-titrate nicotine levels. Consistent with this theory, a previous study found that ad libitum smokers with this 
reduced function UGT2B10 variant had lower nicotine intake14, as indexed by total nicotine equivalent levels. 
However, other studies (including a much larger study from the same group) have found that this variant has 
no effect on consumption16,17. Further, a decrease in nicotine intake via ad libitum smoking is inconsistent with 
higher cotinine levels, thus a change in consumption does not explain the association we note with the reduced 
function UGT2B10 variant and higher cotinine levels. A more likely explanation for our findings is a reduction in 
cotinine metabolism, through decreased cotinine glucuronidation, which is consistent with the association noted 
between the reduced function UGT2B10 variant and increased cotinine levels. Indeed, a recent GWAS conducted 
by Patel and colleagues17 concluded that genetic variation within UGT2B10 contributes significantly to nicotine 
and cotinine glucuronidation but not to nicotine dose.

Cotinine is a strong biomarker of cigarette consumption in daily smokers5,18–21. The confirmation of the 
CHRNA5-A3-B4 locus by our meta-analysis, and the conditional analyses results which parallel those of much 
larger GWAS of self-reported cigarette consumption3 demonstrate the utility of cotinine to identify genetic var-
iants responsible for smoking quantity with greater statistical power (see also Table S5). However, since coti-
nine is an intermediate metabolite, its concentration is influenced by multiple contributing pathways. Individual 
differences in nicotine and cotinine metabolism, both via glucuronidation, as suggested here, and by oxidative 
metabolism as previously observed18 have confounding effects. While substantially more accurate than self-report 
smoking levels, future studies seeking an even more comprehensive assessment of tobacco exposure may con-
sider using total nicotine equivalents (i.e., sum of nicotine and all its metabolites), a robust measure of nicotine 
exposure which intrinsically controls for variation in genes influencing both nicotine and cotinine metabolism 
(including variation in UGT2B10 and CYP2A6)12,22.

In conclusion, we observed evidence of association between cotinine levels in current smokers and a locus at 
4q13.2 encompassing UGT2B10, which encodes an enzyme playing a key role in nicotine and cotinine glucuro-
nidation, in addition to the 15q25.1 region, previously shown to robustly associate with smoking quantity. Our 
analyses clearly illustrate the benefit of using precise, objective phenotypes in GWAS. However, they also impor-
tantly illustrate that biomarkers do not always capture the phenotype of interest. The use of metabolite data (such 
as cotinine) as a proxy for environmental exposures should be carefully considered in the context of individual 
differences in metabolic pathways.

Methods
Contributing studies.  A total of 11 studies (collectively forming the Cotinine Consortium) contributed to 
the GWAS meta-analysis: Avon Longitudinal Study of Parents and Children (ALSPAC), Coronary Artery Risk 
Development in Young Adults (CARDIA), FinnTwin, FINRISK, Framingham Heart Study, Health2000 GenMets 
study (GenMets), Multi-Ethnic Study of Atherosclerosis (MESA), Netherlands Study of Depression and Anxiety 
(NESDA), Netherlands Twin Register (NTR), TwinsUK, and Cardiovascular Risk in Young Finns Study (YFS) 
(see Table 2). These 11 samples resulted in a collective sample size of n =  4,548. Further information on each 
study/cohort is provided in Text S1.

Phenotype definition.  Cotinine levels were determined from plasma, serum or urine samples, and quan-
tified using immunoassay, radioimmunoassay or mass spectrometry (see Table 2 and Text S1 for further details). 
Cotinine levels show good agreement within samples across assessment methods, and further are highly corre-
lated across different types of biological samples, including urine and blood23,24. However, given that absolute 
cotinine levels are much higher in urine relative to blood, cotinine data were transformed and standardised prior 
to the conduct of individual study-level GWAS analysis, to ensure meaningful comparison and synthesis of results 
across studies. Within each study sample, cotinine levels were assayed from one specific type of biological sample, 
using a singular assessment method.
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Sample inclusion criteria.  Individuals within each sample were eligible for inclusion in analyses pro-
vided they were assessed for cotinine level at or after 17 years of age, of European ancestry, successfully geno-
typed genome-wide, and current daily smokers at the time of cotinine assessment. To minimise inclusion of 
non-smokers and non-daily smokers in our analyses, specific cotinine level inclusion thresholds were imposed, 
determined on the basis of receiver operating characteristic (ROC) analyses conducted in representative samples 
with smoking status self-report data and cotinine data derived from plasma and urine samples. These were con-
servatively set at 10 ng/ml cotinine in serum/plasma samples assessed using mass spectrometry, 50 ng/ml cotinine 
in serum/plasma samples assessed using immunoassay, and 80 ng/ml cotinine in urine samples assessed using 
immunoassay. Full descriptive characteristics of the studies in the Cotinine Consortium are presented in Table 2.

