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Identification of proliferative progenitors associated
with prominent postnatal growth of the pons
Robert A. Lindquist1,2,3, Cristina D. Guinto1,4, Jose L. Rodas-Rodriguez1,4, Luis C. Fuentealba1,4,

Matthew C. Tate1,4, David H. Rowitch1,5 & Arturo Alvarez-Buylla1,4

The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold

postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth

remain poorly understood. We show that the murine pons quadruples in volume postnatally;

growth is fastest during postnatal days 0–4 (P0–P4), preceding most myelination. We

identify three postnatal proliferative compartments: ventricular, midline and parenchymal.

We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment

produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and

are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are

Sox2þOlig2þ , but by P8 a Sox2� subpopulation emerges, suggesting a lineage progression

from Sox2þ ‘early’ to Sox2� ‘late’ oligodendrocyte progenitor. Fate mapping reveals that

490% of adult oligodendrocytes derive from P2–P3 Sox2þ progenitors. These results

demonstrate the importance of postnatal Sox2þOlig2þ progenitors in pontine growth and

oligodendrogenesis.
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T
he mammalian brain undergoes significant postnatal
growth. Postnatal growth could aid experience-dependent
acquisition of brain function1, and may confer

susceptibility to tumorigenesis2. The human pons is a site of
exceptional postnatal growth3 and lethal paediatric gliomas4;
however, knowledge of the cells responsible for pons growth
remains limited. One study suggested a ‘second peak’ of Nestinþ

progenitor cells in ventral human pons at 7 years5, though a
subsequent study did not find evidence to support that claim,
and instead observed that such progenitors were restricted to
infancy3. The nature of postnatal pontine progenitor cells has
consequences for pontine gliomagenesis, and for the normal
postnatal development and function of this crucial brain region.

The dorsal pons (tegmentum) contains autonomic nuclei
controlling awakeness and arousal6, respiration7 and adrenergic
tone8, as well as cranial nerves and nuclei mediating facial
sensation and motion9. The ventral pons (basis pontis)
contributes to motor function, in part as a ‘bridge’ between
cortex and cerebellum: neurons in the pontine grey nuclei receive
synapses from cortex and project to cerebellum via the middle
cerebellar peduncle10. Interestingly, among primates the size of
the basis pontis scales directly with the size of the neocortex11.
The basis pontis also contains the corticospinal tract, whose
descending axons carry motor signals from cortex to spinal motor
neurons. Many pontine circuits serve functions that are
postnatally acquired or refined, but nearly all studies of pons
development have focused on prenatal events, beginning with its
embryonic derivation from various segments of the
rhombencephalon. Pontine neurogenesis occurs prenatally12–17:
autonomic nuclei and cranial nerves (V–VIII) derive mainly from
rhombomeres 2 to 5 (refs 18,19), though some tegmental neurons
derive from rhombomere 1 (ref. 20); the neurons of the basis
pontis are born in rhombomeres 6–8 and migrate anteriorly to
form the pontine grey nuclei in the territory of rhombomeres
3–4 (refs 20,21). Proliferation22 and gliogenesis23–26 have been
documented in embryonic murine and avian pons, but the
question of which cells are responsible for postnatal pontine
growth remains unanswered.

Here we show that as in humans, the postnatal mouse basis
pontis grows more than tegmentum, with growth comparable to
rapidly growing forebrain structures; growth is fastest at birth and
mostly occurs before P16. Postnatal progenitor cells in the pons
are found (1) in the ventricular zone along the ventral walls of the
fourth ventricle, (2) in the midline domain and (3) in the
parenchyma. Progenitors proliferate in a single wave peaking at
postnatal day 4. We observe that proliferative Olig2þ progenitors
include an unexpected and abundant Sox2þ subpopulation,
which is enriched in basis pontis. Remarkably, postnatal Sox2þ

progenitor cells produce more than 90% of adult mouse pons
oligodendrocytes, contributing to a 10- to 18-fold postnatal
expansion of the oligodendroglial lineage.

Results
Postnatal pontine growth rates are fastest from P0 to P4. The
human pons grows sixfold from birth to adulthood3. To measure
the postnatal growth of the mouse pons, we prepared CD1 wild-
type mouse tissue for sectioning in a plane containing basis
pontis, tegmentum and fourth ventricle (Fig. 1a and Methods
section). We computed volumes of basis pontis and tegmentum
based on areas measured in every second section through the
pons (Fig. 1b–d). The basis pontis grew fivefold postnatally, from
0.38 mm3 at birth to 1.96 mm3 in adulthood (Fig. 1c), while the
pontine tegmentum grew fourfold, from 2.48 mm3 to 10.3 mm3

(Fig. 1d). This growth was comparable to the four- to fivefold
postnatal increase in mouse hippocampal and neocortical volume

measured by magnetic resonance imaging27 and histologic
methods28, and greater than the two- to threefold postnatal
increase in volume of anterior thalamic nuclei28. The absolute
volumetric growth rate (mm3 per day) was greater in tegmentum
than in basis pontis, due to the tegmentum’s larger size, and in
tegmentum the absolute rate of growth was greatest during
P4–P10 (Fig. 1e). However, the daily per cent increase in volume
was greatest during P0–P4, and was greater in basis pontis than
tegmentum during that period, with basis pontis growing at an
average rate of 16% daily (Fig. 1f). The rate of growth then
declined gradually through weaning age. The size of the pons at
P24 was not significantly different from that in adults aged P64
(P40.2, unpaired t-test). These data indicate that the mouse pons
grows rapidly during early postnatal life and proportionally more
in basis pontis than tegmentum.

Myelination does not account for pontine growth from P0 to P4.
The rapid early postnatal growth of human basis pontis is
attributable in part to myelination3. To determine whether
myelination accounted for the rapid early growth of the postnatal
mouse basis pontis, we performed immunohistochemistry for
myelin basic protein (MBP). The distribution of MBP in pontine
sections of increasing age is shown in Fig. 2a–c. MBP appeared in
concert with adenomatous polyposis coli (APC), a marker of
mature oligodendrocytes, first in selected white matter tracts of
tegmentum, for example, medial longitudinal fasciculus and
trigeminal nerve (V) by P2–P4, followed by white matter of basis
pontis from P8 to P10 and grey matter of basis pontis and
tegmentum by P8 to P12 (Fig. 2d). The extent of myelination and
the apparent thickness of myelinated tracts increased throughout
the pons between P10 and P24 (Fig. 2c,d). The progression of
myelination evidenced by MBP staining is consistent with a
magnetic resonance imaging study on the development of 12
selected white matter tracts in postnatal mouse brain (including
three brainstem tracts)27. Interestingly, while our data show that
the pons underwent its most rapid growth before P4, hardly any
MBP fibres were observed in P4 basis pontis (Fig. 2b,d). This
suggests that, in contrast to human, the mouse pons shows rapid
early postnatal growth before extensive addition of myelin.

