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Abstract: Abstract: BackgroundThe incidental detection of renal masses has been steadily rising. As
a significant proportion of renal masses that are surgically treated are benign or indolent in nature,
there is a clear need for better presurgical characterization of renal masses to minimize unnecessary
harm. Ultrasound is a widely available and relatively inexpensive real-time imaging technique,
and novel ultrasound-based applications can potentially aid in the non-invasive characterization of
renal masses. Evidence acquisition: We performed a narrative review on novel ultrasound-based
techniques that can aid in the non-invasive characterization of renal masses. Evidence synthesis:
Contrast-enhanced ultrasound (CEUS) adds significant diagnostic value, particularly for cystic renal
masses, by improving the characterization of fine septations and small nodules, with a sensitivity and
specificity comparable to magnetic resonance imaging (MRI). Additionally, the performance of CEUS
for the classification of benign versus malignant renal masses is comparable to that of computed
tomography (CT) and MRI, although the imaging features of different tumor subtypes overlap
significantly. Ultrasound molecular imaging with targeted contrast agents is being investigated in
preclinical research as an addition to CEUS. Elastography for the assessment of tissue stiffness and
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micro-Doppler imaging for the improved detection of intratumoral blood flow without the need for
contrast are both being investigated for the characterization of renal masses, though few studies have
been conducted and validation is lacking. Conclusions: Several novel ultrasound-based techniques
have been investigated for the non-invasive characterization of renal masses. CEUS has several
advantages over traditional grayscale ultrasound, including the improved characterization of cystic
renal masses and the potential to differentiate benign from malignant renal masses to some extent.
Ultrasound molecular imaging offers promise for serial disease monitoring and the longitudinal
assessment of treatment response, though this remains in the preclinical stages of development. While
elastography and emerging micro-Doppler techniques have shown some encouraging applications,
they are currently not ready for widespread clinical use.

Keywords: ultrasound; ultrasonography; contrast-enhanced ultrasound; micro-Doppler; molecular
ultrasound; renal mass; renal tumor; renal cell carcinoma

1. Introduction

There has been a steady increase in the incidental detection of small renal masses in
the last several decades, at least in part due to the increased use of abdominal imaging [1].
This has contributed to an increase in the prevalence of renal cell carcinoma (RCC), which
represents the most common renal malignancy. However, a significant proportion of
renal masses are still being resected for the presumption of cancer, while otherwise being
benign or indolent in nature [2]. Although renal mass biopsy is currently regarded as the
gold standard for the presurgical diagnosis of benign or indolent disease, its widespread
adoption has been hampered by a non-diagnostic rate of 10–15% and concerns about
intratumoral heterogeneity [3,4].

Therefore, there is an apparent need for improved presurgical characterization of renal
masses to avoid overtreatment. In this way, patients may be spared unnecessary interven-
tions and the associated risk of perioperative morbidity or decreased renal function [5].
This may be particularly applicable for elderly or frail patients [6].

Currently, contrast-enhanced CT (CECT) is considered the standard of care for the
assessment of solid renal tumors. Post-contrast enhancement and heterogeneity of a renal
lesion are associated with malignancy and are used to distinguish between RCC subtypes to
some extent, but with limited success [7–13]. Ultrasound is a non-invasive, widely used and
readily available imaging technique offering real-time imaging without ionizing radiation.
Moreover, the costs of ultrasound are significantly lower compared with computed tomog-
raphy (CT) and magnetic resonance imaging (MRI), which might also benefit healthcare
systems, particularly in lower-income countries. Conversely, ultrasound is often criticized
due to its operator dependency. Conventional ultrasound is often sufficient to classify
indeterminate renal masses as benign in the case of simple or minimally complex cystic
masses, though it is not reliable to subtype more complex cystic and solid renal masses
(i.e., with few and thin septae) [14,15]. Several novel approaches have been investigated to
improve the diagnostic accuracy of ultrasound and expand its role in the characterization
of renal masses.

We reviewed the current literature on the use of ultrasonography for the non-invasive
characterization of renal masses with a focus on innovative techniques in order to critically
assess its current role and potential future applications among other imaging modalities in
this field.