Genotyping and imputation.  All contributing studies performed their own genotyping, quality control, 
and imputation to the 1000 Genomes Phase 1 Version 3 reference panel (see Table S1). Study samples were gen-
otyped on a number of different platforms. Each study applied its own set of quality control filters. Genotype 
imputation was performed using IMPUTE, IMPUTE2 or MACH prior to genome-wide association analyses.

Study specific GWAS analysis.  Prior to study-specific genome-wide association analyses, cotinine data 
were transformed if necessary to correct for positive skew (using natural logarithm or square-root), and then 
standardised (i.e., converted to Z-scores). An additive genetic model was used for association analyses. Linear 
regression was used to establish evidence of association, with standardised cotinine level as the dependent var-
iable and allele dose (0, 1 or 2 copies of the minor allele) as the independent variable. All analyses adjusted for 
sex and age, with the exception of Framingham, which controlled only for sex as age data for this sample were 
not available. For family-based studies (e.g., NTR and FinnTwin), only one observation per family was included.

Meta-analysis of GWAS results.  All 11 GWAS summary data files were delivered to the co-ordinating site via 
secure file-sharing services. Imputation quality control procedures were centrally imposed. Specifically, variants were 
excluded if: a) MAF <  1%, and/or b) info score <  0.4 or r2 <  0.3. Once the quality of each data file was confirmed, 
files were imported into METAL (March 2011 Release) (http://www.sph.umich.edu/csg/abecasis/metal/index.html), 
a software tool for meta-analysis of whole genome association data. Genomic control was enabled (appropriate 
genomic control correction applied to input files) to correct for population structure. A fixed-effects meta-analysis 
was then performed for each SNP by combining allelic effects weighted by the inverse of their variance. Secondary 
correction for population structure via genomic control of summary statistics was not performed as the genomic 
control parameter (λ GC) for meta-analysis summary statistics was 0.992. The fixed threshold for genome-wide sig-
nificance was set at p <  5 ×  10−8. The meta-analysis was completed for ~11 M variants. Results were limited to the 
~7 M variants which had been genotyped/imputed in at least 3,000 individuals. The meta-analysis was also repeated 
using GWAMA 2.125 assuming random effects and an additive model, and the same results were obtained.

Conditional analyses.  Conditional analyses were performed with GCTA software26 using full meta-analysis 
summary level statistics and a European reference panel (ALSPAC mothers cohort; n =  8,890) to determine the 
number of independent signals present in regions identified in our meta-analysis. For each region of interest, we 
re-ran the meta-analysis conditioning on our SNP with the lowest p-value. The next signal was identified from 
the conditional meta-analysis results, and included in the second conditional meta-analysis. This process was 
repeated in an iterative fashion until no residual signal remained below a threshold of p <  5 ×  10−8 (see Figure S1 
and S2). For 15q25.1, we also employed an additional strategy, conditioning on missense SNP rs16969968 first. 
The entire process was also repeated using an alternative sample (Netherlands Twin Register) as the LD reference 
panel (n =  7,000), and similar results obtained.

Study n
Sex (% 
male)

Age (years) Cotinine (ng/ml)a

Medium MethodMean SD Mean SD

ALSPAC 258 50.4 17.8 0.4 182.1 107.2 Plasma Immunoassay

CARDIA 387 47.8 25.3 3.4 202.0 137.8 Plasma Radioimmunoassay

FinnTwin 145 46.2 23.0 1.5 206.6 107.5 Serum Mass spectrometry

FINRISK 218 59.8 48.4 11.6 223.6 167.7 Serum Mass spectrometry

Framingham 93 43.0 N/A N/A 101.3 55.6 Plasma/serum Mass spectrometry

GenMets 485 57.8 47.3 11.2 490.1 250.6 Serum Immunoassay

MESA 189 57.5 59.6 8.9 4818.2 4105.5 Urine Immunoassay

NESDA 808 36.5 41.5 12.4 260.9 224.4 Plasma Immunoassay

NTR 897 44.1 43.6 13.9 278.5 269.7 Plasma Immunoassay

TwinsUK 676 8.9 48.1 13.7 175.3 63.6 Plasma Mass spectrometry

YFS 392 55.4 33.8 6.2 200.6 108.9 Serum Mass spectrometry

Table 2.   Descriptive characteristics of the 11 studies contributing to the genome-wide meta-analysis. 
aCotinine mean and standard deviation values refer to raw values prior to standardisation (i.e., conversion to 
Z-scores). Further study details available in Text S1. SD: standard deviation.

http://www.sph.umich.edu/csg/abecasis/metal/index.html
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Independent replication.  We examined the association between the novel signal identified in our 
meta-analysis and cotinine levels in two independent samples, FINRISK2007 and FinnTwin (persons not 
included in discovery GWAS). Descriptive characteristics, genotyping and imputation information on these two 
samples is presented in Table S3.
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