Proliferation occurs in three germinal zones and peaks at P4.
On the basis of the findings above, we hypothesized that early
postnatal pontine growth could be due to proliferation of
neuronal and/or glial precursor cells. To measure proliferation
in postnatal development, we injected an age series of CD1 wild-
type mice with a single dose of the thymidine analogue BrdU,
100 min before perfusion (Fig. 3a). Immunostaining revealed
BrdUþ cells throughout the mouse brainstem (Fig. 3b,c); the
density of BrdUþ cells was greater in basis pontis than in any
other region of the brainstem (Fig. 3d,h; Supplementary Fig. 3f,g),
and also greater in the pontine tegmentum relative to midbrain
tegmentum (Supplementary Fig. 3h). We observed three main
anatomical compartments of BrdUþ cells: (1) along the ventral
surface of the fourth ventricle (ventricular zone, ‘VZ’); (2) along
the midline; and (3) within parenchyma (Fig. 3e). In all three
compartments, the density of BrdUþ cells was greatest at P4
(Fig. 3f–h), coinciding with the period of fastest pons growth
(Fig. 1e,f). Notably, in the parenchymal compartment, BrdUþ

cells were denser in the basis pontis than in the tegmentum
(Fig. 3h). This greater proliferation in basis pontis coincides with
its larger daily per cent increase in volume (Fig. 1f). Basis pontis
proliferation peaked at 276±15 cells per mm2 at P4, and at
P12 was still more than half its P4 peak, while tegmentum
proliferation peaked at 196±39 cells per mm2 at P4, and declined
more than 50% by P12 (Fig. 3h). Similarly, proliferation in VZ
and midline peaked at P4 with 40.6±3.1 and 16.3±3.7 cells per
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mm, respectively, and declined more than 50% by P8 and P12,
respectively (Fig. 3f,g). There was a significant increase in
proliferation density from P0 to P4 in VZ (P¼ 0.0302, unpaired
t-test) and basis pontis (P¼ 0.0072), while in tegmentum and
midline the increased density of BrdUþ cells from P0 to P4 was
not statistically significant (P¼ 0.128 and P¼ 0.121, respectively).
Parenchymal proliferation declined by P20 to o10% of its P4
peak, and in adulthood (P64) amounted to 1.5% of its P4 peak
(Fig. 3h). VZ proliferation declined sooner, reaching o10% of its
P4 peak by P12 and 1.5% of its P4 peak by P20 (Fig. 3f). We
observed no BrdUþ VZ cells at P28 or above. These findings
show that the pons is the most proliferative postnatal brainstem
region; its cell proliferation shows a single postnatal peak, at P4,
coincident with the period of fastest growth. These data also show
that proliferation declines at different rates in pontine VZ,
parenchyma, and midline, and at different levels of the brainstem.

Neurogenesis does not occur in the postnatal pons. The
birthdating studies of Altman and Bayer12–17 indicate that
neurons of the rat pons are primarily born before birth.

However, it is not known if some pontine neurons are born
postnatally in mouse. Given the dramatic postnatal growth
(Fig. 1) and the presence of some migrating precerebellar neurons
entering the pontine grey nuclei as late as P0 (ref. 29), it was
possible that some pontine neurons could be born postnatally.
We delivered BrdU in a single dose to wild-type mice aged P0 or
P4. Analysis at P28 revealed no BrdUþNeuNþ cells in either
basis pontis or tegmentum; since this BrdU dosage regimen might
have been insufficient to identify slowly or rarely dividing cells,
we administered BrdU or EdU every 12 h over a 4-day course
spanning ages P1–P4, P5–P8 (Supplementary Fig. 4a), P9–P12
and so on through P29–P32, followed by 28-day chase periods.
(The use of EdU in fate mapping may have reduced survival of
EdU-labelled cells on a second cell cycle post labelling30,31, but
would not have affected cells undergoing a single cell cycle.)
Many cells retained BrdU and/or EdU after 28-day chase,
including some glial fibrillary acidic protein (GFAP)þ astrocytes
and APCþ oligodendrocytes (Supplementary Fig. 4b,c); yet we
observed no EdUþNeuNþ or BrdUþNeuNþ cells in the pons
(Supplementary Fig. 4d). Finally, we performed co-staining of the
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Figure 1 | Postnatal growth of mouse pons. (a) DAPI stain of P0 mouse pons section containing tegmentum (cyan) and basis (magenta), sectioned at

oblique angle normal to axis of spinal cord (inset). Basis pontis includes pontine nuclei and adjacent white matter tracts (transversus fasciculus pontis,

longitudinalis fasciculus pontis, and middle cerebral peduncle ventral to pontine nuclei). Scale bar¼ 1 mm. (b) Postnatal growth of pons in dorsal-ventral

and medial-lateral axes is illustrated by section tracings as in (a); growth along rostral-caudal axis is indicated by the number of sections passing through

pons. Scale bar¼ 1 mm. (c,d) Volumes of pons regions were computed by summation of areas measured in every second section through pons, times

distance between measured sections (100mm). Graphs show individual replicates with mean±s.e.m., nZ3 mice per timepoint. Unpaired t-test revealed

significant differences between the following consecutive timepoints: P0 and P4 (both regions), P4 and P10 (both regions), and P10 and P16 (tegmentum).

*Po0.05, **Po0.01, ***Po0.001. (e) Absolute increase in volume per day computed as (mean volume at end of interval—mean volume at beginning of

interval)�(number of days in interval). (f) Per cent increase in volume per day computed as (100� ((mean volume at end of interval�mean volume at

beginning of interval)(1/number of days in interval)� 1)).
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neuroblast markers doublecortin (DCX) and PSA-NCAM with
BrdU in mice aged P0, P4, P8y through P32, each perfused
100 min after a single dose of BrdU, and found no colocalization
of BrdU with either DCX or PSA-NCAM (Supplementary
Fig. 4e,f). Altogether, these results indicate that pontine neurons
are not born postnatally in mice, and thus neurogenesis does not
account for postnatal pontine growth.

Postnatal expansion of the oligodendroglial lineage. Because
the pons lacks postnatal neurogenesis and undergoes delayed but
extensive myelination, we hypothesized that pons growth may
coincide with an increase in oligodendroglia. To count the
oligodendroglial population in the developing postnatal pons,
we performed stereologic analysis of wild-type tissue sections
co-stained for Sox10, Olig2 and APC (Fig. 4a–f). Oligodendrocyte
precursor cells (OLPs) were defined as Sox10þOlig2þAPC� ;

oligodendrocytes (OLs) were defined as APCþ cells coexpressing
Sox10, Olig2 or both (Fig. 4a). At birth, the basis pontis contained
6,357±610 OLPs, increasing to 13,688±790 OLPs by P4 and
29,527±922 by P10; OLPs peaked at P16 at 35,369±5,808, and
declined by P24 to 10,372±2,004 (Fig. 4d). The number of
mature OLs in basis pontis increased markedly from 958±212 at
P4 to 26,119±2,666 at P10 and 88,750±11,417 at P16, after
which the number of mature OLs in basis pontis remained
constant to adulthood (Fig. 4d). The tegmentum underwent
similar phases: the number of OLs in tegmentum was
19,990±2,612 at P4, increasing to 214,996±49,232 by P10 and
443,480±35,041 by P16 (Fig. 4e). The density of OLPs and
morphology of APC staining changed markedly through post-
natal development (Fig. 4c), reflecting the progressive increase
and maturation of oligodendroglia through three phases: OLP
expansion without differentiation (P0–P4), OLP expansion and
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differentiation to OLs (P4–P16), and OLP decline (P16–P24).
Between P0 and P16, the oligo-lineage population increased
18-fold in basis pontis and 10-fold in tegmentum (Fig. 4f). The
stereologic count of oligodendroglia, therefore, revealed a marked
postnatal increase in oligodendroglia, and raised the question of
which progenitor domains give rise to these new cells.