Moreover, a considerable proportion of renal masses display equivocal imaging fea-
tures and cannot reliably be distinguished as benign or malignant using conventional CT or
MRI [7,8,12,13,16]. In light of these shortcomings, other approaches have been investigated,
each with its strengths and limitations.
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2. Evidence Acquisition

We performed a non-systematic, narrative review on the role of novel ultrasound-based
techniques for the characterization of renal masses. A search of the Pubmed/MEDLINE
database was conducted to identify original studies and review articles related to the use
of ultrasound-based techniques in the evaluation of renal masses. Keywords included
“kidney neoplasm”, “renal tumor”, “elastography”, “contrast-enhanced ultrasound”, “ul-
trasound” and “ultrasonography”, along with free-text or related and derivative terms. The
search was conducted on 1 November 2021. In order to focus on innovative and modern
techniques and applications, we initially included articles published in the last 10 years.
Subsequently, additional manuscripts of interest were identified through a manual search
of the reference lists of the retrieved articles. The final review represents an overview of
novel ultrasonography-based applications for renal mass characterization and represents a
consensus work.

3. Results
3.1. Contrast-Enhanced Ultrasound

Contrast-enhanced ultrasound (CEUS) is an emerging technique that addresses some
of the limitations of non-enhanced grayscale and traditional Doppler ultrasound for the
detection of vascularization within soft tissues. Intravenously administered ultrasound
contrast agents consist of small particles: gas-filled cores encapsulated within biodegradable
shells. These microbubbles, approximately the size of red blood cells, resonate non-linearly
when insonnated by ultrasound. The unique signals from microbubbles can be separated
from background tissues, allowing for the specific detection of blood flow within perfused
tissues. CEUS can definitively confirm simple cysts via the lack of enhancement and may
help to characterize solid renal lesions based on differences in lesional versus renal cortical
perfusion [17,18]. Figures 1 and 2 illustrate the performance of CEUS compared with
traditional grayscale ultrasound by identifying enhancement within a renal mass. Despite
the lack of radiation, low cost and highly favorable safety profile of ultrasound contrast
agents, operator dependency and other technical factors may limit reproducibility [19,20].
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solid avid enhancement relative to the adjacent renal cortex. A partial nephrectomy revealed clear 

cell renal cell carcinoma, grade 2. 

CEUS has a distinct value in characterizing septations and mural nodules within 

cystic renal masses based on the presence or lack of enhancement, which is of specific 

interest for the equivocal Bosniak IIF and III cystic renal masses. However, specific defi-

nitions for CEUS imaging findings to predict the gradual increase in the risk of malig-

nancy (i.e., equivalent to the Bosniak classification) are currently lacking [15]. According 

to several reports, the sensitivity and specificity of CEUS for malignancy in a cystic renal 

mass was comparable to CECT and MRI [19,21–28]. Additionally, CEUS was reported to 

Figure 1. A 79-year-old man with a history of bladder cancer undergoing evaluation for hydronephro-
sis. Grayscale ultrasound image of the left kidney in the longitudinal orientation (a) shows an
exophytic hypoechoic mass containing internal low-level echos. Following an intravenous injection
of 1.8 cc Lumason ultrasound contrast, a contrast-enhanced ultrasound image focused at the upper
pole (b) revealed the mass was completely non-enhancing (devoid of signal), which is diagnostic for
a simple cyst. No further follow-up was necessary.
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Figure 2. A 67-year-old man with multiple renal lesions, status post SBRT one year prior for contra-
lateral RCC. Grayscale ultrasound image of the left kidney in longitudinal orientation (a) shows an
isoechoic exophytic nodule. Following the intravenous administration of 1.0 cc Lumason ultrasound
contrast, a contrast-enhanced ultrasound image (b) shows the nodule demonstrating predominantly
solid avid enhancement relative to the adjacent renal cortex. A partial nephrectomy revealed clear
cell renal cell carcinoma, grade 2.

CEUS has a distinct value in characterizing septations and mural nodules within cystic
renal masses based on the presence or lack of enhancement, which is of specific interest for
the equivocal Bosniak IIF and III cystic renal masses. However, specific definitions for CEUS
imaging findings to predict the gradual increase in the risk of malignancy (i.e., equivalent
to the Bosniak classification) are currently lacking [15]. According to several reports, the
sensitivity and specificity of CEUS for malignancy in a cystic renal mass was comparable to
CECT and MRI [19,21–28]. Additionally, CEUS was reported to perform at least as well as,
if not better than, CECT and contrast-enhanced MRI (CEMR) in the classification of benign
versus malignant renal masses [17,22–24,29–31]. Furrer et al. performed a meta-analysis
on 1290 patients harboring 1342 cystic or solid renal masses, comparing the performance
of CEUS to CECT and CEMR in the detection of benign versus malignant histology. They
reported pooled sensitivity and specificity values for CEUS, CECT and CEMR of 96%, 90%
and 96%, and 78%, 77% and 75%, respectively [17]. Their findings were in line with the
findings of meta-analyses by Zhang et al., who compared CEUS to CECT in solid renal
masses, and Zhou et al., who compared CEUS to CEMR in CRMs [22,31]. However, a low
prevalence of certain benign tumor types (e.g., only 1% of renal masses were oncocytomas)
likely reflects a considerable selection bias in these studies. Furthermore, it is unclear how
many renal masses in these studies were excluded due to macroscopic fat seen during
CT or MRI, which is virtually diagnostic of AML. They concluded that CEUS could be a
valuable alternative to CECT in the evaluation of both solid as well as cystic renal masses,
despite the heterogeneity across studies and the overall level of evidence being low [17].
An overview of key findings of CEUS studies is provided in Table 1.

