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ABSTRACT: The coarse-grained (CG) model serves as a powerful
tool for the simulation of polymer systems; its reliability depends on
the accurate representation of both structural and dynamical
properties. However, strong correlations between structural and
dynamical properties on different scales and also a strong memory
effect, enforced by chain connectivity between monomers in
polymer systems, render developing a chemically specific systematic
CG model a formidable task. In this study, we report a systematic
CG approach that combines the iterative Boltzmann inversion (IBI)
method and the generalized Langevin equation (GLE) dynamics.
Structural properties are ensured by using conservative CG
potentials derived from the IBI method. To retrieve the correct
dynamical properties in the system, we demonstrate that using a
combination of a Rouse-type delta function and a time-dependent short-time kernel in the GLE simulation is practically efficient.
The former can be used to adjust the long-time diffusion dynamics, and the latter can be reconstructed from an iterative procedure
according to the velocity autocorrelation function (ACF) from all-atomistic (AA) simulations. Taking the polystyrene as an example,
we show that not only structural properties of radial distribution function, intramolecular bond, and angle distributions can be
reproduced but also dynamical properties of mean-square displacement, velocity ACF, and force ACF resulted from our CG model
have quantitative agreement with the reference AA model. In addition, reasonable agreements are observed in other collective
properties between our GLE-CG model and the AA simulations as well.
KEYWORDS: molecular dynamics simulation, coarse-graining, generalized Langevin dynamics, chemically-specific model,
kernel decomposition, short-time kernel, Rouse-type friction

1. INTRODUCTION
Molecular dynamics simulation has emerged as a powerful tool
for predicting and explaining experimental results in the study
of polymers. Although ab initio and all-atomistic (AA)
simulations can provide significantly more accurate results,
simulating polymer systems ranging from atomistic to
continuum scales is practically a prohibitive task. For instance,
the dynamics of entangled polymers scale with O(N3.4),1 where
N is the chain length, while the microscopic phase size of block
copolymers is on the order of ∼10−100 nm,2 which rapidly
exceeds the current computational power. The coarse-grained
(CG) model is a crucial technique for simulating system
properties at the mesoscopic scale, bridging the gap between
the microscopic and macroscopic scales.3,4 By grouping several
atoms into larger CG units, the elimination of unnecessary
degrees of freedom on small length scales allows for
simulations of larger systems over longer time scales with
reduced computational cost. However, intramolecular con-
nectivity between monomers in the polymer chain enforces
strong interdependences between features on different spatial
and temporal scales. Such scale interdependences have actually

been widely discussed in some of the representative review
articles4−6 and also in the polymer physics textbook.7

For a brief description, we illustrate such scale-interdepend-
ences in Scheme 1, where both the representative structural
and dynamical properties of the polymer system are plotted at
different spatial and temporal scales. For instance, (i) along the
length scale axis (spatial dimension), polymers with different
chemistry will first have a different monomer size and
thereafter, at the intramolecular level, different chain rigidity,
statistical Kuhn length, tube diameter (dT), and a different
radius of gyration (Rg)/end-to-end distance(Ree) at the entire
chain dimension size, etc. Similarly, at the intermolecular level,
they will also have different radial distribution functions
(RDFs) (packing in space) between monomers and even
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assembly/phase separated structures (if any) in multi-
component systems;8 (ii) along the time scale axis (temporal
dimension), there are chemical bond vibrations occur on the
scale of femtoseconds, monomer relaxes at nanoseconds, and
thereafter, Rouse or disentanglement dynamics happen at
microseconds or even larger. After that, there will be assembly
dynamics, stress relaxation modulus, G(t), etc. at the
macroscopic scale.6

Due to the chain connectivity between monomers along the
chain backbone and the many-body characteristic nature of
interactions between monomers, especially in the melt state,
the above system properties (both structural and dynamical)
have strong scale-interdependences. For instance, at the
intramolecular level, monomer chemistry is the deterministic
factor influencing the chain rigidity and, therefore, the Kuhn
length and Rg or Ree of the chain. Similarly, along the temporal
dimension, detailed chemical bond vibrations occurring on the
scale of femtoseconds will influence the relaxations not only on
the monomer scale but also on the scale of Rouse time, even
disentanglement dynamics happen at microseconds or even
larger. Moreover, there is interdependence between structural
and dynamical properties at all scales along both the lines of
the length and time scales. For instance, monomer chemistry
(free volume) will not only influence the chemical bond
vibrations but also the entangled dynamics or even the stress
relaxation modulus at the macroscopic scale.5 On the other
hand, bond vibrations or monomer dynamics positioned at the
beginning of the time axis can also influence the RDF or
assembly structures at relatively the end of the length scale
dimension.9 For instance, according to the tube model of Doi
and Edwards,7 reptation time for an entangled polymer chain
i n a m e l t s t a t e c a n b e e x p r e s s e d a s