Postnatal VZ and midline domains add few cells to parenchyma.
Co-immunostaining for BrdU and intermediate filaments
revealed proliferative progenitors associated with GFAPþ and
Vimentinþ fibres in the postnatal VZ and midline domains
(Figs 5a and 6a,b). Both VZ and midline also contained Nestinþ

cells at P4 (Supplementary Fig. 5), and a subpopulation of VZ
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structure; all other BrdUþ nuclei were considered parenchymal and labelled red. Scale bar, 1 mm. (f) Density of proliferative cells along pontine VZ; graph
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progenitors at M-phase showed phospho-Ser55-Vimentin
staining in cells with radial glial-like morphology (Fig. 5b). The
presence of proliferative cells and progenitor markers led us to
ask whether these domains contribute new cells, and particularly
oligodendroglia, to the growing pons parenchyma. We performed
viral fate mapping of VZ progenitors by delivering adenoviral Cre
into the lateral ventricles of P1 Ai14 or Ai14;ALDH1L1:GFP
mice32,33, thereby labelling VZ cells throughout the entire
ventricular system (including fourth ventricle) with the
TdTomato red fluorescent protein (Fig. 5c–e), and labelling also
a small number of tegmental ALDH1L1:GFPþ astrocytes and
Sox10þ oligodendroglia (Fig. 5e–i). We performed a similar
labelling of mitotic, Nestinþ VZ progenitors by delivering
RCAS:GFP retrovirus to the lateral ventricles of P2 mice
carrying the Nestin-tva allele34, and again observed a small

number of tegmental oligodendroglia close to the fourth ventricle
(Supplementary Fig. 6). To label the midline domain, we used the
FoxA2CreER driver35 crossed to the Ai14 reporter, and observed
TdTomato expression in midline glial fibres as well as a
small subpopulation of nearby astroglia and oligodendroglia
(Fig. 6c–g). Altogether, these experiments showed that while both
VZ and midline domains produced both oligodendroglia and
astroglia, their parenchymal progeny were few in number and
remained close to VZ or midline.

OLPs are the most proliferative population in postnatal pons.
We turned our attention to the parenchymal progenitors, the
largest progenitor pool in the postnatal pons. Again using BrdU
to label proliferative cells 100 min before perfusion, we used mice
carrying cell type-specific reporter transgenes to determine
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the identity of proliferative cells (Fig. 7a). NG2:DsRed mice
report DsRed in NG2-expressing cells, including OLPs
and pericytes36, so we co-stained for Sox10 and identified
OLPs as BrdUþDsRedþSox10þ triple-positive cells (Fig. 7b).
ALDH1L1:GFP mice report GFP in astrocytes32, and proliferative
parenchymal astrocytes were vimentinþ as well (Fig. 7c). It was
difficult to colocalize nuclear and filamentous markers, so we

identified proliferative astrocytes as BrdUþALDH1L1:GFPþ

cells. Co-staining for Olig2 generally revealed segregation from
astrocytes (Fig. 8g, Supplementary Fig. 7b); however, a small
subpopulation of BrdUþALDH1L1:GFPþOlig2þ astrocytes was
also identified (Fig. 8h, Supplementary Fig. 7c). We measured
proliferation among these cell types through postnatal
development and found that proliferative OLPs outnumbered
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proliferative astrocytes at all ages from P4 onward (Fig. 7d). In P4
basis pontis, the densities of these cell types were 192.8±2.7
proliferative OLPs per mm2 and 73.0±3.9 proliferative
astrocytes per mm2; in P4 tegmentum, 151.4±10.3 proliferative
OLPs per mm2 and 12.4±2.9 proliferative astrocytes per mm2.
Proliferation persisted to a later age in basis pontis than
tegmentum for both cell types: proliferative OLPs in basis
pontis showed a sustained peak density from P4 to P8, while OLP
proliferation in tegmentum peaked at P4 and began to decline by
P8; proliferative astrocytes plateaued from P0–P4 in basis pontis,
but declined in tegmentum as soon as P4. OLP proliferation
declined to o10% of its peak in both basis pontis and tegmentum
by P24, while astrocyte proliferation decreased to o10% of its
peak by P8 in tegmentum, and P12 in basis pontis. In adults
(P64), we observed a small number of proliferative OLPs in
both basis pontis (2.41±0.74 cells per mm2) and tegmentum

(3.15±1.28 cells per mm2), comparable to the total proliferation
in adult wild-type pons parenchyma (Fig. 3h); no astrocyte
proliferation was observed after P12.

The predominance of OLPs at the P4–P8 proliferative peak,
and the marked postnatal increase in OL number, raised the
question of what proportion of OLPs are actively cycling. We
therefore administered BrdU repeatedly to wild-type mice from
P4.5–P8, and perfused mice 100 min after the last dose, at P8. We
observed BrdU in 86.0%±2.6% of OLPs in basis pontis, and
63.2%±4.2% of OLPs in tegmentum (Supplementary Fig. 4g–i).
This result echoes the denser OLP proliferation in basis pontis
than tegmentum (Fig. 7d), suggests that nearly all basis pontis
OLPs divided during the postnatal proliferative peak between
P4–P8, and may in part account for the greater expansion of
the oligodendroglial population in basis pontis compared with
tegmentum (Fig. 4f).
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Yellow arrows indicate ALDH1L1:GFPþEdUþTdTþ cells; magenta arrows indicate GFP�EdUþTdTþ cells. Scale bar, 50mm. (d–g) In a section of bilateral

width 4 mm, we observed no TdTþ EdUþ cells further than 500mm from the midline; the only TdTþ cell bodies beyond 1 mm from midline were trigeminal

motor neurons. These results show that while the midline domain produces postnatally proliferative astroglia and oligodendroglia, these progeny are

regionally restricted.
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Despite the finding that proliferative OLPs outnumber
proliferative astrocytes, a pulse-chase experiment (Fig. 7e–h)
with a single dose of BrdU at P4 yielded, among BrdUþ cells at
P28, more astrocytes (60.7%±5.3%) than oligodendroglia
(28.6%±4.0%) in basis pontis, and an even ratio of astrocytes
to oligodendroglia in tegmentum (49.1%±4.7% versus
44.3%±2.4%). Taken together with our stereologic counts of
oligodendroglia (Fig. 4), this result suggested two possibilities:
(1) P4 OLPs may divide so many times by P28 that many of them
dilute out their BrdU signal, and/or (2) oligodendroglia might
undergo cell death. Consistent with the first possibility, BrdU
staining was weaker and more punctate in P28 OLs than in P28
astrocytes (Fig. 7f,g). Further supporting the first possibility,
oligodendroglia accounted for a lower per cent of P28 BrdUþ

cells in basis pontis than in tegmentum (Fig. 7h). Supporting the

second possibility, apoptosis has been documented in young
OLs37, and in P12 basis pontis we observed Sox10þ nuclei
surrounded by cytoplasmic, cleaved caspase-3 staining in an
OL-like morphology (Supplementary Fig. 8e). We also
investigated a third possibility, that P4 ‘OLPs’ might produce
astrocytes, by using NG2CreER mice38. NG2CreER;Ai14;
ALDH1L1:GFP mice receiving tamoxifen at P0 or P4 did not
show any TdTomatoþ (TdTþ ) cells expressing ALDH1L1:GFP
at P8, or any TdTþ cells expressing GFAP at P60, but instead
showed TdTþ pericytes and Sox10þ or Olig2þAPCþ cells
(Supplementary Fig. 8a–d), consistent with forebrain38.
Altogether, these experiments show that the postnatal pons has
proliferative OLPs and astrocytes, pons OLPs are lineage
restricted, and OLPs are the predominant proliferative
population at all postnatal ages.
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Figure 7 | Glial lineages of parenchymal proliferative progenitors. (a–d) Mice carrying lineage-specific reporter transgenes received a single dose of BrdU