Although quantitative CEUS features, such as the analysis of time–intensity curves,
were shown to partially aid in the distinction of clear cell RCC (ccRCC), papillary RCC
(papRCC) and chromophobe RCC (chrRCC) between each other and typical AML from
RCCs, there is considerable overlap between imaging features of these renal tumor sub-
types [32–34].

Moreover, both fat-poor AMLs (fpAML) and oncocytomas cannot be reliably dis-
tinguished from RCC on CEUS due to non-differing sonomorphological imaging fea-
tures [23,32,35–37]. Therefore, CEUS is likely inadequate for subtyping all solid renal
masses at this time.
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Table 1. Summary of key findings of contrast-enhanced ultrasound studies.

Study (Year) Study Type Type of Renal Mass Number of Patients
(Tumors) Imaging Type Key Findings

Furrer et al. (2020) Systematic review Solid and cystic renal masses 1290 (1342) CEUS vs. CECT/CEMRI

• CEUS performs at least as well or
better than CECT and CEMR in
the qualitative diagnosis of
benign vs. malignant renal
masses.

Yong et al. (2016) Retrospective cohort
study

Indeterminate renal masses in
patients with renal

impairment
63 (74) CEUS

• CEUS has a high diagnostic
performance for the prediction of
benignity of renal masses in
patients with renal impairment
with sensitivity and NPV
approaching 100%.

Zhou et al. (2011) Retrospective cohort
study

Solid renal masses with
histopathology available or

follow-up with MRI
51 (51) CEUS

• CEUS results in good diagnostic
confidence for the diagnosis of
RCC with a sensitivity of 86%
and a specificity of 93%.

Rübenthaler et al. (2018) Retrospective cohort
study

Indeterminate renal masses
with histopathology available 255 (255) CEUS

• CEUS resulted in a sensitivity of
99.1% and a sensitivity of 80.5%
for the differentiation of being
benign vs. malignant.

Lerchbaumer et al. (2020) Retrospective cohort
study Cystic renal masses 173 (173) CEUS vs. CECT/CEMRI

• CEUS outperforms CECT and
CEMRI in the characterization of
fine septal and nodular
enhancements in cystic renal
masses, often leading to an
upgrade in Bosniak classification.
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Table 1. Cont.

Study (Year) Study Type Type of Renal Mass Number of Patients
(Tumors) Imaging Type Key Findings

Sanz et al. (2016) Prospective cohort
study

Bosniak II–IV cystic renal
masses 67 (67) CEUS vs. CECT

• CEUS has a good agreement with
CECT regarding the Bosniak
classification.

• Sensitivity and NPV were 100%
for the differentiation of benign
vs. malignant cystic renal masses.

Ragel et al. (2016) Prospective cohort
study Cystic renal masses 46 (51) CEUS vs. CECT

• CEUS upstaged cystic renal
masses in 31% of cases compared
with assessment using CECT.

Defortescu et al. (2017) Prospective cohort
study

Bosniak IIF and III cystic
renal masses 47 (47) CEUS vs. CECT

• CEUS outperformed CECT for
the differentiation of Bosniak IIF
and III cystic renal masses into
benign or malignant with a
sensitivity of 100%, a specificity
of 97% and an NPV of 100%.

Rübenthaler et al. (2016) Retrospective cohort
study Indeterminate renal masses 36 (36) CEUS vs. CEMRI

• CEUS is useful for the
differentiation of benign vs.
malignant renal masses, with a
sensitivity, specificity and NPV
comparable to CEMRI.

Wei et al. (2017) Retrospective cohort
study Small (<4 cm) renal masses 118 (118) CEUS vs. CECT

• Both CEUS and CECT are
effective for the differentiation of
benign vs. malignant small renal
masses, with a sensitivity for
CEUS of 93.5%, a specificity of
68% and an NPV of 73.9%.