= = =N N N N N N6 / 6 ( / ) 6 ( / )rep 0
3

e e e
3

R e , where τ0 is the
relaxation time of monomer, Ne is the Kuhn length, and

= N N( / )R e
2 is the Rouse time. Apparently, the dynamical

(τe, τR, and τrep) and structural (N and Ne) properties are
interdependent.
Over the past few decades, many chemically specific

systematic CG models have been developed to tackle the
above scale-interdependences.10 The ultimate goal is to achieve
the simulation accuracy as the AA model but gain computa-
tional efficiency by coarse-graining. Unfortunately, it is not
possible to simplify a complex many-body potential by just
rewriting it in terms of fewer CG variables. Enhancing the

representability and transferability of the CG model over
system properties is a fundamental challenge in the field of CG
simulations.11,12 Thus, the coarse-graining process is often
treated as an optimization problem that requires compromise
among the structural, dynamical, and thermodynamic proper-
ties. Among the available CG methods, well-known approaches
include iterative Boltzmann inversion (IBI),13,14 force match-
ing (FM),15,16 trajectory matching (TM),17 energy renormal-
ization (ER),18,19 hybrid particle-field MD-SCFT,20 etc.
Researchers often begin addressing the coarse-graining

problem by attempting to reproduce the many-body potential
of mean force (PMF) of CG variables.21 The first step is
extracting the probability density of CG variables PCG from an
equilibrium atomistic reference, and then the PMF can be
derived from a simple Boltzmann inversion UCG = −kBT ln
PCG. However, the PCG is in principle a high-dimensional
function that cannot be analytical for a complex system,
especially for macromolecules other than simple toy models.
One practical method is to approximate the PMF to the linear
combination of a set of independent potentials with low-
dimensional CG variables, for instance, intermolecular and
intramolecular potentials. The IBI method is a popular
approach to developing these potentials, where one can
iteratively improve the fidelity of the CG potentials by
updating the CG interactions according to the RDF or other
intramolecular distribution functions. It is simple, effective, and
has been extensively applied to many macromolecular
systems.14,22−27 Beyond the IBI methods, many other
approaches based on variational principles,28−30 static
correlation,31,32 and energetics33,34 have been used to develop
CG models. All of the forces generated by the CG potential
discussed above are classified as a conservative forces.
However, no matter how close the CG potential is to the
PMF, the direct application of the CG potential can lead to an
artificial acceleration of dynamics. This can be understood
from the fact that CG free energy landscapes are typically
smoother than AA ones, which further reduces the direct
friction between CG particles. Hence, without the correct
friction of the original dynamics, CG dynamics can be
misleading and difficult to link to its underlying AA
dynamics.8,35

A natural idea to handle the above accelerated CG dynamics
is to understand the entropy change in the system since many
degrees of freedom are eliminated during coarse-graining.36,37

Scheme 1. Illustration of the Interdependence between Structural and Dynamical Properties in Poylmer Systems at Different
Length and Time Scales, From a Microscopic Bottom-Up Perspective. Each Item in This Scheme Represent One of the
Representative System Property on Corresponding Scalea

aNote that we are not trying to include all system properties in this scheme.
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The excess entropy scaling method38 is usually utilized to
develop the dynamical relationship between CG and fine-
grained (FG) systems. Rondina et al.39 have shown the scaling
relationship between excess entropy and dynamic variables of
polymer melt in the coarse-graining process. More recently, Jin
et al.40−42 have developed a systematic framework for
accurately measuring the excess entropy for both FG and
CG systems. They have demonstrated that there exist universal
scaling exponents for the FG models and their corresponding
CG models.40 Another common approach is time mapping,
which determines the speedup factor by comparing the
diffusion coefficient between the CG and AA models.43−45

The speedup factor can also be derived using a first-principle
approach.46−49 By doing so, Guenza et al.50 were able to derive
analytical expressions for the dynamic speedup factor of the
diffusion coefficient in a chemically realistic polybutadiene
melt. Meinel and Müller-Plathe51,52 pointed out that there is a
linear relationship between the change in molecular roughness
and the speedup factor in the coarse-graining process.
However, these are postprocessing methods that do not
generate realistic dynamics in simulations, and scaling factors
are often only associated with long-time dynamical properties
(such as diffusion coefficients and viscosity). It becomes more
complex when the entanglement effect should be considered,
and the slip-spring model53−56 is usually employed to
effectively capture the reptation dynamics of polymer chains.
Another direction is to incorporate additional friction into the
equations of motion (EOM), which can be considered an
effective consideration of the contributions from the lost
degrees of freedom. The EOM is typically formulated using
dissipative particle dynamics (DPD)57 and Langevin dynamics
(LE),58−61 which allows the assignment of the friction
parameters for every pair of interacting CG beads or the
separate friction constants for every single CG particle or even
beyond particle entities.62 These methods primarily focus on
reproducing the low-frequency dynamics, such as long-time
diffusion properties like zero-shear viscosity and diffusion
coefficient of the center of mass of the chain, while ignoring
the performance in high-frequency ballistic and subdiffusive
regimes.57,59 Polymer systems typically exhibit long subdiffu-
sive dynamics, which can significantly impact material
properties, such as the stress relaxation modulus at different
frequencies. Therefore, it is important to develop a CG model
capable of accurately reproducing the AA dynamical properties
over all frequencies.
The above approaches are more or less in a top-down

fashion, a more bottom-up approach is the Mori−Zwanzig
(MZ) formalism.63,64 Using this method, Akkermans and
Briels65 CG bead−spring chains into a super CG model with
each chain mapped onto a dimer of CG blobs, under the DPD
framework by determining DPD friction parameters using MZ
formalism from FG simulations. Later on, the “MZ-DPD”
method is further developed by Hijoń and co-workers.66