(50 mg kg� 1) 100 min before perfusion. (b) Representative proliferative OLP (Sox10þDsRedþBrdUþ ) in P4 NG2:DsRed mouse basis pontis. Scale bar,

10mm. (c) Representative proliferative parenchymal astrocyte (BrdUþGFPþ) in P4 ALDH1L1:GFP mouse basis pontis, with vimentinþ processes suggestive

of colocalization. Scale bar, 10mm. (d) Densities of proliferative OLPs from NG2:DsRed mice (red), and proliferative parenchymal astrocytes from

ALDH1L1:GFP mice (green), at ages through childhood and at adulthood; mean±s.e.m., n¼ 3 mice per strain per timepoint. Three-factor ANOVA confirmed

significant differences in proliferation based on cell type (F1,56¼491.97, Po0.0001), region (F1,56¼ 70.18, Po0.0001), and age (F9,56¼ 97.97, Po0.0001).

(e–h) Wild-type or ALDH1L1:GFP mice were given a single dose of BrdU (50 mg kg� 1) at P4 and perfused at P28. (f) BrdUþ cells from basis pontis of mice

prepared as in e. Top, representative mature oligodendrocyte (Olig2þAPCþBrdUþ ); bottom, representative OLP (Olig2þAPC�BrdUþ ). Scale bar, 10mm.

(g) A representative GFAPþALDH1L1:GFPþBrdUþ astrocyte from basis pontis of an ALDH1L1:GFP mouse that was given BrdU at P4 and perfused at P28.

Scale bar, 10mm. (h) Quantitation of BrdUþ astrocytes and oligodendroglia detected in pons regions after pulse at P4 and chase to P28; graph shows

individual replicates with mean±s.e.m., n¼ 3 mice per strain. Unpaired t-test shows BrdUþ astrocytes outnumber BrdUþ oligodendroglia in basis pontis

(P¼0.0099) and are in equal quantity to BrdUþ oligodendroglia in tegmentum (P¼0.4320), while oligodendroglia are a lower fraction of BrdUþ cells in

P28 basis pontis than tegmentum (See text for interpretations, P¼0.0369). *Po0.05; **Po0.01; NS P40.05. NS, not significant.
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(e) P4 tissue from the indicated regions was analysed for the proportion, among total Olig2þBrdUþ cells, of Sox2þOlig2þBrdUþ triple-positive cells;

n¼ 3 mice, mean±s.e.m. Unpaired t-test confirmed Olig2þBrdUþ cells were more often Sox2þ in basis pontis than in ventral medulla (P¼0.0055),
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Olig2 and Sox2 define proliferative progenitor subclasses. To
further define the nature of proliferative pontine glial precursors,
we used the markers Sox2 and Olig2, which can be expressed in

tumour-propagating glioma cells39,40. Using wild-type mice,
we delivered a single dose of BrdU 100 min before perfusion
(Fig. 8a), and performed co-immunofluorescent labelling of
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****Po0.0001 (unpaired t-test, versus the corresponding region of P2–P3 dosed mice).
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BrdU, Olig2 and Sox2 (Fig. 8b–e, Supplementary Figs 7a
and 9a,b). The largest pool of BrdUþ cells co-expressed Sox2
and Olig2 (Fig. 8b,d; Supplementary Fig. 7a). During the
P4 proliferative peak, the proportion of BrdUþOlig2þ cells
coexpressing Sox2 was greater in basis pontis than in ventral or
dorsal medulla, midbrain tegmentum, or even corpus callosum;
and likewise a greater proportion co-expressed Sox2 in pontine
tegmentum than in midbrain tegmentum (Fig. 8e). Thus
the postnatal mouse pons was particularly enriched in
Sox2þOlig2þBrdUþ progenitors. The remaining progenitors
included a Sox2þOlig2�BrdUþ population peaking at P4, a
Sox2�Olig2þBrdUþ population (Fig. 8c,d, Supplementary
Fig. 7a) peaking at P8, and a small Sox2�Olig2�BrdUþ

population most of which lined blood vessels and had
elongated nuclei consistent with endothelial cells. The
Sox2þOlig2�BrdUþ population likely corresponds to
proliferative astrocytes, as immunostaining revealed broad Sox2
expression in ALDH1L1:GFPþ cells (Supplementary Fig. 9c),
and as its numbers (Fig. 8d) were comparable to
ALDH1L1:GFPþBrdUþ cells (Fig. 7d, Supplementary Fig. 7c).

The Sox2þOlig2þBrdUþ cells were predominantly not
astrocytes, because in ALDH1L1:GFP mouse pons, Sox2þOlig2þ

BrdUþ cells were usually GFP� (Fig. 8f,g; Supplementary
Fig. 9b). While a subpopulation of BrdUþ ALDH1L1:GFPþ

astrocytes expressed Olig2 (Fig. 8h), such cells were sparse
compared with the BrdUþOlig2þSox2þ progenitors measured
in wild-type mouse pons (Fig. 8i, Supplementary Fig. 7c). The
total Olig2þBrdUþ population, measured as the sum of Sox2þ

Olig2þBrdUþ and Sox2�Olig2þBrdUþ populations, showed
similar numbers to committed OLPs (Fig. 7d): in basis pontis, a
sustained peak from P4 (176±10 cells per mm2) to P8 (173±4
cells per mm2); in tegmentum, a peak at P4 (147±40 cells per
mm2). And remarkably, at P4, nearly all BrdUþOlig2þ cells co-
expressed Sox2: 90.4%±0.4% in basis pontis and 82.6%±3.5% in
tegmentum (Fig. 8e). Altogether, this suggested that the
committed OLP population included many Sox2þOlig2þ cells.
Sox2 was long considered a marker of stem cells, but has recently
been documented in embryonic OLPs of forebrain and spinal
cord41. We therefore performed immunostaining in P4
ALDH1L1:GFP tissue to test whether pontine Sox2þOlig2þ

cells co-expressed the canonical OLP marker PDGFRa, or the
astrocyte reporter ALDH1L1:GFP (PDGFRa and ALDH1L1:GFP
were 99% mutually exclusive in pons, Supplementary Fig. 9f).
Remarkably, 89.8%±1.7% of Sox2þOlig2þ cells in basis pontis
were PDGFRaþALDH1L1:GFP� (Supplementary Fig. 9d–f).
NG2 protein was similarly localized to Sox2þOlig2þ

