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Abstract

At the end of the first larval stage, the C elegans larva chooses between two developmental pathways, an L2 committed to
reproductive development and an L2d, which has the option of undergoing reproductive development or entering the
dauer diapause. I develop a quantitative model of this choice using mathematical tools developed for pricing financial
options. The model predicts that the optimal decision must take into account not only the expected potential for
reproductive growth, but also the uncertainty in that expected potential. Because the L2d has more flexibility than the L2, it
is favored in unpredictable environments. I estimate that the ability to take uncertainty into account may increase
reproductive value by as much as 5%, and discuss possible experimental tests for this ability.
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Introduction

The nematode C elegans develops from egg to adult through

four larval stages, L1, L2, L3, and L4 (Figure 1). Under favorable

conditions this reproductive pathway takes less than two days.

However, under unfavorable conditions development follows an

alternative pathway resulting in a transiently arrested third larval

stage, the dauer larva. The dauer is a sort of worm spore, capable

of surviving harsh conditions for a long time, and recovering if

conditions improve. On recovery it becomes a superficially normal

L4, with lifespan and fertility roughly the same as if it had

developed through the reproductive pathway [1].

A worm must make the decision to become a dauer twice [2].

Near the time of the L1 molt, the worm decides to become either a

reproductively growing L2 or a dauer-capable L2d larva. The L2

commitment to reproductive growth is irreversible at or shortly

after the molt. The L2d larva, in contrast, has the option to

become either a dauer or a reproductive L3. This poses a puzzle.

Apparently the L2d can do anything the L2 can. Why, then, does

a worm ever choose L2? Why, indeed, does the choice even exist?

Yet, under favorable conditions normal worms invariably become

L2s. There must be a cost to L2d development, a mechanism by

which it decreases fitness under favorable conditions.

The L2d option to follow either the reproductive or the dauer

pathway is valuable because the future is unpredictable. If the

worm could at the L1 molt predict with perfect accuracy

conditions at the end of the L2d, it could commit at the L1 molt.

A worm would choose to become an L2d only if future conditions

favored becoming a dauer, and the option to return to the

reproductive development would never be exercised, and therefore

worthless. Of course, it is not in fact possible to predict the future

with perfect accuracy. Because the future is unpredictable, it is

valuable to postpone the reproductive/dauer decision until a

future time, when the future has become the present and is no

longer uncertain.

Here I identify one possible cost of inappropriately choosing

L2d. I use mathematical tools for pricing options in financial

markets to estimate the value of the L2d option. This option value

depends on two factors. One of these, environment quality,

measures how favorable the future environment is likely to be for

growth and reproduction. In fact, the L2/L2d decision is

influenced by signals of food and crowding [2]. The second factor

is volatility, which measures the unpredictability of the future

environment. High uncertainty makes the option more valuable

and therefore favors the L2d choice. Because of this dependence,

an animal that can estimate uncertainty and take it into account

will make better decisions than one whose decisions are based on

environment quality alone. I use simple models to estimate the

possible value of uncertainty information, and suggest mechanisms

worms might use to acquire it.

Results

Reproductive value
To quantify the effects of a decision, I begin with Fisher’s

concept of reproductive value [3]. The reproductive value of a

worm is proportional to the expected number of its descendants at

some distant future time, based on the information available to the

worm. The descendants of animals with high reproductive value

will, by definition, be a larger part of the future population than

those of animals with low reproductive value. (Note that C elegans
are usually found as hermaphrodites and that self-fertilization is

the dominant method of reproduction in the wild [4,5]. Thus there

is no overlap between the descendants of two worms. In this paper

I neglect the effect of the rare males that occur.) Animals that
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make decisions that maximize their reproductive value will

therefore be favored by evolution.

The value of a worm depends on its age and condition. A gravid

adult hermaphrodite with 20 eggs in her uterus about to be laid

has a value at least 20 times the value of a single egg in the same

environment. Yet that adult was herself a single egg a few days

ago. Her value must therefore have increased in that time. It

increased because the value of the egg derives from its potential to

become a gravid adult. The older the egg and the worm that

hatches from it become, the closer it gets to adulthood, the greater

its chances of escaping dangers and finding resources so as to reach

adulthood. Similarly, value depends on condition. A young larva

near death from starvation is less likely to reach adulthood than a

larva of the same age with abundant stored nutrient reserves, so

the first is less valuable than the second.

Value also depends on the environment. A young larva near

death of starvation in an environment devoid of food is unlikely to

have any descendants, and therefore has low value. Its value is not

zero because there is a small chance that it may find food before it

dies. The same starved larva is more valuable in the presence of

food because it is more likely to reach adulthood, and, if the food

supply is very large, because many of its children and grandchil-

dren will reach adulthood.

Less obviously, value depends on information available to the

worm through its senses or internal state. The value of the starving

larva is very low, but if the larva’s chemical senses inform it of food

in the vicinity, its chance of survival and therefore its value rise

abruptly. It might be argued that the true value (whatever that

might mean) of the worm is not changed by changing

information—only the worm’s estimate of its value is different.

Readers more comfortable with this view may want to mentally

replace ‘‘value’’ with ‘‘expected value’’ or ‘‘estimated value’’. In

any case, it is this information-based value that optimal decisions

must maximize. Because value depends on information, it can

change quickly.

Dependence of value on age
Historically, most C elegans eggs have not reached adulthood.

The argument is essentially that of Malthus. It is based on two

assertions: first, that the average C elegans adult produces many

more than one egg, and second, that just one of the children of the

average C elegans adult reaches adulthood. The first assertion is

based on C elegans reproductive physiology. Under ideal

laboratory conditions a C elegans hermaphrodite produces about

300 progeny [6,7]. The mean brood size in the wild is likely to be

less, but several arguments suggest that it is considerably more

than 1. The capacity to produce such a large brood is achieved at

a high cost: I estimate that the gonad and uterus of an adult

hermaphrodite are about J of her volume. It is unlikely that such

a large gonad would increase fitness unless the worm actually used

the reproductive capacity it affords. Furthermore, even when

completely deprived of food an adult hermaphrodite can produce

at least 8 progeny by ‘‘facultative vivipary’’, i.e., consuming her

own biomass to produce but not lay eggs, which then hatch

internally and eat the mother [8]. It seems safe to assume that the

average number of progeny produced by an adult hermaphrodite

is at least 8, and probably larger.

That, on the average, only one of these progeny reaches

adulthood is clear. C elegans has been in existence for at least 1

million years. The mass of a C elegans adult is roughly 3 mg. If a

population started with a single adult doubled 111 times, its mass

would exceed the mass of the Earth. Thus, the mean rate of

growth of the Earth’s C elegans population has been less than 1

doubling per 9,000 years. By similar reasoning, the population

cannot have dwindled faster than one halving per 9,000 years.