Recently, this method has been applied to derive CG DPD
models for different oligomers or polymers.67−69 Han et al.70

also further developed the many-body DPD model in the
bottom-up approach by including density-dependent many-
body DPD terms and the resultant CG EOM, which has
demonstrated important to reproduce the correct properties of
classical liquid. Among these models, the Markovian
assumption is usually taken, in which the time scale is
completely separated between slow and fast variables, and
therefore, a single friction parameter is extracted from

reference FG models. However, in most dense systems, such
a time scale separation of characteristic processes at different
scales is incomplete, and there is a severe non-Markovian
effect,71−73 for instance, in the linear polymer due to the chain
connectivity in the system. Therefore, incorporating memory
kernel terms is necessary to develop dynamically consistent
non-Markovian CG models.74 Such an approach has been
successful in developing dynamically consistent CG models for
simple molecule liquids,75−77 star polymers,78−84 and col-
loids,85−87 capturing the dynamical properties from AA model
at all frequencies. In these models, each molecule, star
polymer, and colloidal nanoparticle is typically CG into one
CG bead. In comparison, situations are much more complex in
the case of linear polymers due to intramolecular chain
connectivity between monomers/CG beads. More impor-
tantly, there are many challenges to reproducing the non-
Markovian dynamics due to the rich time scales and strong
memory effect in such complex systems, as demonstrated in a
recent work that derived the analytical form of the memory
kernel from the end-to-end vector relaxation dynamics for
Rouse chains.88 Therefore, it is still a challenge to develop CG
models for linear polymers, which can successfully capture the
correct dynamics at all frequencies so that not only the
monomer dynamics but also the dynamical properties at large
scale, for instance, stress relaxation modulus, can be
reconstructed from the reference AA models.
In this work, we take unentangled linear polystyrene (PS) as

an example. We start with the previously developed CG
model23 derived from the IBI method, which has a good ability
to reproduce structural properties from reference AA
simulations. In order to capture the correct dynamical
properties, an effective memory kernel is determined based
on the generalized Langevin equation (GLE). We demonstrate
that decomposition of the kernel into a Rouse-type delta
function and a time-dependent short-time kernel is practically
efficient. The monomer resolution is adopted, caused by more
faithful revelation of local structure and dynamics, compared to
other Kuhn-scale CG models.89 This work is organized as
follows. The simulation methods and models we adopted are
presented in Section 2, where we provide the details of the AA
simulations and a brief introduction to the theoretical
background of the GLE. In addition, how do we derive the
conservative CG potential, as well as the decomposition and an
iterative reconstruction procedure of the memory kernel, are
also introduced in this section. In Section 3, the main results
and model performance are shown. Finally, we draw our
conclusions in Section 4.

2. SIMULATION METHODS AND MODELS

2.1. Reference All-Atomistic Polymer System
In this work, we take PS as an example. As a prototypical polymer, it
has been extensively studied in both experiments and simulations.22,90

In our AA simulation model, we placed 200 10-mer atactic PS chains
in the simulation box. The simulations were performed using the
GROMACS91,92 package. The initial configuration was generated
using the Packmol93 at an initial density of ∼340 g/cm3. We first
performed energy minimization of the initial configuration to
eliminate the unphysical overlaps. Subsequent equilibrium simulations
were then carried out under a constant NPT ensemble at 1 atm by
using the Berendsen thermostat (coupling time 0.5 ps) and barostat
(coupling time 5.0 ps). The nonbonded interaction cutoff was set at
1.0 nm, and the PME approach was used to calculate long-range
Coulomb interactions. The configuration was subsequently simulated
at 1000 K for 1 ns, then gradually cooled to 500 K within 150 ns, and
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finally equilibrated at 500 K for another 50 ns. The above cooling and
equilibration process was performed under constant NPT condition.
Afterward, a production constant NPT simulation of 200 ns was
carried out to sample configurations for parametrization of the
conservative forces. For the sampling of various dynamical properties
for the construction of a memory kernel, another NVT run of 200 ns
was performed. Nose-́Hoover thermostat94,95 (coupling time 0.5 ps)
and Parrinello−Rahman barostat96,97 (coupling time 5.0 ps) were
used for controlling temperature and pressure (p = 1 atm),
respectively. All AA simulations were performed with the OPLS-AA
force field.98

2.2. Derivation of the Conservative Coarse-Grained
Potential
In systematic bottom-up approaches, one usually eliminates
unnecessary degrees of freedom by defining a linear mapping operator
M: r → R = M(r) that determines a CG configuration R for the
corresponding AA configuration r.12 Thus, the equilibrium distribu-
tion pR(R) of the CG variable can be given by inserting the mapping
operator M into integral of the configuration space of the AA
equilibrium distribution pr(r) to ensure the consistency of the CG
model in configurational space28

=p pR r r M r R( ) d ( ) ( ( ) )R r (1)

The CG interaction potential that satisfies eq 1 in equilibrium
(hence follows the Boltzmann distribution) is the many-body PMF
W(R) in a canonical ensemble99

[ ] = [ ]W V uR r r M r Rexp ( ) d exp ( ) ( ( ) )n N

V

( )
n

(2)
in this case, β = 1/kBT represents the inverse temperature, V is for
volume, n and N are the number of particles in the AA and CG
models, respectively, and u is the potential function of the AA model.
It becomes evident that PMF represents an excess Helmholtz free
energy generated by the mapping process. Unfortunately, W(R) is
intrinsically a complex many-body function, particularly for complex
molecular systems beyond the simple toy model, making it impractical
to precisely determine an analytical form.
In practice, bottom-up CG potential often is expressed as a linear

combination of independent low-dimension terms, for instance,
nonbonded and bonded potentials akin to the molecular mechanics
force fields98,100−102

= + + +

+

U U U U UR R l( ) ( ) ( ) ( ) ( )

...