ALDH1L1:GFP� cells (Supplementary Fig. 9g). Next,
examining CD1 wild-type mice, we found PDGFRa co-
expressed in 80.5%±3.0% of basis pontis Sox2þOlig2þBrdUþ

cells, and in 83.6%±2.1% of tegmentum Sox2þOlig2þBrdUþ

cells (Fig. 8j,k). To test Sox2 coexpression with a third marker of
committed oligodendroglia, Sox10, we obtained mice carrying a
Sox2:GFP knock-in allele42. We performed a single injection of
BrdU 100 min before perfusion at P4 or P45 (Fig. 8l), and
co-stained pons sections for BrdU, GFP, and the oligo-lineage
marker Sox10 (Fig. 8m). We found that 70.5%±3.0%
of Sox10þBrdUþ cells co-expressed Sox2:GFP in the P4
basis pontis, and 43.7%±2.6% in P4 tegmentum, while
Sox10þBrdUþ cells in both pons regions showed roughly 50%
Sox2:GFP expression at P45 (Fig. 8n). Altogether, these results
indicate that the postnatal pons is rich with Sox2þOlig2þ

proliferative OLPs, and also contains a smaller, later-peaking,
Sox2�Olig2þ proliferative population.

Postnatal Sox2þ cells produce over 90% of adult pons OLs.
The presence and timing of Sox2þ and Sox2� subpopulations of

proliferative Olig2þ cells suggested a possible lineage
progression of Sox2þOlig2þ , to Sox2�Olig2þ , to myelinating
oligodendrocytes. To test whether postnatal Sox2þ cells
produced Sox2�Olig2þ cells and mature OLs, we used
Sox2CreER;Ai14 reporter mice. We delivered tamoxifen by
maternal gavage at P2–P3, followed by a single dose of EdU
100 min before perfusion at P8 (Fig. 9a). We found that in basis
pontis, TdTþ cells accounted for: 99.3%±0.7% of Olig2þ

Sox10þEdUþ proliferative OLPs (Fig. 9b,e); 97.8%±2.2%
of Olig2þSox2þ cells and 89.7%±1.6% of Olig2þSox2�

cells (Fig. 9c,e); and 94.5%±2.1% of APCþOlig2þMBPþ

myelinating OLs (Fig. 9d,e). These results support the hypothesis
that postnatal Sox2þ progenitors generate all stages of the
oligodendrocyte lineage. To determine the extent to which
postnatal Sox2þ progenitors contributed oligodendrocytes to the
mature pons, we delivered tamoxifen to Sox2CreER;Ai14 mice at
P2–P3, P10, or P60 (Fig. 9f), perfused 50–60 days later, and
co-stained for TdT, Olig2, and APC. Tamoxifen treatment at
P2þP3 led to TdT expression in 97.3%±0.5% of APCþOlig2þ

OLs in P60 basis pontis, and in 94.1%±0.4% of OLs in P60
tegmentum (Fig. 9g,h). Delivery of tamoxifen at P10 labelled
69.0%±3.4% of P60 basis pontis OLs and 75.5%±1.8% of P60
tegmentum OLs. Delivery of tamoxifen to P60 mice labelled
only 13.0%±2.6% of P120 basis pontis OLs (Fig. 9h) and
14.3%±4.3% of P120 tegmentum OLs. This is consistent with the
lower level of proliferative Sox2þOlig2þ cells in adult pons
(Fig. 8d). A no-tamoxifen control showed TdT expression in only
1.0–1.2% of P60 pons OLs (Fig. 9h), indicating low spontaneous
background recombination.

The Sonic Hedgehog pathway drives embryonic oligo-
dendrogenesis24,43; its effector Gli1 has been previously
proposed as a postnatal pons progenitor cell marker5, and
postnatal Gli1þ forebrain progenitors are known to produce
OLs44. We therefore tested if pons OLs were derived from
Gli1-expressing progenitors. We found that postnatal tamoxifen
treatment at P2–3 or P10 in Gli1CreER;Ai14 mice45 yielded no
TdTþOlig2þAPCþ OLs in adult pons, but sparse TdTþ

astrocytes positive for S100b and/or GFAP (Supplementary
Fig. 10). Thus Gli1-expressing cells at P2–3 or P10 do not
contribute to postnatal pontine oligodendrogenesis, by contrast
with Sox2þ cells. Tamoxifen-treated Sox2CreER;Ai14 mouse
pons also contained TdTþ astrocytes (Supplementary Fig. 10c),
reflecting pontine astrocytes’ common Sox2 expression
(Supplementary Fig. 9c). In addition to that expected result,
our fate mapping experiments demonstrate that postnatal Sox2þ

progenitors populate the adult pons with B95% of its
oligodendrocytes.

Discussion
We have shown here that, as in humans3, the mouse pons grows
markedly after birth, driven by a single wave of proliferation.
We identified Sox2þ Olig2þ parenchymal progenitors as the
main proliferative progenitor population, and found that
postnatal Sox2þ cells give rise to nearly all adult pons OLs.

The postnatal mouse basis pontis quintupled and the
tegmentum quadrupled in size, placing the pons among the
brain regions with the most pronounced postnatal growth—
comparable to that of cortex and hippocampus, but less than that
of cerebellum27,28. As in humans3, the mouse basis pontis
experienced more rapid growth and greater proliferation than the
tegmentum. There were also interesting differences between
human and mouse pons: at birth, the human basis pontis already
contains thin myelinated fibres, and proliferation declines after
birth; however, the mouse basis pontis experiences its onset
of myelination and decline in proliferation during the second
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postnatal week. The P4 proliferative peak may therefore
correspond to a pre-term peak proliferative stage in human
pons, which has not yet been studied.

We found that postnatal pontine growth did not involve the
addition of new neurons, but rather correlates with a dramatic
increase in the oligodendroglial lineage. The basis pontis at P16
contained 18 times as many oligodendroglia as at P0, and the
tegmentum at P16 contained 10 times as many as at P0,
suggesting that basis pontis OLPs undergo at least four rounds of
postnatal division and tegmentum OLPs undergo at least three.
However, the expansion might be carried out by subpopulations
dividing five times or more. It is also possible that the population
expansion is even greater than observed, but appears reduced due
to cell death37 or migration out of pons.

We defined three compartments of postnatal progenitor cell
proliferation in the pons: VZ, midline and parenchyma. The VZ
and midline contributed only a few cells, generally close to these
proliferative domains. The parenchymal compartment generated
the majority of new cells; some progenitors were proliferative
astrocytes, but a greater number corresponded to proliferative
OLPs. BrdUþSox2þOlig2þ OLPs were the largest parenchymal
progenitor pool, and postnatal Sox2þ progenitors produced
B95% of adult pons oligodendrocytes. These observations
suggest that Sox2þ progenitors play a key role in postnatal
oligodendrogenesis. A prior study suggested that Sox2 acts in
embryonic spinal cord oligodendroglia to block maturation and
myelination during the OL stage41; however, we observed that a
sizeable subset of postnatal pontine Olig2þ cells downregulate
Sox2 while still proliferating, that is, as OLPs. We found a small
subpopulation of Sox2þOlig2þ progenitors that continued to
proliferate in adult mouse pons. Interestingly, Sox2þOlig2þ cells
have also been described in adult human white matter46. Our
Sox2CreER fate mapping demonstrates that adult Sox2þ cells
continue to generate oligodendrocytes in vivo.