From this it can be deduced that the mean number of descendants

of an adult C elegans hermaphrodite that reached adulthood in six

months (the maximum plausible generation time) has been

between 0.999962 and 1.000038. Even if one assumes a very

recent huge expansion of the C elegans population these

constraints are only slightly relaxed. For instance, a 100-fold

expansion of the C elegans population in the last 100 years would

require at most that the average adult give rise to 1.023 adults. In

this paper I assume that populations are precisely at steady-state.

This assumption is not necessary—the models described below

also work for non-steady-state populations and lead to similar

conclusions—but the exposition is simplified. The steady-state

assumption together with the evidence that an adult produces

more than eight eggs implies that at least seven in eight C elegans
eggs fail to become fertile adults in the wild.

In a steady-state population, the value of an egg or a larva is

proportional to the probability that it will become an adult. In one

simple model, the probability of failing to advance in age, i.e., of

dying or permanently arresting development, is a constant per unit

time, which I call l, the discount rate. (In reality, of course, l may

vary—the assumption that it is constant is a modeling simplifica-

tion.) I have estimated l by several different methods (see l:

discount rate in Methods), which give values from 0.027 h21 to

Figure 1. C elegans developmental pathways. This figure shows schematically the pathways a C elegans egg may follow to adulthood. Numbers
show the approximate duration in hours of each stage in the laboratory at 20uC. The L1 stage lasts 15 h, and at the end (the L1 molt) the worm
decides to become either an L2, committed to reproductive development, or an L2d, which has the option of becoming a dauer larva. This decision is
the subject of this paper. The duration of the L2 and L2d pathways to the L3 are highlighted to show the 3–7 delay incurred by following the L2d
pathway. A worm may remain a dauer for many months; times shown are for the development of the L2d from L1 molt to L2d molt, and for the
recovery of the mature dauer.
doi:10.1371/journal.pone.0100580.g001
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0.068 h21. The method I consider most reliable yields

l~0:042h{1. This means that a worm of developmental age a
hours has probability 0.042 of failing to reach age az1 and

probability 0.958 of advancing one hour. More generally, the

probability that a worm of age a reaches age A is

P a,Að Þ~e{l A{að Þ. The value of an age a worm is proportional

to ela. This simple model makes the most sense for a worm

committed to a single developmental pathway. An L2 larva, for

instance, has no path to adulthood except by developing through

every hour of L2.

These arguments suggest a solution to the puzzle of the L2d,

and a method of quantifying the cost. Golden and Riddle [2]

found that it takes 3–7 hours longer for a worm to develop from

L1 to L3 via the L2d than through the L2 (Figure 1). One plausible

reason for this is that the dauer stores fat in order to survive for

months without food [9], and the L2d must therefore take the time

to eat more. Thus an L2d must run the gauntlet of a dangerous

world for up to 7 hours longer than one that takes the L2 pathway.

A mutation that eliminated the L2 pathway, forcing the worm to

always follow the L2d pathway, would suffer a reduction in value

by a factor of between e{3l and e{7l in a good environment

(0.88–0.74, using the estimate above). Such a worm would be at a

serious disadvantage to wild-type in good environments and would

have no advantage in poor environments.

Binary model
The value of a worm with options, e.g. an L2d which can

choose to follow either the reproductive pathway or the dauer

pathway, cannot be so simply characterized by a single probability

of developmental advance. Its value is derived from the values of

the choices it is free to make. A simple example illustrates how this

works. Imagine a world in which there are only two possible

environments, good or bad (Table 1). In this world, an L2 about to

molt into an L3 has no value in a bad environment (it always dies

without progeny). The value of a dauer depends less on the

environment than that of other stages. For simplicity, the model

assumes it is entirely independent of environment. The world can

vary in two ways: the value of the new L3 relative to the dauer and

the probability of the good environment may change.

Table 1A considers the most predictable variation, in which the

future is certain: a good environment with probability 1. Since the

value of the dauer is independent of environment, it is convenient

to express the value of the L2 about to molt in terms of dauers. In

this example I suppose it is worth 1 dauer in the good

environment. An L2d about to molt will become a dauer when

things are bad and an L3 when things are good, so its value is 1

dauer in both the bad and good environments. The worm must

choose between L2 and L2d at the time of the L1 molt. If it

chooses the L2 pathway, its chance of making it to the L2 molt,

which takes 9 h, is e{9l&0:68. Its value is 1 dauer if it reaches the

L2 molt, 0 if it doesn’t, for a discounted mean of 0.68. If the L1

chooses the L2d pathway its chance of making it to the next molt is

e{16l&0:51 (assuming the maximum possible delay of 7 hours,

for a total of 16). There it will be worth 1 dauer whichever choice

it makes, for a discounted mean of 0.51. Thus, because of the L2d

delay, the L2 is the better choice.

However, value depends on information. Suppose the worm

doesn’t yet know whether the environment will be good or bad,

but only that they occur with equal probability 0.5 (Table 1B).

Suppose also that in this world, the good environment is better

than in example A, so that the value of the new L3 is 2 dauers. In

this world, the question ‘‘What is the value of the L2 just before the

molt?’’ has three different answers, depending on what informa-

tion the worm has. A worm that knows that the environment is

good has value 2, and a worm that knows the environment is bad

has value 0. The value of a hypothetical worm that hadn’t yet

found out which environment it was in, however, would be the

mean of these weighted by their probabilities: 0.560+0.562 = 1.

Similarly, an L2d will choose dauer (value 1) in the bad

environment and L3 (value 2) in the good. Its value, if it hadn’t

yet found out what kind of environment it was in, would be

0.561+0.562 = 1.5 dauers. In this toy example, when the

environment is uncertain, the option to choose between dauer

and L3 is worth half a dauer.

In fact, by the time of the molt an L2 or an L2d will know

whether the environment is good, but it can’t decide between L2

and L2d then. The real relevance of the informationless values is

when the decision is made, at the time of the L1 molt. As before,

these values must be discounted by the probability of successfully

reaching the next molt. Thus, the L2d choice is worth

0.5161.5 = 0.76 dauers at the L1 molt, the L2 0.6861 = 0.68,

and L2d is preferred.

Table 1C shows a third variation of this example, in which the

good environment occurs with 0.667 probability and the L2 is

worth 1.5 dauers at the L2 molt. At the L1 molt both the L2d and

the L2 are worth 0.68 dauers, so the worm is indifferent.

These examples were contrived to make a point. In all three

cases the value of the L2 choice is the same: 0.68. Also, in all three

cases, the value of the dauer is the same: 1 at the L2d molt, or 0.51

at the L1 molt. Yet the optimum choice differs among the three.

This shows that to make the best decision, it is not enough to know

whether, on the average, the animal will have more future

descendants on the reproductive pathway than the dauer pathway.