CG
nonbonded
CG

bond
CG

angle
CG

dihedral
CG

(3)

where Unonbonded
CG (R) usually adopts the standard pairwise approx-

imation. We refer to these interactions as conservative interactions. In
this study, a previously developed CG PS model23 derived from the
IBI method is adopted. More details about IBI method can be found
elsewhere.13,23,25 In brief, a 1:1 CG mapping scheme as illustrated in
Scheme 2 is used, i.e., one CG bead represents one styrene monomer.
The CG bead is located at the center of mass of the monomer. Note
that the intermolecular potentials are further optimized with a larger
cutoff distance of rc = 1.75 nm, which can safely cover all
characteristic peaks of the RDF.
2.3. GLE
The MZ formalism is a projection technique that projects the fast
variables on the slow variables in phase space evolution. The
projection operator is inserted into the EOM of the atomistic system
and projects out the microscopic Hamiltonian dynamics of the
atomistic system to the CG variables, allowing one to rigorously trace
out the effective EOM of the reduced CG systems. A systematic
derivation of the MZ formalism can refer to refs 105−107.
Once the specific (time-independent) projection operator is

determined, the well-known GLE can be derived. Many project
operators have been proposed in the particle-based MZ formalism,
different operators will lead to different GLEs.63,64,66,106,108−110 For

instance, Vroylandt and Monmarche1́09 demonstrated the following
GLE form by incorporating a position-dependent memory kernel

= × +
t

W t tP
R

R K R P Fd
d

d
d

( ) d ( , ( )) ( ) ( )
t

0

R

(4)
We consider slow variables A = (R, P), where R and P are the

coordinate and momentum of the CG bead, respectively. These
variables in the CG representation are typically obtained through
linear combinations of their AA counterparts. W(R) represents the
many-body PMF of the CG coordinates. K(t, R) is the position-
dependent memory kernel, denoted as an n × n matrix, and FR(t) is
the random force acting on the CG bead.
However, it is difficult to practically apply eq 4 to complex systems

due to the challenges associated with extracting the many-body PMF
and the position-dependent memory kernel. Simplifications can be
made to enhance its practicability

= +t t K t tF F V F( ) ( ) d ( ) ( ) ( )
t

C

0

R
(5)

where FC(t) denotes the conservative force that can be determined
from the state-of-art CG methods, i.e., IBI, FM, TM, etc. V(t) is the
velocity of the CG particles. In such a case, we ignore all cross-
memory terms between different particles and replace the matrix K(t,
R) with a homogeneous memory kernel K(t). The second
fluctuation−dissipation theorems are obeyed such that ⟨FR(t)FR(0)⟩
= 3kBTK(t)I, where I is the identity tensor. Such an approach has
been extensively used to simulate systems of polymer solution82,111

and star polymer melts.80,84 Note that eq 4 is motivated by the MZ
formalism and a convolutional representation of the CG model to
describe the non-Markovian effect. If the time scale of the random
force fluctuation is sufficiently fast compared to that of the CG bead
motion, the memory kernel can be further approximated as a delta
function, i.e., known as the Markovian approximation. As a result, eq 5
can be reduced to the Langevin equation

= +t t t tF F V F( ) ( ) ( ) ( )C R (6)

where = t K td ( )
t

0
. In the overdamped limit, eqs 5 and 6 are

expected to be equal, as the memory kernel has completely decayed. A
recent work by Lyu and Lei112 has highlighted the crucial role of a
heterogeneous state-dependent memory kernel in accurately captur-
ing FG dynamics. In their work, a machine-learning-based CG model
is constructed based on the rigorous MZ formalism and naturally
includes the contribution from the heterogeneous state-dependent
memory term. In our current study of the homogeneous amorphous

Scheme 2. Illustration of the 1:1 CG Mapping Scheme for
PS, Where Each Monomer Is Represented by a CG beada

aVMD package103,104 is used for visualization.
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polymer melt, we simply selected eq 5 as the EOM due to its
simplicity and convenience of parametrization. Indeed, while the DPD
form can introduce a more realistic position-dependence, the slow
temporal relaxation and strong spatial (intramolecular versus
intermolecular) correlation of linear polymers pose challenges in
obtaining a well-defined radial memory kernel. Therefore, using the
simple form in eq 5 is a reasonable starting point. Later in Section 3.2,
we will validate this approximation by demonstrating that at least
short-time dynamics is well reproduced, thereby proving that a simple
mean-field-type memory kernel still provides a reasonable and useful
approximation in polymer systems. However, we acknowledge that
more complicated position-dependence will be important and will be
investigated in our future study.
2.4. Direct Extraction of the Memory Kernel
There have been numerous attempts to construct the memory kernel
in various physical systems, which have recently been extensively
reviewed in refs 8, 35, and 74. A straightforward approach is to
multiply eq 5 with V(0) and take the ensemble average in both sides,
results in a one-dimensional form