The functions of sustained postnatal pontine growth and
oligodendrogenesis remain unknown. Oligodendrogenesis is
regulated by neuronal activity47,48, so the late formation of
oligodendrocytes may be linked to postnatal neural activity
flowing through the pons. By delaying the onset of myelination,
the pons might allow experience to guide which circuits become
myelinated. It is appealing to speculate that the maturation of
cells in the basis pontis is developmentally coordinated with the
maturation of cerebellar target regions, whose growth is mostly
postnatal. Interestingly, the middle cerebellar peduncle is among
the last tracts in the brain to be myelinated27. Given the
prominence of motor pathways in the pons, sustained postnatal
oligodendrogenesis may allow the development of high-speed
circuit conductances in an experience-dependent manner during
a critical period of acquisition of motor coordination. Similarly,
experience-dependent circuit enhancement could occur in the
autonomic regions of the growing postnatal tegmentum that
undergo later myelination.

Tumour incidence may be correlated with a tissue’s normal
developmental proliferative activity49. Our findings may partly
explain the pons’s susceptibility to tumour formation. The pons is
the site where Diffuse Intrinsic Pontine Glioma (DIPG), the most
lethal paediatric CNS tumour4, appears. It is suspected that
DIPGs have a progenitor cell origin50. This progenitor’s identity
remains uncertain. OLPs have been shown as a cell of origin for
some paediatric forebrain gliomas51,52 and adult gliomas53,54.
DIPGs frequently express Olig2 and Sox2 (ref. 55); our finding
of PDGFRa coexpression in the vast majority of P4
BrdUþOlig2þSox2þ cells is notable given that PDGFRA is
commonly amplified in DIPG55,56. Most DIPGs also contain a
mutation in Histone H3 at lysine 27 (refs 57,58), which might
epigenetically trap cells in a progenitor state50 and prevent

repression of Olig2 or Sox2; one study showed that a H3K27M
DIPG patient tumour-derived cell line had increased Olig2
expression correlated with decreased H3K27 trimethylation at the
OLIG2 locus, when compared with mouse forebrain-derived
neurospheres59. All this suggests that the BrdUþOlig2þSox2þ

OLPs, which peak at P4 and are enriched in basis pontis, are a
prime candidate for DIPG cell of origin. However, despite the
ventral preference for growth and proliferation (present study
and ref. 3) and the propensity of DIPG to spread ventrally60, we
cannot rule out that some DIPGs might originate dorsally. We
observed significant OLP proliferation in the tegmentum at
slightly earlier stages than basis pontis; interestingly, a fraction of
DIPGs express the dorsal marker Pax3 (ref. 61). We also cannot
exclude that DIPG might originate from astrocytes. Astrocytes
accounted for B1

4 of proliferation in P4 basis pontis; all astrocytes
express Sox2, and a subpopulation coexpress Olig2. And finally,
it is possible that DIPG may originate prenatally. In one study on
embryonic oligodendrogenesis, it was shown that rhombomere 4,
within the pons, produces more oligodendroglia than
neighbouring segments26. In light of our postnatal observations,
the embryonic pattern of OLP production26 may prepare the
pons for its dramatic postnatal growth, and may render the pons
rich in potentially gliomagenic progenitors.

The typical presentation of DIPG at 5–9 years led one group to
hypothesize a ‘second peak’ of progenitor cells in ‘middle
childhood’5. However, when we examined the postnatal pons’s
normal course of proliferation, we found only a single peak:
at birth in human3 and at P4 in mouse (present study).
Furthermore, a single proliferative peak was evident for each
progenitor cell population. While we cannot exclude that a
tumour might arise from the few proliferative cells that persist to
later ages, proliferation data favour an origin for DIPG during the
single, early-childhood proliferative peak, from Sox2þOlig2þ

progenitors.
This study demonstrates that the postnatal mouse pons

undergoes a dramatic increase in size. We have identified
proliferative oligodendroglia and astroglia in postnatal pons
parenchyma, shown that pons OLPs have early Sox2þ and later
Sox2� stages, and demonstrated that B95% of pons oligo-
dendrocytes derive from postnatal Sox2þ progenitors. This
dramatic pontine cell addition may be linked to the acquisition of
key developmental milestones in children, and may predispose
the pons to tumour formation. The progenitor cells identified
here represent candidates for targeting in future tumour models.

Methods
Animals. All animal procedures were performed in accordance with NIH
guidelines. Animal protocols were approved and supervised by the UCSF IACUC.
Transgenic strains, uses and sources are listed in Supplementary Fig. 1. Transgenic
mice were on a mixed background containing CD1 and C57BL/6. ‘Wild type’
animals in all figures were CD1 (Charles River, Wilmington, MA), except for
Fig. 7e–h in which ‘wild type’ represents GFP-negative littermates of the
ALDH1L1:GFP mice used elsewhere in those panels. Mice of both sexes were used.
The only species used was Mus musculus. BrdU (Sigma-Aldrich, St Louis, MO)
was dissolved in sterile phosphate-buffered saline (PBS) and delivered by intra-
peritoneal injection at a dose of 50 mg kg� 1; EdU (Invitrogen, Waltham, MA) was
prepared identically and delivered at an equimolar dose, 41 mg kg� 1. Tamoxifen
was dissolved in sterile-filtered corn oil and delivered by maternal gavage at 5 mg
per day, or intraperitoneally into mice P10 or older (4 mg per 30 g body weight).
Neonatal intracerebroventricular viral injections were performed in P1 mice using
the following stereotaxic coordinates: (2.0 mm posterior from intraocular line,
0.8 mm lateral from midline, 1.5 mm deep from skin), with a microinjection needle
positioned vertically (0 degrees). 1 ml of virus (Adeno-CMV-Cre, Vector Biolabs,
1010 p.f.u. ml� 1; RCAS-GFP, B2� 107 p.f.u. ml� 1) was delivered into lateral
ventricle. Direct injection into the fourth ventricle could have risked accidental
puncture of the ventricular surface and labelling of pons parenchyma, as well as
inadvertent contact with cerebellar mossy fibre axons from the precerebellar
pontine nuclei. Transcardial perfusion was performed as previously described62;
most samples underwent post-fixation overnight at 4 �C, but for samples used
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in PDGFRalpha and NG2 antibody staining (Fig. 8j,k, Supplementary Fig. 8d–g),
post-fixation was limited to 100 min at 4 �C so as to preserve antigenicity.