Another piece of information is needed. This piece of information

is the uncertainty of the predicted future. High uncertainty favors

the worm that has options over a committed worm. Thus in case

B, with high uncertainty, the L2d is favored over the L2, while in

case A, with no uncertainty, the L2 is favored over the L2d. If the

worm knows only the average quality of the future environment (as

measured by the relative values of the L3 and dauer), it can’t

always make the optimum choice. But if it also knows the

uncertainty (as measured, for instance, by the standard deviation

of the value of the L3), it can always choose optimally.

An example may help to clarify the meanings of value and

uncertainty. In nature, C elegans is thought to alternate between

brief periods of rapid population growth, which occur when an

animal finds a food source such as a dead snail or a rotting apple,

and long droughts, which the worm survives as a dauer [10]. An

individual that is lucky enough to find a rotting apple early can

hope to found an exponentially expanding population—this is

facilitated by the ability of a self-fertilizing hermaphrodite to

reproduce alone and the explosive growth rate of an unrestrained

C elegans population. We don’t know how big such a local clonal

population can grow, but considering the relative sizes of a worm

and an apple, it is not implausible that a rare lucky worm gives rise

to thousands or even a million dauers before the food is exhausted.

Since, as argued above, the world-wide C elegans population is

close to steady-state, it is inevitable that most of these dauers die

without reproducing. In fact, if the mean number of dauers

produced by a dauer that finds a food patch is N, the probability

that one of these dauers similarly finds a food patch is 1=N .

Thus, consider two worms. One is an L1 in a rotting apple that

has been nearly exhausted. It is teeming with worms and other

invertebrates, and the food will be gone in 2–3 days. This worm’s

best strategy is to grow to adulthood and produce progeny, and it

almost certainly can do that before the food runs out. The second

worm is an L1 that hatched after the food had run out and

Pricing the C elegans L2d Option
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proceeded to the L1 starvation diapause. This worm has only a
1=1,000 probability of finding an apple before it dies, but if it finds

one, it can expect to produce 1,000 fertile adults. Both of these

worms have the same value: that of 1 adult. But their uncertainty is

very different. Consequently, the L2d option is more valuable to

the second worm than to the first.

The binary model is unrealistically simple, but some of its

properties are quite general: an option is more valuable in an

uncertain environment than a predictable one, and therefore, to

make the optimal choice between the L2 and the L2d, the L1

should take into account not only how good or bad the future is

likely to be, but its uncertainty about that future.

Continuous models
The binomial model allows for only two decision times, L1 molt

and L2/L2d molt, and two environments, good and bad. For

more realistic models whose quantitative predictions might be a

useful approximation to reality, I looked for inspiration to finance.

A dauer is like cash. Its value is relatively stable and independent

of the environment. A reproductive larva is analogous to a share of

stock. Its value represents the best estimate of future growth

prospects. Like a worm, a share of stock can grow exponentially in

value in a favorable economic environment, coming eventually to

be worth hundreds or thousands of times its original value, or the

company can die out and the stock become worthless. The value of

stock depends on information and can thus change quickly. Some

stocks are relatively stable in value, while others are more volatile.

An L2d is like a call option on a stock: it allows but does not

obligate the future exchange of a fixed cash price (one dauer) for a

share of stock (an L3).

Black and Scholes [11] modeled stock value as a geometric

Brownian motion: a random variable whose logarithm is normally

distributed, with a variance that increases linearly with time. This

model oversimplifies reality and fails in some important cases, but

it is a useful approximation much of the time, and is widely used in

pricing financial options. In the Black-Scholes model, like the

simpler binary model, the value of an option depends on two

things, the value of the assets whose exchange it enables (the dauer

and the L3, in the case of an L2d), and volatility, which determines

how uncertain the current estimate of those future values is.

The Black-Scholes model can be applied to the L2d (see Fixed-

time European model in Methods), but it fails to describe the

biological problem in two important ways. First, financial options

have specific expiration dates. In contrast, the time at which an

L2d can choose between reproductive and dauer pathways

depends on developmental age, and the rate at which a worm

develops is variable, depending on such things as temperature and

food supply. The effect of this difference is to increase

unpredictability, since the L1 not only doesn’t know how the

environment will change—it doesn’t even know how long it has to

make its decision. Second, the Black-Scholes model assumes that

an option cannot be used before its expiration. However, an L2d

need not wait until the molt to make its decision—it can commit to

the reproductive pathway before the molt [2,12]. The ability to

decide early is valuable because it decreases the developmental

delay associated with the L2d decision to as little as 2–3 hours, and

therefore its cost.

Figure 2 shows how value depends on the quality of the

environment in a model that takes these factors into account. The

L2d value curve is plotted for four different values of uncertainty: 0

(a completely predictable environment), 0.5, 2, and ‘ (a maximally

unpredictable environment). The line representing the value of an

L2 is also shown, using a measure of environment quality such that

L2 value does not depend on uncertainty. The L2 line crosses the

zero uncertainty curve at an environment quality of 0.3 dauers,

i.e., where the expected value of an L2 is equivalent to 0.3 dauers.

Thus, in a completely predictable environment, the L1 should

choose the L2 pathway if the environment is good enough that the

Table 1. Binomial model for L2, L2d, and dauer value

A.

Value at L2/L2d molt if environment is… Value at L1 molt if environment is…

State Bad (p = 0.0) Good (p = 1.0) Mean Value Bad (p = 0.0) Good (p = 1.0) Mean Value

dauer 1 1 1 0.51 0.51 0.51

L2 0 1 1 0 0.68 0.68

L2d 1 1 1 0.51 0.51 0.51

B.

Value at L2/L2d molt if environment is… Value at L1 molt if environment is…

State Bad (p = 0.5) Good (p = 0.5) Mean Value Bad (p = 0.5) Good (p = 0.5) Mean Value

dauer 1 1 1 0.51 0.51 0.51

L2 0 2 1 0 1.37 0.68

L2d 1 2 1.5 0.51 1.02 0.76

C.

Value at L2/L2d molt if environment is… Value at L1 molt if environment is…

State Bad (p = 0.333) Good (p = 0.667) Mean Value Bad (p = 0.333) Good (p = 0.667) Mean Value

dauer 1 1 1 0.51 0.51 0.51

L2 0 1.5 1 0 1.03 0.68

L2d 1 1.5 1.33 0.51 0.76 0.68

doi:10.1371/journal.pone.0100580.t001
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L2 will produce progeny worth, on the average, 0.3 dauers. If the

environment is worse than that, the L1 should instead choose the

L2d pathway. In more uncertain environments the L2d option has

more value, and the crossing occurs at higher quality values. Thus,

at a modest uncertainty of 0.5, meaning that environment quality

will typically change by 0.67–1.5-fold between the L1 molt and the

L2d molt, the L1 should require an L2 value of 0.45 dauers to

persuade it to take the L2 pathway, and at an uncertainty of 2, the

threshold is 0.97 dauers. In a maximally uncertain environment,

the L2 must have a value of 2.4 dauers (beyond the right-hand-

edge of the graph) for the L2 to be optimal. The threshold

environment quality thus varies as much as eight-fold, depending

on the level of uncertainty. The phase diagram Figure 3

summarizes the optimal strategy based on both environment

quality and uncertainty.