J. Clin. Med. 2022, 11, 1112 7 of 13

Table 1. Cont.

Study (Year) Study Type Type of Renal Mass Number of Patients
(Tumors) Imaging Type Key Findings

Zhang et al. (2019) Systematic review Solid and cystic renal masses NR (2260) CEUS vs. CECT

• CEUS has a higher sensitivity and
a comparable specificity for the
detection of renal cancer
compared with CECT (94% vs.
85% and 77% vs. 75%,
respectively).

Zhou et al. (2018) Systematic review Cystic renal masses NR (1142) CEUS vs. CEMRI

• Both CEUS and CEMRI have
good diagnostic performance for
the differentiation of cystic renal
masses in benign vs. malignant
renal masses.

• CEUS has a higher sensitivity, but
lower specificity for this
diagnosis compared with CEMRI
(95% vs. 92% and 84% vs. 91%,
respectively).

Studies are listed in the order of mention in the article’s main text. CEUS—contrast-enhanced ultrasound, CECT—contrast-enhanced computed tomography, CEMRI—contrast-enhanced
magnetic resonance imaging, NPV—negative predictive value, RCC—renal cell carcinoma, NR—not reported.
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3.2. Ultrasound Molecular Imaging

A highly innovative approach to ultrasound imaging involves the targeting and
real-time, in vivo visualization of physiologic processes with molecular-specific imaging.
Molecular-targeted microbubbles have been developed as an extension of CEUS [38,39].
This could be of particular interest in the metastatic setting, where the response to systemic
therapy is currently determined by the change in tumor volume. However, changes in
tumor physiology occur sooner than measurable tumor volume changes, which might
allow for earlier assessment of tumor progression, response to systemic therapy and, ulti-
mately, therapeutic decision making. Moreover, the use of molecular imaging techniques
might better characterize features relating to intrinsic disease biology, such as angiogenesis,
potentially leading to more individualized treatment decision making [40,41]. In a recent
report, Rojas et al. studied ccRCC in a xenograft model of immunodeficient mice treated
with the anti-angiogenic vascular endothelial growth factor receptor (VEGFR) tyrosine
kinase inhibitor sunitinib [39]. They administered a microbubble contrast agent targeted
to VEGFR-2 and subsequently imaged the tumors with CEUS after 1 week of treatment.
They reported changes in VEGFR-2 expression at that time, as determined on ultrasound
molecular imaging in the sunitinib-treated group, as opposed to changes in tumor volume,
which only became apparent after 3 weeks. Moreover, after 1 week, response to therapy
was detected in 92% of cases with ultrasound molecular imaging, whereas the detection
rate was only 40% with volume measurements. Likewise, Ingels et al. studied the poten-
tial of ultrasound molecular imaging to track the response to sunitinib in a ccRCC mice
xenograft model [38]. These mice, harboring ccRCC, were randomized between treatment
with sunitinib and control and were injected with both non-targeted microbubbles and
microbubbles targeting VEGFR-1 and follicle-stimulating hormone receptor (FSHR). Both
the VEGFR-1 and FSHR signal enhancement were significantly lower in the sunitinib group
at all times of treatment, while there was no significant difference between the two groups
for the non-targeted microbubble ultrasound signal. Thus, they confirmed the potential
of ultrasound molecular imaging for the longitudinal assessment of treatment response
to sunitinib. However, despite its potential for serial monitoring of disease, as well as
longitudinal assessment of disease response to systemic therapy, ultrasound molecular
imaging is still in the very early phases of development and further research endeavors
will determine whether these techniques can provide additional value in clinical practice.

3.3. Elastography

Equivalent to the use of palpation during physical examination, ultrasound elastogra-
phy measures changes in tissue stiffness, which are often seen with diffuse parenchymal
diseases and the associated changes in tissue architecture [42]. Strain elastography provides
a qualitative or semi-quantitative assessment of tissue elasticity using external compression–
decompression cycles from the ultrasound transducer. Shear-wave elastography (SWE)
involves a quantitative assessment of tissue stiffness by measuring the propagation speed
of generated shear waves through tissues. This technique does not require external com-
pression by a transducer, relying instead on a high-amplitude push pulse (also known as
acoustic radiation force impulse or ARFI), thus making it less operator dependent [43].
Strain elastography was shown to aid in the distinction of benign vs. malignant lesions,
the distinction of RCC from AML and the distinction of RCC from transitional cell carci-
noma [42,44,45]. SWE had potential value in the differentiation of ccRCC versus oncocy-
toma, ccRCC versus chrRCC or papRCC and pseudotumor from ccRCC or AML, though
failed to differentiate between ccRCC and AML [43,46]. However, few studies have been
conducted and these results lack validation, rendering clinical applications for renal mass
characterization limited at this time. An overview of key findings of elastography studies
is provided in Table 2.
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Table 2. Summary of key findings of elastography studies.