Histology. Because of the placement of the mesencephalic and pontine flexures,
a standard coronal section63,64 cannot contain the full dorsal–ventral extent of the
pons, from basis pontis through tegmentum up to the 4th ventricle. Therefore, for
many experiments (including parts or all of Figs 1,2,4 and 6, and Supplementary
Fig. 7) we blocked tissue in an oblique plane, orthogonal to the spinal cord,
illustrated in Fig. 1a. This plane contains basis pontis, tegmentum and fourth
ventricle, allowing measurement of pons size and comparisons of basis pontis and
tegmentum in the same section. For studies of proliferation and/or the ventricular
zone, we blocked sections in the standard coronal plane, allowing a wider
ventricular space to separate brainstem from cerebellum. For viral fate mapping
following lateral ventricle injection (Fig. 5 and Supplementary Fig. 6), sections were
coronal or sagittal. For all experiments except PDGFRalpha and NG2 protein
staining, tissue sections were prepared at 50 mm thickness on a sliding-freezing
microtome (Leica Microsystems, Buffalo Grove, IL), following cryoprotection in
30% sucrose in PBSþ 0.1% sodium azide, and subjected to immunohistochemistry
as floating sections. For PDGFRalpha and NG2 protein staining, tissue sections
were prepared at 30mm thickness on a Cryostat (Leica), following cryoprotection as
above, embedding in O.C.T. (Sakura, Torrance, CA), and frozen storage at
� 80 �C; tissue was collected on SuperFrost Plus slides (Fisher Scientific, Hampton,
NH) and subjected to immunohistochemistry on the slides. Some stains required
antigen retrieval in 10 mM citrate buffer (pH6.0) at 95 �C for 10–20 min or 0.3 M
glycine buffer (pH7.4) at 56 �C for 45 min. All sections were blocked for 30–60 min
at room temperature in buffer containing PBS, 0.1% Triton X-100 (Fisher
Scientific), and 2–5% species-specific serum (depending on host species of
secondary antibody); antibodies were diluted in blocking buffer for primary
antibody incubation (overnight at 4 �C) and secondary antibody incubation (2 h at
room temperature); rinses were performed in PBS/0.1% Triton. Primary antibodies
were applied simultaneously, except for anti-BrdU (described below).

Antibodies. Primary antibodies and dilutions are described in Supplementary
Fig. 2. Secondary antibodies were from Invitrogen or Jackson Immunoresearch
(West Grove, PA), raised in donkey (if one primary antibody in the co-stain was
raised in goat) or in goat (in all other cases). IgG subclass-specific secondary
antibodies were used where available; secondary antibodies were conjugated to
Alexa Fluor 488, 546, 555, 568, 594 or 647 dyes (Invitrogen), or to DyLight 488,
Cy3 or Cy5 dye (Jackson Immunoresearch), and all secondary antibodies were used
at 1:750 dilution. DAPI (1:5,000; Sigma) was added during secondary antibody
incubation; in samples that would subsequently be immunostained for BrdU, DAPI
was deferred till the final secondary antibody incubation.

Thymidine analogue detection. For BrdU co-staining, a sequential protocol
was used in which non-BrdU antigens were labelled by primary and secondary
antibodies as above; then, fluorophores were fixed into tissue by 15 min in 4%PFA,
followed by denaturation with 2 N HCl at 37 �C and quenching in boric acid buffer
pH8.5 as previously described31, and finally, blocking and immunostaining with
anti-BrdU primary and fluorophore-conjugated anti-rat secondary antibodies. For
EdU detection, the Click-iT EdU Alexa Fluor 647 kit (Invitrogen) was used before
immunostaining according to manufacturer’s instructions. Control stains were
performed to verify that BrdU and EdU methods labelled cells in a distribution
comparable to Ki67 immunostaining.

Imaging. Tiled images of entire sections were collected on a Zeiss Axiovert
200 M inverted epifluorescence microscope under � 5 or � 10 objectives
(Carl Zeiss, Pleasanton, CA), using the ‘Virtual Tissue’ module of NeuroLucida/
StereoInvestigator software (MicroBrightField, Williston, VT), an automated stage
controller (MicroBrightField), and an AxioCam (Carl Zeiss) or Hamamatsu
Orca camera (Hamamatsu, Shizuoka, Japan). High-resolution images were
acquired on SP5 Confocal Microscopes (Leica), equipped with LAS AF software,
under a � 20 objective and optical zoom to resolutions between 0.757 mm px� 1

and 0.278mm px� 1. Fluorophores were excited by sequential scans using fixed-
wavelength or white-light lasers, with emission detection windows chosen to avoid
bleed-through in single-fluorophore controls. Individual image channels were
merged into colour images in batches using CellProfiler software65, or for few-
image experiments, manually using Adobe Photoshop (Adobe Systems, San Jose,
CA). All images shown are representative of nZ3 mice.

Size measurements. DAPI-stained mouse pons sections, oriented in the oblique
plane described above, were collected as tiled images in NeuroLucida as described,
then pons regions were measured offline in NeuroLucida software by drawing
contours around basis pontis and whole pons. Basis pontis was defined as ‘pons
proper’66, that is, pontine grey nuclei plus adjacent white matter tracts (transverse
fasciculus pontis, longitudinal fasciculus pontis, and middle cerebellar peduncle in
its ventralmost aspect, that is, excluding portion contacting tegmental nuclei).
Pontine tegmentum was defined by subtraction of basis pontis from whole pons.
Volumes for basis pontis and tegmentum were computed as the sum of respective

regional areas in every second section through pons, times the distance between
sections (100 mm¼ 50mm section thickness� every second section). For the size
study, we used CD1 wild-type mice at ages P0 (n¼ 3), P4 (n¼ 4), P10 (n¼ 3),
P16 (n¼ 3), P24(n¼ 3) and P64 (adult, n¼ 3).

Tracing of myelinated tracts. The tracing in Fig. 2a, showing major white matter
tracts in mouse pons, was obtained by offline NeuroLucida tracing of a MBP-
stained P16 pons section in the oblique orientation. Tracing was exported as a
PostScript file and imported as vector art into Adobe Illustrator (Adobe Systems).

Proliferation maps. Tiled images of mouse brainstem sections, oriented in coronal
plane to better distinguish VZ of 4th ventricle, were co-stained for BrdU, Vimentin,
and GFAP, then imaged in StereoInvestigator software and traced offline. Markers
were placed at the location of every BrdUþ nucleus, with distinct markers for cells
in VZ, cells contacting Vimentinþ processes along the midline, cells contacting
GFAPþ processes branching off the midline, and cells in parenchyma. Maps were
exported as postscript files and imported as vector art into Adobe Illustrator.

Proliferation measurements. Mouse brainstem sections were immunostained for
BrdU and other markers as described above. For VZ proliferation (Fig. 3f), we used
StereoInvestigator to perform live counting under a � 10 objective, identifying
BrdUþ cells in VZ by their overlap with the dense DAPI zone along the fourth
ventricle; ventricular surface length was also measured live in StereoInvestigator.
We analysed every third section (in ages P0–P12) or every sixth section (in ages
P16 and up) through the pontine VZ. Density was computed as the ratio of BrdUþ