Low and high uncertainty extremes
The L2d value curve has a particularly simple form at low

uncertainty and at high uncertainty. In a low uncertainty

environment the future is completely predictable. The worm

already knows at the L1 molt what decision it will make at the L2

molt. Indeed, it knows whether or not it will exercise the option to

switch to the L2 pathway during L2d development. There are only

two possible future courses. In one, the worm follows the L2d

pathway all the way to the molt, then becomes a dauer. Its value, if

it follows this pathway, is simply e{16lVdauer, the value of a new

dauer discounted by the cost of 16 h development. In the other,

the worm follows the L2d pathway only until the first possible time

at which it can switch to the L2 pathway. Following this pathway,

it takes 3 h longer than the 9 that would have been required to

reach L3 than if it had chosen the L2 pathway from the start, so its

value is e{(9z3)lVL3q. (VL3q is the value of an L3 at environment

quality q.) A switch from L2d to L2 later than the earliest possible

time would cause more delay, and therefore lower value, so will

never be optimal. Since the L2d will choose the most valuable of

these two futures, its value is just the maximum of the two. That is,

it is flat at e{16lVdauer up to the point at which it intersects

e{ 9z3ð ÞlVL3q, and then it follows the latter’s linear increase.

The high uncertainty curve is more surprising and requires

more explanation. In an extremely uncertain environment, the

value of an L2d is the sum of the values of its two options, the L3

and the dauer, discounted by the developmental delay. How can

one worm have the value of two? The answer is shown by the

high-uncertainty example given above: an L1 with a 1=1,000

chance of value 1,000. If the 1=1,000 chance pays off, this worm

follows the reproductive pathway, thus capturing all the value of

the L2 option. If the environment goes bad, it chooses to become a

dauer. Since this occurs 99.9% of the time, the L2d also captures

99.9% of the value of the dauer option. Thus, the L2d’s value is

the value of the L2 option plus almost all the value of the dauer

option.

L2d value at intermediate uncertainty in Figure 2 and the

strategy curve in Figure 3 depend on detailed assumptions of the

model, which specify the nature of environmental variation and

the timing of development in the wild. Strategies based on the

binary model or the Black-Scholes model have similar features, but

the exact shape is different. Surprisingly, however, the curves for

high and low uncertainty are independent of these model

assumptions. It is easy to understand why detailed assumptions

would not matter in the low uncertainty environment: in this

world, the future is completely predictable. But the high

uncertainty limit is also independent of detailed assumptions.

The reason, it turns out, is that there is basically only one way of

having very high uncertainty. The value of a worm can never be

negative, so it can never decrease by more than 100%. Since the

value can never decrease by more than 100%, all the high

volatility has to occur on the upside. But since by definition the

average value of the future possibilities must equal the current

value of the worm, high uncertainty can only mean that high

future values occur with very low probability, and low future

values occur with probability close to 1. In other words, in a high-

uncertainty environment, almost all the value of a population lies

in very rare worms that achieve extraordinary reproductive

success. The L2d has nearly the value of both its L2 and its

dauer options in any such environment.

Costs of ignoring uncertainty
The previous sections showed that to make the optimal L2/L2d

decision, the L1 must take into account both environment quality

and uncertainty. But how much difference does it make? How

much less fit is a worm that ignores uncertainty? It is impossible to

answer this question without knowing what kind of variability

worms experience in the wild. However, the high and low

uncertainty limits allow calculation of an upper bound.

Using uncertainty in decisions is valuable only if uncertainty

varies. The world in which uncertainty matters the most is one in

which very high uncertainty and very low uncertainty both occur,

and each occurs with high probability. Assume, therefore, that a

worm finds itself either in a low uncertainty or a high uncertainty

environment with equal probability. In this world, compare the

value of two types of worms: a Smart worm that bases its decisions

on both the quality and the uncertainty of its environment, and a

Dumb worm that bases its decisions solely on quality. The optimal

strategies for such worms are shown in Table 2. The optimal

strategy when ignoring uncertainty is to use an environment

threshold intermediate between the low uncertainty and the high

uncertainty thresholds.

Figure 4A compares the value curves for the Smart and Dumb

worms. Even though differences in uncertainty can result in an

eight-fold difference in the L2/L2d threshold, the cost of ignoring

uncertainty is comparatively small. Figure 4B plots the cost in

value, and Figure 4C as a percent of the value. In very poor

environments and very good environments, where the optimal

decision is independent of uncertainty, there is no cost to ignoring

it. The cost is largest in mediocre environments where the L2/L2d

decision is more difficult, reaching a maximum of over 5% of

value.

In conclusion, taking uncertainty into account when making the

L2/L2d decision may increase value by up to 5%.

Discussion

Evaluation of the model
The main conclusion of this paper is that a worm that takes

uncertainty into account will make better decisions than a worm

that ignores it. These better decisions may increase the worm’s

contributions to future generations by as much as 5%. This

conclusion is based on a model that, like all biological models,

grossly oversimplifies reality. Some defects of the model are real,

and some only apparent.

Among the latter is the apparent assumption that the value of a

reproductively developing worm depends only on environment

quality, and not on uncertainty. Surely a more unpredictable

environment is worse, all else equal? In fact, the model is

consistent with this intuitive insight. The apparent independence

of L2 value and uncertainty is a consequence of choosing a

measure of quality that, by definition, includes uncertainty. This
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can be seen most clearly in the Binomial model example (Table 1).

The ‘‘predicted environment quality’’ q is identical in all three

cases, as shown by the fact that the mean value for the L2 is the

same. But it is the same only because greater uncertainty (in C, for

instance) is compensated for by a higher upside value.

An example might help to clarify this. Consider a single person

buying a house. She cares about both the price, and the size.

However, in the end she can only purchase one house, and her

best strategy is to select that house in which she expects to be

happiest. If one defines her expected level of future happiness,

based on the price and size of the house, as the ‘‘predicted house

quality’’, then she can make her decision solely on the basis of this

variable. There is nothing interesting or insightful about this

claim—it is a tautology, based on the way ‘‘predicted house

quality’’ is defined.