=F t V K t V V( ) (0) d ( ) ( ) (0)
t

0 (7)

where the fluctuation force is defined as δF(t) = F(t) − FC(t), note
the orthogonality condition ⟨FR(t)V(0)⟩ = 0. The eq 7 takes the form
of a Volterra equation of the first kind and is first introduced to infer
the memory kernel for the Brownian particles.113 Numerically solving
the Volterra equation of first kind is an ill-posed question and often
needs appropriate normalization, detailed discussions can be found in
ref 113. However, attempts to solve the above Volterra equation have
failed to parametrize our model in which we observe a large oscillation
and numerical instability of the resulting memory kernel. Some trial
results can be found in the Supporting Information. Compared with
the previous works on model star polymers, where one star is mapped
onto a single CG bead, the connectivity between CG beads in our
linear polymer system is a major difference and poses a major
challenge. For the former, the memory kernel can be safely inferred
since the molecular motion is rather homogeneous and therefore the
mean-field approximation adopted in eq 7 is valid. However, it is
questionable to simply use such a mean-field kernel to describe the
overall dynamics for polymer systems in which the monomer motions
are highly dictated by directional connectivity between monomers
along the chain backbone.
2.5. Decomposition and Iterative Reconstruction of the
Memory Kernel for Polymer System
In this study, we start from a more “polymeric” perspective to address
the CG dynamics of a polymer melt. Our approach is inspired by the
works by Guenza,46−48,50 where the GLE for cooperative dynamics
(CD-GLE) is effectively employed to describe the behavior of
unentangled polymers. Considering a system composed of M chain
molecules and each of them is N-monomers long, by employing a
rigorous MZ projection, the ath monomer position ra(i)(t) of the ith
molecule r(i)(t) = {r1(i)(t),r2(i)(t),···,ra(i)(t),···,rM(i)(t)} has the
following EOM when subjected to an overdamped limit

= × [ [ ] [ ]]

+
= <

t
t t

t g t t

t

r

r
r r r

F

d ( )
d

1
( )

ln ( ) ( ), ( )

( )

a
i

a
i

j

n
j

k j

n
j k

a
Q i

eff

( )

( )
1

( ) ( ) ( )

( ) (8)

where n represents the number of monomers within the interaction
range by the many-body PMF. Ψ[r(j)(t)] and g[r(j)(t),r(k)(t)] are the
intramolecular and intermolecular distributions of monomers,
respectively. FaQ(i)(t) is the random force acting on the ath monomer
of the ith molecule. The effective friction coefficient for each
monomer, ζeff, can be expressed as a linear combination of different
terms: the bare Rouse friction, ζ0 = β⟨Fa(i)·FaQ(i)⟩/3, the intra-
molecular memory function (i = j), and the intermolecular memory
function (i ≠ j), which accounts for the time−space correlation of
random forces

= + ·

+ ·
=

t t

t t

F F

F F

3
d (0) ( )

3
d (0) ( )

b a

M

a
i

b
Q i

b

M

j i

N

a
i

b
Q j

eff 0
0

( ) ( )

1 0

( ) ( )

(9)

In practice, it is difficult to do a straightforward inference of the
three individual terms on the right side of eq 9 from AA simulations.
If we do not distinguish intermolecular and intramolecular
contributions and account for them using an effective kernel, k(t),
the above equation can be simplified as

= + tk td ( )eff 0
0 (10)

where the second term is an integral of the non-Markovian kernel
k(t). It is, in principle, to be integrated over a time period until the
kernel completely decays. For instance, for a linear polymer chain
melt, the chain relaxation time might be a good choice. However, CG
GLE simulation using such a long kernel is impractical. Therefore, we
expect a short-time kernel, which can effectively capture the essential
dynamical properties of the system with an affordable computational
efficiency. For this purpose, we can simply apply a truncation in the
time integral of the kernel

= + tk td ( )
t

eff x
0

cut

(11)

where = + tk td ( )
tx 0
cut

is a Rouse-type friction coefficient that

also effectively includes the contribution from the truncated long-time
memory kernel after a truncation in time, tcut. Accordingly, the kernel
can be written as

= +K t k t k t( ) ( ) ( )x (12)

where kx(t) is a delta function located at t = 0, corresponding to ζx.
Here, we approximate that kx(t) has a fast decay; therefore, we can
ignore its memory effect. We know that the non-Markovian nature of
the kernel originates from the many-body correlations in the system,
and it is typically strong in the nearest neighborhood of the CG
monomer, which corresponds to a short-time kernel k(t). Results of
the velocity autocorrelation function (ACF) (as shown in Section 3.2)
also show that rich information resides in the short-time range.
Therefore, we truncate the contribution after tcut in the second term in
eq 11 after which the velocity ACF curve starts to converge. The tcut
can be selected as the caging time corresponding to the Debye−
Waller factor ⟨u2⟩. This characteristic time has been successfully used
in the ER method to measure the ER factor and accurately reproduce
the dynamic properties across a broad temperature range for various
polymer systems.18,19

One has to be aware that after the above treatment, it is still
impossible to obtain both the Rouse term and the non-Markovian
term on the right side of eq 11 analytically. Alternatively, one can turn
to iterative construction processes.77,85−87,114,115 According to ref 86,
we set velocity ACF from AA simulation as the target during the
iterative optimization of the kernel as follows

=+k t k t h t
t

V t V V t V( ) ( ) ( ) ( ( ) (0) ( ) (0) )i i i1 AA GLE

(13)

with
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where α is a relaxation parameter, and it is proven that an
introduction of this parameter ensures a fair performance of
iteration.116 The complete form of α can be expressed as α = γM2/
kBT.