Study (Year) Study Type Type of Renal Mass Number of Patients
(Tumors) Imaging Type Key Findings

Onur et al. (2015) Prospective cohort
study Solid renal masses 71 (71) Strain elastography

• Mean strain index values were
significantly higher in malignant
compared with benign solid renal masses.

• (Semi-)quantitative analyses of strain
elastography may aid in the differentiation
of benign and malignant solid renal
masses.

Guo et al. (2014) Retrospective cohort
study Solid renal masses 42 (42) ARFI

• ARFI elastography has a potential value
for the differentiation of clear cell RCC vs.
pseudotumor or angiomyolipoma vs.
pseudotumor but fails to distinguish clear
cell RCC and angiomyolipoma.

Keskin et al. (2015) Prospective cohort
study

Renal masses with
histopathology available 65 (65) Strain elastography

• (Semi-)quantitative analysis of strain
elastography may help in the
differentiation of RCC from
angiomyolipoma.

Inci et al. (2016) Prospective cohort
study

Solid renal masses,
suspicious for malignancy 99 (99) Strain elastography

• (Semi-)quantitative analysis of strain
elastography could be useful for the
preoperative differentiation of RCC from
TCC.

Thaiss et al. (2019) Prospective cohort
study

Small (<4 cm)
CECT-indeterminate renal

masses
123 (123) ARFI

• ARFI elastography could differentiate clear
cell RCC from oncocytoma and
chromophobe or papillary RCC.

Studies are listed in the order of mention in the article’s main text. ARFI—acoustic radiation force impulse elastography, RCC—renal cell carcinoma, TCC—transitional cell carcinoma,
CECT—contrast-enhanced computed tomography.
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3.4. Micro-Doppler Techniques

The presence of blood flow within a renal mass indicates solid tissue, as opposed to a
renal cyst. The pattern of vascularity may help characterize indeterminate renal masses,
such as differentiating malignancy from pseudomasses. Many companies are releasing
novel micro-Doppler techniques with advanced clutter suppression. Some of these include
Superb Micro-Vascular Imaging (Canon Medical Systems, Tochigi, Japan), Micro Vascular
Imaging (GE Healthcare, Waukesha, WI, USA), Micro-Flow Imaging (Philips Healthcare,
Bothell, WA, USA) and Micro Vascular Flow (Samsung Medison, Seoul, Korea). These tech-
niques appear to improve the detection of slower flow within smaller vessels, increasing the
ability to detect subtle vascularity within indeterminate renal masses that were previously
below the detection threshold for traditional color and power Doppler techniques.

Leong et al. recently imaged 41 patients harboring 50 renal masses with Superb
Micro-Vascular Imaging (SMI). They found that SMI had a higher diagnostic accuracy
than standard color Doppler imaging and power Doppler imaging for the detection of
vascularity within solid renal masses [47]. They concluded that SMI might have potential
in the detection of microvascularity within indeterminate solid renal masses. Subsequently,
Mao et al. showed that SMI could distinguish significantly different patterns of vascular-
ization between pathologically proven malignant and benign renal masses in a study on
53 patients [48]. Conversely, conventional Doppler flow imaging could not discern these
differences in vascularization.

Although the benefit of these micro-Doppler techniques includes intravenous contrast
not being required, there has not been a direct comparison to CEUS for the detection of
malignancy, which limits the current applications of these techniques. Future endeavors
should specifically study whether the addition of these techniques to CEUS could improve
the diagnostic accuracy and could potentially be a useful addition to current techniques in
terms of characterizing indeterminate renal masses.

4. Conclusions

Ultrasound is a widely available, approachable, and relatively inexpensive imaging
modality that allows for real-time evaluation of a suspected renal mass without the draw-
backs of ionizing radiation and the risk of an MRI. CEUS has several advantages over
traditional grayscale ultrasound in the characterization of indeterminate renal masses. It
has a distinct value in the characterization of cystic renal masses and has the potential to
differentiate benign from malignant renal masses to some extent. Ultrasound molecular
imaging could potentially be an extension of the use of CEUS for serial disease monitoring
and longitudinal assessment of treatment response, though it remains in preclinical stages
of development at this time. While emerging micro-Doppler techniques and elastography
have shown some encouraging applications, current evidence is limited, and neither is
ready for widespread clinical use.
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