Figure 2. Volatility and option value. Plotted in black is the value immediately after the L1 molt of an L2d that can choose between L3 and
dauer, calculated with the Hybrid model described in Methods. Green and gray curves show the values of committed L2 and dauers at the same time,
respectively. (The committed dauer is hypothetical—normal worms do not commit to dauer at the L1 molt.) Environment quality is measured by the
value of an L3 larva. Black lines plot value for environments of different volatility, quantified as described in Methods by uncertainty, a number related
to the factor by which environment quality will typically change during L2d development. The two heavy black lines show value when the future
environment is completely predictable (uncertainty = 0) or completely unpredictable (uncertainty = ‘). Thinner black lines plot value against quality
for intermediate levels of uncertainty 0.5 and 2.
doi:10.1371/journal.pone.0100580.g002
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It becomes nontrivial if we also consider another shopper, a

man with a family. He also cares about price and size. Shopper 1’s

‘‘predicted house quality’’ might be valuable to him in making his

decision. But his choice cannot be based solely on the ‘‘predicted

house quality’’ defined for her. This family man will care more

about size. If he knew both the quality and the size of every house,

he could make a better decision. For instance, he might choose the

highest quality house that has at least three bedrooms.

The claim that an L1 needs to know both environment quality

and uncertainty is something like this, but stronger. The L2 and

the L2d are like the two shoppers. Even if we define a number,

‘‘predicted environment quality’’ that combines everything that

determines the L2’s future, this is not enough to figure out how

good the future will be on the L2d pathway. Another piece of

information is needed, uncertainty. But there is a closer

relationship between the L2 and the L2d than between the two

shoppers, because the L2d has the option of becoming the future

L2. In the example one might argue that Shopper 1’s evaluation is

really of little relevance to Shopper 2. But there is no question that

the value of an L2 is relevant to the value of an L2d.

Another apparent oversimplification is the attribution of an

explicit option to the L2d, but not to the L2, the L3, or the dauer.

Obviously all animals have options. And these options improve

their chance of survival and therefore increase their value in

Figure 3. L2/L2d decision curve. This phase diagram shows the optimal decision strategy for the L1 choosing between L2 and L2d pathways on
the basis of uncertainty and predicted environment quality, as measured by the value of the L2. L2d is favored in high uncertainty and poor
environments (the blue region), L2 in low uncertainty or good environments (red).
doi:10.1371/journal.pone.0100580.g003
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uncertain environments. The dauer, for instance, can at any time

recover, or remain a dauer. Even the L2 can slow down growth

and development if food is scarce, and has the possibility of

becoming an adult that may lay eggs, entering adult reproductive

diapause, or undergoing matricide [13]. The L2d, however,

clearly has more options than the L2, because it can become an

L2, but it can also do something else. It is for this reason that the

L2d is predicted to become more valuable relative to the L2 in a

more uncertain environment. In the simplified models used here,

the ability of the dauer to recover means that the dauer value

curve is not a flat line as shown in Figure 2, but curves up at high

values. This has no effect on the L2/L2d decision, since the dauer

will only be chosen in a poor environment. The options available

along the L2 pathway are not explicitly modeled, but are assumed

to contribute to the environment quality, which is defined on the

basis of the value of a reproductively developing worm. It would of

course be interesting to develop more complicated and realistic

models in which some or all these options in the C elegans life

cycle are explicitly modeled.

This modeling choice has a consequence for experimental tests.

It is not enough to determine whether uncertainty affects the L2/

L2d decision. In fact, it is likely that uncertainty affects all

developmental and diapause decisions, since all explicitly or

implicitly affect future options. The strong prediction of the model

is more subtle: The L2/L2d decision should be more sensitive to

uncertainty than the L3/dauer decision or the roughly inverse

dauer recovery decision. That is, the strategy curve for the L3/

dauer decision should lie below and to the right of the curve for the

L2/L2d decision (Figure 3).

Hedging
A true defect of all the models considered here is that they

assume an individual worm has a reproductive value independent

of other worms in the population. (Equivalently, the value of the

population is assumed to be the sum of the values of the worms in

it.) In such a model, bet hedging never makes sense: every worm

should do whatever maximizes its mean contribution to future

generations based on the information available to it, and all worms

with the same information should behave identically. This

assumption is justified if the random variations experienced by

the worms in a population are uncorrelated with each other

(‘‘demographic stochasticity’’ [14]). If, however, every worm in the

population experiences identical random variation (‘‘environmen-

tal stochasticity’’ [14]), it may be optimal for the genotype if some

worms make individually non-optimal decisions. The clearest case

is decisions that risk death. A decision that risks the death of an

individual may be good for that individual, if it also has substantial

upside possibilities. However, in a population subject to pure

environmental stochasticity, a decision that risks the extinction of

the population is never optimal, no matter how high the upside

may be [14]. In reality, of course, stochasticity is neither purely

demographic nor purely environmental. The randomness experi-

enced by different members of a population is correlated, but not

identical. Probably, uncertainty is more environmental for short

times, before a population has time to disperse, and more

demographic for longer times.

It is likely that the worm does in fact hedge dauer decisions. The

most striking evidence for this is the effect of ascaroside

pheromones on dauer formation. In standard assays it has proven

impossible, even at very high pheromone concentrations, to force

100% of worms to go dauer [2,15,16]. Even at concentrations

1000 times those required to induce .10% dauer formation, some

worms do not become dauers [15]. (Interestingly, since it is
possible to get 100% reproductive development, this suggests

counterintuitively that in nature dauer development is the

dangerous choice.)

The models used here assume pure demographic stochasticity,

and therefore cannot account for hedging. It is intuitively clear,

however, that the main conclusion of this paper, that uncertainty is

important in optimal decision-making, holds even if there is

environmental stochasticity. Hedging is a response to uncertainty,

albeit only uncertainty of a particular type. If there is no

uncertainty, there should be no hedging, since the value of the

population is reduced by some animals choosing predictably

suboptimal strategies. By assuming pure demographic stochasti-

city, I make the weakest possible assumption. Yet, even in this

case, accounting for uncertainty allows better decisions.

How uncertain is the environment?
The inference that a worm will make better decisions if it takes

uncertainty into account depends on the assumptions that (1) the

environment experienced by a lineage of worms is uncertain, and

(2) uncertainty varies a lot from one environment to another. The

first assumption is not controversial. For instance, Felix and

Braendle [10] refer to worms’ ‘‘boom-and-bust lifestyle exploiting

ephemeral resources’’, and state, ‘‘Critical life-history choices

likely reflect adaptations to the fluctuating and ephemeral natural

habitat of C. elegans.’’ Considering the size of food concentrations

Table 2. Smart and Dumb worm strategies.

A. Dumb worm strategy

environment qv1:2 qw1:2

choice L2d L2

B. Smart worm strategy

low uncertainty

environment qv0:3 qw0:3

choice L2d L2

high uncertainty

environment qv2:4 qw2:4

choice L2d L2

doi:10.1371/journal.pone.0100580.t002
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in the wild relative to the worm, uncertainties of the level at the

right edge of Figure 3, i.e. rare worms experiencing environments

in which their lineage can expand 1,000-fold, do not seem

unrealistic.