86 The M and T are the mass of the CG bead and simulated
temperature, respectively. The γ value is system- and time step-
dependent and can be determined by a series of tests. The best
convergence is achieved when it is set as 10 in our system with a time
step of 0.005 ps. The window size parameter tcor is set as 0.05 ps in
our optimization process.
Note that during the iteration process, we need to fix the total

friction at a certain value, ζeff* , such that the diffusion coefficient
resulted from CG simulation matches with that of AA simulation, i.e.,
DCG = DAA. There are some similarities between our method with refs
87 and 77, where they use the integral of memory kernel

=t sK s( ) d ( )
t

0
as the optimization target. In addition, the kernel

is treated numerically during the iteration process. Therefore, the
boundary condition can be written as

* = +
=

=
k k i t(0) ( )

i

n t t

eff x
1

/cut

(15)

where Δt is the time step size. Where ζeff* is the total friction, and it is
kept as a constant and is initially parametrized by fitting the long-time
diffusion coefficient of the CG model to the AA model. The second

term =
= k i t( )i

n t t
1

/cut at the right-hand side of the equation
corresponds to the memory kernel, while the first term kx(0) is the
Rouse-type friction. Indeed, initially, we do not know the respective
contributions from these two terms. Therefore, we first used the
iterative process to optimize the short-time memory kernel k(t) by
setting the velocity ACF as the target. Afterward, kx(0) is determined
using eq 15. Note that the ζeff* = 1780 amu·ps−1 is determined for our
current system using the parametrization approach used in refs 57 and
58.
For the above iterative optimization, 25 ps GLE simulations were

performed for each iteration using the PYGAMD package.117 The
Brünger-−Brooks−Karplus118 integrator is used. The integration time
step is set to be Δt = 5 fs. The colored noise was generated to develop
random force using the Fourier transform.85,119 The total iterative
process was conducted, as shown in Scheme 3. The caging time can
be determined by analyzing the transition region of the velocity ACF,
during which the dynamics of the monomers undergo a transition
from local collisions to hydrodynamic interactions. In our present
system, we measure the caging time to be between 2 and 4 ps, which
is in line with previous studies.18,19,58 To improve computational
efficiency, we choose tcut = 2 ps for the memory kernel in subsequent
GLE simulations. In addition, benchmark calculations show that there
is no obvious difference if we use a longer time of tcut = 4 ps, details

Scheme 3. Iterative Optimization Procedure of the Memory Kernel

Figure 1. Intermediate (a) memory kernels and (b) velocity ACFs during iteration using eq 13. After 90 iterations, we switch to use eq 16 for
another 40 iterations. Changes of memory kernel are shown in (c), and the resulted velocity ACFs are compared in (d).
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are shown in the section “Memory kernel developed by different tcut”
in the Supporting Information.

3. SIMULATION RESULTS

3.1. Iterative Reconstruction of the Kernel

First, we reconstruct the kernel using the algorithm proposed
by Jung et al.,86 as demonstrated in eqs 13 and 14. The
evolution of both the kernel and corresponding velocity ACF is
shown in Figure 1a,b, respectively. Although we have overall a
satisfactory alignment between GLE and AA simulations
before ∼0.4 ps, there is a significant damping effect emerges
in the tail of the velocity ACF, leading to an eventual
divergence of the CG curve from the AA counterpart. This
finding aligns with the results in ref 116, which also find a “lack
of convergence for very small and large absolute frequencies”
using an exponential kernel. We find that such a damping effect
can be eliminated by the introduction of a 0th-order iterative
correction term into the kernel

=+k t k t V t V V t V( ) ( ) ( ( ) (0) ( ) (0) )i i1 s AA GLE
(16)

Here, αs can be expressed as αs = γsM2/kBT, and it is
different from α in eq 13, it has a unit of ps−1. The best
convergence is achieved when γs is set as 4 ps−1 in our system
with a time step of 0.005 ps. The further optimization of the
kernel using the 0th-order term mentioned above significantly
enhances the numerical stability, particularly at relatively low
frequencies. As such, a combination of eqs 13 and 16 can be
utilized to augment the overall convergence of the iterative
process; a full convergence of the velocity ACF is shown in
Figure 1d. In principle, the superior performance of eq 16 can
be elucidated by using Laplace analysis. However, numerical
discretization and the complexity of the kernel form pose
significant challenges to mathematical analysis. Intuitively, the
modification via the above 0th-order derivative term yields a
smoother correction to the kernel, as shown in the tail part in
Figure 1c, thereby eliminating the substantial damping
contribution of the first-order correction term. Note that the
velocity ACF used for the above iteration is smoothed to filter
out very high frequencies that could potentially compromise

the stability of the simulation. After 90 iterations using eq 13
and followed by 40 iterations with eq 16, the velocity of ACF
resulting from the GLE simulation converges to that of the AA
simulation, as depicted in Figure 1d. The iteration is judged to
b e c o n v e r g e d u n t i l t h e e r r o r f u n c t i o n