VZ cells to VZ length. For measurements of proliferation density among
parenchymal populations (Figs 3,7 and 8; Supplementary Figs 3 and 7), counting
was done using confocal images acquired as overlapping individual fields at
0.505 mm px� 1 resolution spanning the entire (lateral-medial-lateral) extent of
basis pontis or pontine tegmentum; we used StereoInvestigator for manual align-
ment of individual fields, region-area measurements and counting of BrdUþ cells
and colocalized markers (Sox2, Olig2, GFP, Sox10 and DsRed). For pons par-
enchyma, proliferative cell density was computed as the ratio of BrdUþ cells to
area of basis or pontine tegmentum. For the pontine midline domain, which was
defined as the medial white matter space in the section and at all ages was within
50 mm of the midline, proliferative cell density was defined as the ratio of BrdUþ

cells to length of midline. For midbrain, medulla and forebrain regions,
proliferation density was measured using a single confocal field per animal, taken at
the following sites: superior colliculus (midbrain tectum), dorsal raphe nucleus
(midbrain tegmentum), interpeduncular nucleus (ventral midbrain), prepositus
hypoglossal nucleus (dorsal medulla), inferior olivary nucleus (ventral medulla)
and dorsal to the anterior horn of the lateral ventricle (corpus callosum and
neocortex, both imaged in the same section). We used n¼ 3 animals per timepoint,
and up to 10 timepoints per strain: wild-type and NG2:DsRed mice were aged at
4-day intervals from P0–P32, plus P64 (adult); ALDH1L1:GFP mice were aged at
2-day intervals from P0–P12, plus P16, P20 and P64 (adult). For quantitation of
proliferative OLPs in Sox2CreER fatemap (Fig. 9e), counts of P8 EdUþOlig2þ

Sox10þ cells were performed similarly in basis pontis, and the percentage of those
cells coexpressing TdTomato (TdT) was reported.

BrdU fatemap counts. BrdU labelled cells in the pulse-chase experiment
(Fig. 7e–h) were imaged and counted offline in basis pontis and tegmentum as in
acute proliferation experiments (described above). Astrocyte counts were from
ALDH1L1:GFP mice and included cells that were ALDH1L1:GFPþBrdUþ and/or
GFAPþBrdUþ . Oligodendroglia counts were from wild-type (GFP� ) littermates
of the GFPþ mice and included cells that were OligþBrdUþ and/or APCþ

BrdUþ . n¼ 3 mice were used per strain.

Percentage counts and non-proliferative cell density counts. For measure-
ments of the Sox2:GFPþ subpopulation of Sox10þBrdUþ cells at P45 (in Fig. 8l),
overlapping confocal fields spanning the basis pontis or pontine tegmentum were
acquired from one section per animal at resolution of 0.505 mm px� 1; image
alignment and exhaustive counting were performed offline in StereoInvestigator.
For P4, the same procedure was performed, except due to the abundant
proliferation, cells were selected by systematic uniform random sampling using the
Area Fractionator probe and an area sampling fraction of 1/16. n¼ 3 animals were
used per timepoint. The fidelity of the Sox2:GFP reporter, previously demonstrated
in ref. 42, was confirmed in pons by control co-immunostain of GFP and Sox2
protein. Density counts for the PDGFRa/ALDH1L1:GFP/Sox2/Olig2 costain
(Supplementary Fig. 9f) were performed using the same sampling fraction and n,
and a single confocal field for each region. For quantitation of PDGFRa
coexpression among Sox2þOlig2þBrdUþ cells (Fig. 8k), exhaustive counts
were performed from a single confocal field per animal in each of basis pontis
(encompassing midline, transverse fasciculus pontis, pontine nuclei and corti-
cospinal tract), tegmentum (adjacent to fourth ventricle) and neocortex (dorsal to
anterior horn of lateral ventricle). For counts of non-proliferative cells in short-
term Sox2CreER;Ai14 fate mapping (Fig. 9e), systematic uniform random sampling
within basis pontis was similarly performed offline, using confocal images from
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n¼ 3 animals and an area sampling fraction of 1/16; average numbers of cells
assessed for TdT positivity per animal were 90 myelinating OLs (range 65 to 123)
and 83 cells positive for Olig2 and/or Sox2 (range 67–104). For measurements of
the TdTþ percentage of APCþOlig2þ oligodendrocytes in adult Sox2CreER;Ai14
mice (Fig. 9g), systematic uniform random sampling through basis pontis or teg-
mentum was performed live under a � 20 objective using the Optical Fractionator
probe; the number of OLs counted per region per animal averaged 193, with
minimum of 106 and maximum of 382. nZ3 animals were used per cohort, with
specific n indicated in the figure.

Stereologic counts. For counts of oligodendroglia, we performed
co-immunofluorescent labelling of Olig2, Sox10, and APC, followed by live
systematic uniform random sampling under a 20x objective using the Optical
Fractionator probe in StereoInvestigator. OLs expressed APC plus at least one of
Olig2 and Sox10; OLPs expressed both Olig2 and Sox10 but not APC. Thus a cell
was only considered oligodendroglial if it expressed at least two of the three
markers. For all samples the counting frame was 50� 50mm, and cell nuclei were
used to define cell location with respect to the optical disector. Average mounted
section thickness varied with age from 30 to 50 mm. Because of pons growth over
postnatal development, and also because of the 5x size difference between mouse
tegmentum and basis pontis, we chose the sampling parameters on a per-region,
per-animal basis, to count an average of at least 200 cells per region per animal.
Grid step size varied from 200� 200 mm (at P0) to 350� 350 mm (at P64) in basis
pontis, and from 480mm (at P0) to 800 mm (at P64) in pontine tegmentum;
section interval varied from 4 (at P0) to 12 (at P64). The resulting number of
oligodendroglia counted per basis pontis averaged 204, with a minimum of 83 and
maximum of 305; the number of oligodendroglia counted per tegmentum averaged
242, with a minimum of 127 and maximum of 378. Stereologic counts of OLs and
OLPs in basis pontis and tegmentum were obtained from three separate animals
per timepoint, and mean counts and standard errors were computed from those
three replicates.

Statistics. Means, standard errors, and P-values (by two-tailed unpaired t-test)
were computed in Microsoft Excel (Microsoft, Redmond, WA). Data were graphed
in Excel or GraphPad Prism (GraphPad, La Jolla, CA). Three-way and two-way
analysis of variance (ANOVA) was performed in Stata 13 (StataCorp, College
Station, TX). Bonferroni correction was performed for multiple pairwise ANOVA
comparisons of proliferation among regions (Fig. 3, Supplementary Fig. 3) and
cell types (Fig. 8, Supplementary Fig. 6). For the three-way ANOVA in Fig. 7d,
comparing proliferative cell density across ages, regions, and cell types
(ALDH1L1:GFPþBrdUþ astrocytes versus Sox10þNG2:DsRedþBrdUþ OLPs),
comparison was limited to the 7 timepoints measured in both strains (P0, P4, P8,
P12, P16, P20, P64); the three additional timepoints uniquely measured in each
strain (P2, P6, and P10 in ALDH1L1:GFP; P24, P28, and P32 in NG2:DsRed)
were omitted from that calculation. A separate ANOVA was performed pooling
single-strain timepoints with both-strain timepoints, in six groups: P0–P2, P4,
P6–P10, P12, P16, P20–P32, and P64; P-values from this second ANOVA were as
small as or smaller than those produced by the first. Therefore we reported the first,
more conservative result. For all experiments, a minimum n of three mice per
timepoint was chosen based not on power analysis but on past studies of brain
region growth28 and hindbrain development26. The obvious differences in tissue
size throughout postnatal development mooted attempts at blinding to sample
identity. Distributions were assumed to be normal but this was not formally tested.
No data points were excluded from analysis.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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