However, there is almost no information on how much

uncertainty varies. Certainly, there must be some variation. For

instance, viability, fertility, and growth rate are all affected by

temperature, and C elegans, a cosmopolitan species, is commonly

found in temperate climates where temperatures fluctuate

seasonally above and below the optimum. Similarly, rotting

organic matter is more reliably found at some seasons and

locations than others. However, as shown in Figure 3, the effects of

uncertainty will only make a big difference if there are also

relatively predictable environments, with uncertainties on the

order of 1 or less (i.e., where future value typically varies by less

than a factor of 2). Furthermore, uncertainty is unimportant in

very good or very poor environments (Figure 3, Figure 4). We have

no information on the frequency or even existence of conditions of

medium environment quality and varying uncertainty, and the

prospect of measuring them in field studies is daunting.

I estimated that the use of uncertainty information might

increase the value of a worm by as much as 5%. This is an upper

bound, and the typical value benefit will be smaller. Reproductive

value is not the same as fitness, but they are related: relative fitness

is proportional to the per-generation difference in value. If, for

instance, a lineage of worms finds itself in a situation where the use

of uncertainty information confers a 5% advantage once every ten

generations, the fitness benefit is 0.5%. Compared to known

selective effects acting on survival traits, this is a respectable

number and might well drive evolution [17–19]. (For example,

Hoekstra et al. [18] find that reported values of bs, the relative

fitness difference corresponding to one standard deviation of a

quantitative trait, are distributed exponentially with a median of

8.8%. From this it can be estimated that 33% of reported effects

have bsv5% and about 4% have bsv0:5%. bs includes the

combined selective effect of variation caused by the environment

and all loci controlling a trait. Recent results suggest that

quantitative traits are often controlled by many genes with small

individual effects [20]. This suggests that, at the level of an

individual gene, even very small fitness differences can be

important.) If, on the other hand, such conditions occur only

once in a thousand generations, the fitness benefit is only 0.005%,

a tiny effect (though still capable in theory of being important in a

large population over long times). It is also true that there are

many other options in C elegans development—other decisions

whose accuracy may be improved by accounting for environmen-

tal uncertainty. Thus the value of sensory and computational

engines capable of estimating uncertainty might well go beyond

the specific circumstances in which they aid the L2/L2d decision.

Do worms use uncertainty?
These considerations suggest that worms might estimate

uncertainty and use these estimates in the L2/L2d decision and

others. How might they do this? Clearly, the worms can’t directly

measure future uncertainty. If they are to estimate uncertainty,

they must do so using a proxy, such as past uncertainty or spatial

variation, that is correlated with future uncertainty. There are at

least four possibilities.

The first is the trivial answer: the estimate may be genetically

fixed, and optimized by evolution. This would correspond to

drawing a fixed vertical line on Figure 3, and making the L2/L2d

decision based only on estimated environment quality. This is the

‘‘Dumb worm’’ strategy of Figure 4. The remaining three

strategies all involve some active method of evaluating uncertainty.

The second method was hinted at in Results. The worm may

estimate uncertainty based on its correlation with environmental

characteristics. For instance, a worm in a rotting apple in which

the food is about to be exhausted can foresee its future with

considerable precision. A starving worm searching for food in a

target-rich environment may have the same value, but it is much

less able to predict it. The second worm should therefore favor

L2d more than the first.

Figure 4. Cost of ignoring uncertainty. A. The value of a worm
following either the Smart or the Dumb worm strategy of Table 2. B.
The difference in value between Smart and Dumb worm strategies. C.
Difference in value as a percent of the Smart strategy.
doi:10.1371/journal.pone.0100580.g004
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The third method is the most obvious: a worm can estimate its

uncertainty of the future based on the volatility of its past. That is,

an animal that has grown up in a varying environment might favor

L2d, while a worm that grew up in a constant environment would

favor L2. These decisions might depend on the worm’s own

experience, or (epigenetically) on its mother’s.

The fourth method is communication with others. Worms

communicate using ascaroside pheromones, which affect the L2/

L2d and L3/dauer decisions, as well as other behaviors [2,21]. We

know now that the hypothesis of Golden and Riddle [2] that dauer

pheromone is a constitutively secreted population density signal,

while correct, is an oversimplification. C elegans and other

nematodes release several different ascarosides, the ascarosides

released depend on the worm’s condition and environment, and

they respond differently to different pheromones [21–23]. This

suggests that pheromones may serve not just to detect crowding,

but to pool information about the environment. Suppose, for

instance, that a worm that experiences a good environment

releases one pheromone, while a worm that experiences a bad

environment releases a different pheromone (e.g. C9 ascarosides

released by well-fed L1 cultures, compared to C5 released by

starved cultures [22]). An L1 would interpret good pheromone as

evidence of a good environment and the bad as evidence of a bad

environment. A mixture of good and bad would suggest a variable

and uncertain environment, and bias the L2/L2d decision towards

L2d. It is also possible to combine the third and fourth

mechanisms: a worm that experiences a variable environment

might release a pheromone that directly signals volatility.

The first of these hypotheses, that the L2/L2d decision is based

on a genetically fixed estimate of uncertainty, is essentially

untestable, since it is negative. The second, that uncertainty is

estimated based on its correlation with environmental character-

istics, does make an experimental prediction: that the L2/L2d

decision will depend differently on environment than do the L3/

dauer and dauer recovery decisions. Unfortunately, this prediction

is not specific to the uncertainty hypothesis; one can easily propose

alternative explanations.

Hypotheses three and four, however, can be experimentally

tested. Hypothesis three implies that a worm that has experienced

a volatile past (or whose mother has experienced a volatile past)

will be more likely to choose L2d than a worm that has

experienced a constant past. This prediction can be tested by

manipulating the L1’s experience of temperature, food, and

pheromone (factors known to influence the dauer decision)

between hatching and the L1 molt. For instance, one group of

worms might be given a constant, low density of food from

hatching, while a second group received, in alternation, no food

for time t1, followed by high density food for time t2, with t1 and t2

chosen so that, at the L3/dauer decision, the fraction of worms

that choose dauer is the same in the two groups. Hypothesis three

then predicts that the second group of worms will choose L2d

more often than the first group. By choosing different food

densities and different alternation regimes, the phase diagram of

Figure 3 could be explored.

The clearest evidence for hypothesis four would be identifica-

tion of the proposed good and bad pheromones. There is however

an experimental test short of this, a mixing experiment. It begins

by isolating conditioned medium from worms in good conditions

(well-fed, optimal temperature, uncrowded) and from worms in

bad conditions (starved, high temperature, crowded). The first

prediction is that these conditioned media would influence the L2/

L2d and L3/dauer decisions: good CM would favor reproductive

development, bad L2d or dauer. The second, more important

prediction is that a mixture of good and bad CMs would bias the

L2/L2d decision more strongly towards L2d than it does the L3/

dauer decision towards dauer.