= t V t V V t Vd ( ( ) (0) ( ) (0) )
t

0 AA GLE
2cut is less than

0.0005.
3.2. Performance of the Model on Dynamical Properties

After the successful reconstruction of the kernel, as shown
above, we calculated the mean square displacement (MSD)
curves, velocity ACFs, and force ACFs and compared the
corresponding results from AA simulations, LE simulation with
ζ* (denoted as LE in the following), and CG simulation
without any kernel (denoted as CG), respectively. The results
are shown in Figure 2a−c, respectively. Not surprisingly, we
find good agreement between the GLE simulation and the AA
simulation. Although a good reproduction of both the velocity
ACF and force ACF can be expected since the former is set as
the target for the iteration and the latter is a derivative of the
former, we have to note that both the results from the CG and
LE simulations have a large deviation from the AA results. One
of the primary contributions of our method is its ability to
accurately reconstruct local dynamics while maintaining
structural consistency, which distinguishes it from previous
approaches. When compared with other CG PS models, our
model has certain advantages. For instance, the time mapping
approach44 only uses a constant to fit the long-time diffusion
dynamics, but it fails in adequately describing local dynamics.
Similarly, the Markovian model can only treat with long-time
diffusion dynamics by incorporating external frictions between
CG beads.57,58 Instead, the ER method can though effectively
capture local dynamics, but it often leads to deviations in
structures due to the use of the simple Lennard-Jones form.18

In addition, we note that the MSD curve resulting from a
conventional CG simulation without any memory kernel is
orders of magnitude faster than the AA counterparts, as shown
in Figure 2a. On the other hand, although the LE simulation
using a single friction constant of ζ* have overall a good
agreement with the AA simulation, there is a noticeable

Figure 2. (a) MSD curves, (b) velocity ACFs, and (c) force ACFs calculated from AA simulation, GLE simulation with the final optimized kernel,
LE simulation with ζeff* and CG simulation without any friction, respectively.
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underestimation in the transition region from ballistic to
subdiffusive region, which corresponds to the dynamic
behavior in the first neighboring shell. In contrast, the MSD
curve resulted from the GLE simulation with a determined
memory kernel has obviously a better match with that from the
AA simulation. We observe a slight deviation in the MSD
between GLE and AA simulations at the intermediate scale
(10−200 ps). This discrepancy can be attributed to the
inadequate consideration of hydrodynamic interactions for
unentangled polymer melt.120 A more comprehensive dis-
cussion on this topic can be found in Supporting Information.
The self-diffusion coefficients calculated by different models
are listed in Table 1. As expected, the diffusion coefficients

resulted from GLE and LE simulations are both in good
agreement with the AA model. We also note that although the
GLE model has the same total friction ζeff* as the LE model, the
GLE model exhibits slower diffusion. Similar results have been
found in other studies.84,121,122 This discrepancy can be
attributed to the influence of dynamical modes coupled with
the memory kernel on subsequent modes, even though the
temporal scale of the memory kernel is 3 orders of magnitude
lower than that of the diffusion. This interdependence between
temporal scales deserves further investigation.
Other collective dynamical properties were calculated to

validate our model, including the self- and distinct van Hove
functions (VHFs), and the incoherent intermediate scatter
function (ISF). The one-dimensional self VHF is the
probability density of finding a particle i at a Euclidean
distance of motion rs at time t, given that the particle was
initially at the origin t = 0

= | |
=

G r t
N

r tr r( , )
1

( ( ) (0) )
i

N

i is s
1

s
(17)

Similarly, the distinct VHF is defined as

= | |
=

G r t
Nr

r tr r( , )
1

4
( ( ) (0) )

i

N

j i

N

i jd 2
1 (18)

where ρ represents the number density and N is the number of
particles in the simulation box.
The incoherent ISF is actually the spatial Fourier transform

of the self VHF. Instead of using the Fourier transform, the

one-dimensional incoherent ISF is directly computed from the
trajectories in our analysis

= | |
=

F q t
N

iq tr r( , )
1

exp( ( ) (0) )
i

N

i is
1 (19)

In Figure 3, we compare the self- and distinct VHF of the
GLE model with the AA reference. Other results about the LE
and CG models can be found in the Supporting Information
for the sake of clarity. The GLE simulation effectively controls
the self-displacement distribution, as shown Figure 3a.
However, noticeable shifts in the distribution are observed
for GLE simulations compared to AA references when the time
exceeds 10 ps. This observation aligns with the findings from
the MSD curves, where the MSD resulted from GLE
simulation is slightly faster than that in AA simulation at the
time scale of 10−100 ps, as marked by an arrow in Figure 2a.
On the other hand, the distinct VHF exhibits a higher
consistence between AA and GLE simulations, suggesting a
good reproduction of pair correlation in both structural and
dynamical evolution.
The incoherent ISF curves were calculated at different q

values, capturing structural relaxations occurring at various
spatial scales, and the results are shown in Figure 4, where q ≈
12 nm−1 in Figure 4b corresponds to the monomer size (∼0.5
nm). We note a good agreement between GLE and AA
simulations in the short-time regime where the memory kernel
is present. After which, the ISFs resulting from GLE
simulations quickly converged to those of the LE simulations,
indicating a faster relaxation compared to the ISFs of the AA
simulations. Nevertheless, our findings indicate that a simple
mean-field memory kernel can adequately describe the local
dynamics at a short time scale, though it falls short in capturing
the intricate dynamics on longer times. It would be intriguing
to investigate whether an extended memory kernel could
match the AA curves at longer times, yielding improved
reproduction of the relaxation modes.
To further evaluate other collective ability of our CG model,

we compute the stress relaxation modulus G(t) with

=G t
V

k T
t( ) ( ) (0)