These two tests are not trivial, but seem feasible with current

technology.

Methods

Reproductive Value
To determine the best way to make the dauer decision, I follow

other authors (e.g. Houston and McNamara [14]) in assuming that

every worm has a reproductive value, and that the optimal

decision is the one that maximizes this value. The concept of

reproductive value (henceforth simply ‘‘value’’) was introduced by

Fisher [3], who, considering the effects of age on selection in

human populations, defined it as the answer to the question, ‘‘To

what extent will persons of this age, on the average, contribute to

the ancestry of future generations? The question is one of some

interest, since the direct action of Natural Selection must be

proportional to this contribution.’’ Since C elegans reproduces

primarily by self-fertilization, so that each animal has only one

parent, a worm’s value may be defined more simply as a number

proportional to the average number of its descendants at some

distant future time. The focus on the distant future overcomes a

weakness of simply counting the worm’s children: their contribu-

tion to future generations depends not just on their number, but

also on their age, condition, and access to resources. If, however,

one waits long enough for descendants to disperse and the

environment to revert to its mean, these transient factors should

average out.

The words ‘‘on the average’’ in Fisher’s definition are

important. The number of future descendants of a single worm

does not approach a finite limit: it is well-known that if you wait

long enough in a uniparental population, the lineages of all but

one animal will die out, and the descendants of one particular

animal will take over the entire population [24]. It is only by

averaging over animals that are similar in some way that one can

hope to define value. Since Fisher was concerned with age, he

averaged over all persons of a given age and sex, and the value he

calculated was therefore a function of age and sex.

Here I am concerned with developmental or behavioral

decisions. Any decision must be based on the information available

to the worm at the time of the decision. Therefore value is based

on the average expected number of future descendants of an

animal, with the average taken over all animals in the population

that have the same information.

v Ið Þ~ lim
T??

E C Tð ÞDI½ � ð1Þ

C Tð Þ (for clan) is the number of descendants of a worm at time

T. I is a s-algebra representing the information available to the

worm. It includes information about the worm’s internal state, e.g.

its age and condition, as well as information about the present and

past environment gathered by the senses. E C Tð ÞDI½ �, a conditional

expectation, is thus the expected or average number of descen-

dants at time T of a worm with the information I . Definition

(1)assumes that the population eventually reaches steady-state, so

that the limit as T?? is defined. Non-steady-state populations

present no essential difficulty, but a more complicated definition is

necessary. For simplicity, this paper deals only with populations at

steady-state.

Value so defined is a function of information. Since information

can change rapidly, as rapidly as the senses operate, value can
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change rapidly. In this way the value of an animal is like the value

of a financial security such as a share of stock, which is also an

estimate of future growth, depends on information, and can

change suddenly in response to news.

The information available to a worm changes with time, and is

therefore represented by a filtration F tð Þ. Substituting F tð Þ for I
in (1) gives

v tð Þ~v F tð Þð Þ~ lim
T??

E C Tð ÞDF tð Þ½ � ð2Þ

v tð Þ so defined is a martingale—the best estimate of its future

average is its current value.

Binomial model
The analogy between reproductive value and the value of a

financial security suggests that models used to value securities

might also be applied to worms. In particular, an L2d, which may

become either an L3 or a dauer larva, is like a financial option,

which confers the right but not the obligation to purchase a stock

(the L3) at a predetermined strike price (the value of one dauer) at

some future time (the L2d molt). (To be more precise, the L2d is

like the combination of a call option on a stock plus cash

equivalent to the strike price.) The binomial model [25], a simple

illustrative model often used to demonstrate the properties of

options, can also be applied to the L2d. Although it is too simple to

be quantitatively accurate, it is easy to understand and reproduces

the qualitative features of more realistic models. In this model

there are only two possible future environments: good and bad.

The good environment ensues with probability p, the bad with

probability 1{p. The value of an L3 is v in the good environment

and 0 in the bad. The value of the dauer is 1 in both. The L2d,

which can choose to become either a dauer or an L3, has value

max 1,vð Þ. If there is some cost to becoming an L2d, its value is

instead d max 1,vð Þ, where 0vdƒ1 is a discount factor.

Fixed-time European model
Black and Scholes [11] developed a model for valuing financial

options that is realistic enough to make useful quantitative

predictions. In this model stock price fluctuations are modeled as

a geometric Brownian motion, and the option can only be

exercised at a fixed time (a European-style option). An analogous

model can be developed for the L2d by measuring environment

quality q tð Þ by the ratio of the value of a reproductive L3 larva to

the value of a dauer. This makes sense, since being relatively

insensitive to environment is the whole point of the dauer larva.

Following Black and Scholes [11], q tð Þ is modeled as a geometric

Brownian motion with volatility s, governed by the stochastic

differential equation (SDE)

dq tð Þ~sq tð ÞdW1 tð Þ ð3Þ

dW1 tð Þ is a Brownian motion. (The Black-Scholes SDE usually

includes an additional rq tð Þdt term. r is the rate of population

growth, zero in a population at steady-state.)

This model leads to the following formula for L2d value, similar

in form to the Black-Scholes formula:

v t,q tð Þð Þ~W
s2 T{tð Þ{2 log q tð Þ

2s
ffiffiffiffiffiffiffiffiffiffiffi
T{t
p

� �
zq tð ÞW

s2 T{tð Þz
2 log q tð Þ
2s

ffiffiffiffiffiffiffiffiffiffiffi
T{t
p

0
BBB@

1
CCCAð4Þ

where

v t,q tð Þð Þ is the value of the L2d at time t in units in

which a dauer has value 1

T is the time of the L2d molt

W zð Þ is the standard normal cumulative

distribution function

ð5Þ

As in the binomial model, the cost of becoming an L2d may be

modeled by multiplying v s,tð Þ by a discount factor d.

Variable growth rate models
Growth model. Financial options have fixed expiration

dates. The development of a worm, in contrast, depends on

conditions. Development is delayed if the rate of food intake is low

[26], and if food is inadequate, development may arrest, or the

worm may die. To model this, I let a tð Þ represent the worm’s

developmental age as a function of time. The dynamics of the state

of the worm are modeled as a Brownian motion with negative drift

da tð Þ~{adtzndW2 tð Þ

a,nw0
ð6Þ

a and n are parameters that determine the mean rate of growth

and how much it varies. W2 tð Þ is a Brownian motion independent

of W1 tð Þ.
While not literally realistic, this growth model has several

realistic properties:

N For most worms, things get worse with time.