B (20)

where we use all the off-diagonal components of the stress
tensor to improve the calculation.59,123 According to Mondello
and Grest,124 a fair comparison of G(t) can be made with the
AA trajectory mapped to the monomer scale, corresponding to
the CG mapping scheme. Since we only use conservative forces
in the calculation of σ in GLE simulation, we define Gmapped(t)
as a convolution of GAA(t) and t( ) as the AA reference

Table 1. Comparison of Self-Diffusion Coefficients
Calculated from Different Models

AA GLE LE CG

D/×10−5 cm2·s−1 0.0686 0.0654 0.0704 3.14

Figure 3. (a) Self-VHF and (b) distinct VHF for AA reference (solid line) and the GLE model (dashed line).
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= *G t G t t( ) ( ) ( )mapped AA (21)

Here, GAA(t) is calculated from the fully AA trajectory and
the t( ) is a sliding function used to eliminate the dissipation
and random contributions from fast degrees of freedom. The

t( ) is naturally related to the memory kernel K(t) and has
the form of =t K t dtK t( ) ( )/ ( ). The results of G(t) from
the GLE simulation are compared with Gmapped(t), as shown in
Figure 5. They have a good agreement within 100 ps. It can be

attributed to a successful description of other collective
properties, such as the results of Gd(t) in Figure 3b, since
Gd(t) describes the time evolution of interparticle distances
and therefore interparticle forces. Finally, we also note that
with the optimized kernel included, the good performance of
the IBI potentials on static structures remain untouched since
the conservative interactions remain invariant, as shown in
Figure 6.

4. DISCUSSION AND CONCLUSIONS
In this study, we present a bottom-up approach to effectively
developing a chemically specific, systematic CG polymer
model with both consistent structural and dynamical proper-
ties. In particular, conservative forces are inferred by using the
IBI method, allowing for an accurate representation of the
structural properties observed from the reference AA

simulations. These properties include the RDF, bond length
distribution, angle distribution, and density. To retrieve the
correct inherent dynamical properties of the system, the GLE
simulation is performed with a time-dependent memory
kernel. Importantly, a straightforward extraction of the
memory kernel from Volterra equation (eq 7) suffers from
numerical instability for the polymer system. Practically, we
decomposed the memory kernel into two parts: one represents
a Rouse-type delta function, which determines long-time
diffusion dynamics; and the other using a time-dependent
short-time kernel to control the high-frequency motions.
Specifically, the latter is reconstructed from an iterative
procedure. In our iterative procedure, the integral of the
memory kernel is constrained for reproducing the diffusion
coefficient of the monomers from the AA simulation. The
velocity ACF extracted from the AA simulations is set as a
target for the iterative optimization of the kernel. The
proposed procedure was applied to a PS melt system, as an
example. We adopted a mapping scheme in which each CG
bead represents one styrene monomer. The results show that a
proper reconstruction of the memory kernel enables the
reproduction of important dynamical properties of the system,
such as velocity ACF, force ACF, and the MSD curve of
monomers.
To further investigate the performance of our model, we

calculated other collective properties, including VHFs, ISF, and
stress relaxation modulus. By comparing self-VHFs and ISF, we
observe good agreements between AA and GLE simulations in
the structural evolution at short time, albeit the deviations arise
at long time due to the vanish of the memory kernel. The stress
relaxation function G(t) exhibits consistence on longer
temporal scales up to 100 ps. This can be attributed to the
better performance of the GLE model on the distinct VHF,
which represents the evolution of pairwise structures,
corresponding to the evolution of conservative forces.
Other than the structural and dynamical properties, as we

discussed here in this work, another important direction is to
treat the representability and transferability issues of the CG
model under different thermodynamic conditions. So far, many
efforts have been devoted in this direction, mainly on the

Figure 4. Incoherent ISF Fs(q, t) calculated from different simulations, as a function of time. Different q values are used to represent multiple spatial
scales: (a) q = 18q0, (b) q = 14q0, (c) q = 9q0, and (d) q = 5q0, with q0 = 2π/L and L = 7.22 nm.

Figure 5. Comparison of the stress relaxation modulus G(t)
calculated from GLE and AA simulations.
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representability and transferability issues of conservative CG
models. Readers can refer to refs 21, 36, 125, and 126. We have
to note that the above method presented is, at the moment,
applicable only to one-component homogeneous polymer melt
systems without significant dynamical heterogeneity. For
multicomponent systems, especially for systems where
inhomogeneous self-assembly or phase separated structures
come into play, one also has to treat the competitions between
different interaction pairs. A preliminary work can be found in
our previous study for binary diblock copolymer and blend
systems of PS and poly(methyl methacrylate).25 Moreover, for
the dynamics properties in such multicomponent systems, the
things are much more complicated. For that, data-driven
approaches112,127 may be useful for developing more
inhomogeneous memory kernels for such systems. Never-
theless, we still anticipate that the approaches presented in this
work can be readily applied to homogeneous polymer systems
and make a meaningful contribution to the field of polymer
simulation.
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Figure 6. (a) RDF, (b) bond length distribution, and (c) angle distributions between CG beads calculated from AA simulation, GLE simulation
with the final optimized kernel, and CG simulation without any friction, respectively.
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