N There is a broad range of times taken to reach adulthood (or

any other specified goal).

N Some worms never reach adulthood.

N The further away a goal is, the longer it takes to reach it.

N The probability of reaching a goal decreases the further away

it is. Specifically,

P a,Að Þ~e{l A{að Þ ð7Þ

is the probability that a worm of age a reaches age Awa. l, the

discount rate, is given by

l~
2a

n2
ð8Þ

The hardest part of this model to swallow is that it appears to

describe backward aging: that a worm can become developmen-

tally younger with time. This seeming absurdity is resolved by

thinking of a tð Þ as some combination of the worm’s age and

condition related to its potential to reach reproductive adult stage

and produce progeny. (In essence, (7) is assumed to hold by
definition.) A decrease of a tð Þ with time would correspond to

depletion of stored nutrients, loss or damage of cellular proteins,

etc.

The L2d molt is delayed compared to the L1 molt. The delay is

greatest if the worm is maintained under dauer-inducing
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conditions for the entire interval, smallest if, immediately after the

L1 molt, it is switched to conditions that favor reproductive growth

[2]. This suggests that the L2d develops more slowly than the L2. I

therefore model L2d growth like L2 growth, except slowed down

by a delay factor d

da tð Þ~{dadtzdndW2 tð Þ ð9Þ

Reproductive larva. The value of a larva committed to

reproductive growth (but not a larva on the dauer pathway) is

modeled as the product of two functions, one that depends only on

the state of the worm, and one that depends on environment

quality. Environment quality q tð Þ represents the available

information about the present and future environment on the

expected number of progeny. I assume that the relevant state of

the worm is summed up in the single function of time, a tð Þ, which

is a combination of developmental age, nutrient reserves, and

condition as described above. Thus,

v tð Þ~f a tð Þð Þq tð Þ ð10Þ

In the financial analogy, q tð Þ is the price of a stock and f a tð Þð Þ is

the number of shares held. But this analogy is no longer precise,

since f a tð Þð Þ fluctuates with time in a way that is not under the

worm’s control. Thus, the Black-Scholes formula (4) no longer

holds.

f a tð Þð Þ and q tð Þ are assumed independent of each other. Since

v tð Þ is a martingale, each of f a tð Þð Þ and q tð Þ is a martingale. Itô

differentiation of f a tð Þð Þ and substitution of the SDE governing a
leads to the SDE

df a tð Þð Þ~ {af ’ a tð Þð Þz n2

2
f ’’ a tð Þð Þ

� �
dtznf ’ a tð Þð ÞdW2 tð Þ ð11Þ

Since f a tð Þð Þ is a martingale, the dt term must vanish, leading to

the ordinary differential equation (ODE)

0~{af ’ að Þz n2

2
f ’’ tð Þ ð12Þ

with boundary condition

f {?ð Þ~0 ð13Þ

This has solution

f að Þ~Ce

2a
v2

a

~Cela ð14Þ

C is an arbitrary constant that determines the units of value. I

define it so that a mature dauer larva has value 1. The discount

rate l~ 2a
n2 is the same as in eq (7), governing the probability of

developmental progress and f að Þ is directly proportional to this

probability. This shows that the dependence of value of a tð Þ is

entirely accounted for by the probability of advancing to later

stages.

L2d. L2d value doesn’t have the simple product form

assumed for reproductive larvae. Its value is a function of a and

q, but is derived from its capacity to eventually become a dauer or

an L3. Differentiation of v a tð Þ,q tð Þð Þ, substitution of SDEs (3) and

(9), and setting the coefficient of dt to 0 leads to the partial

differential equation (PDE)

0~s2q2vqq{2advazn2d2vaa

~s2q2vqq{2advaz
2a

l
d2vaa

ð15Þ

I estimate the value of the L2d in the models below by solving

this PDE.

European model
Boundary and terminal conditions. In the European

model (named after European-style financial options), the L2d

makes a single decision if and when it reaches the L2d molt to

become either a dauer or an L3. In fact, this is not true—the L2d

can exercise the option to commit to L3 before the molt. However,

the European model is easier to solve, and its solution is the basis

for the solution of the American and hybrid models below, in

which early exercise is allowed.

Define a so that the value of a is 0 at the L2d molt, negative at

earlier ages. We have boundary conditions

v {?,qð Þ~0

lim
q?0

v a,qð Þ~Vde
l
d

a

lim
q??

v a,qð Þ
q

~VL3e
l
d

a

ð16Þ

These conditions hold for av0,0ƒq. Vd is the value at the L2d

molt of a worm that has committed to become a dauer, and VL3q

is the value at the L2d molt of a worm that has committed to

become an L3. The second boundary condition says that in a very

bad environment (q&0), the worm will always choose to become a

dauer, so it can be priced by discounting the dauer value. Likewise

the last boundary condition says that in a very good environment

the worm will always become an L3. In addition the terminal

condition,

v 0,qð Þ~ max Vd,VL3qð Þ ð17Þ

holds for qw0. Terminal condition (17) says that at the molt the

L2d will commit to either dauer or L3 development, whichever

has the highest value. This terminal condition is the primary way

in which biology enters the solution.

Transformation of the PDE. I have not been able to find a

closed-form solution for this model, but I have found an efficient

numerical solution based on Fourier transforms. Begin by

transforming the PDE (15). First, make the substitutions

q~
Vd

VL3
eu

v a,qð Þ~e
l

2d
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VdVL3q

p
y1 a,uð Þ

ð18Þ

to get PDE
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0~{
al

2
z

s2

4

� �
y1zs2y1uuz

2ad2

l
y1aa ð19Þ

with boundary conditions

y1 {?,uð Þ~0

lim
u?{?

e
{ l

2d
a
eu=2y1 a,uð Þ~1

lim
u??

e
{ l

2d
a
e{u=2y1 a,uð Þ~1

ð20Þ

and terminal condition

y1 0,uð Þ~ max e{u=2,eu=2
� �

ð21Þ

Let

ymax a,uð Þ~e
l

2d
a

e{u=2zeu=2
� �

ð22Þ

ymax solves the PDE (19) and boundary conditions (20) but not the

terminal condition (21). Thus,

y a,uð Þ~ymax a,uð Þ{y1 a,uð Þ ð23Þ

must satisfy homogeneous PDE

0~{
al

2
z

s2

4

� �
yzs2yuuz

2ad2

l
yaa ð24Þ

homogeneous boundary conditions

y {?,uð Þ~y a,{?ð Þ~y a,?ð Þ~0 ð25Þ

and terminal condition

y 0,uð Þ~y0 uð Þ~e{u=2zeu=2{ max e{u=2,eu=2
� �

~e{DuD=2

ð26Þ

To check the final simplification, confirm that whenu§0 both

expressions reduce to e{u=2, and when uv0 to eu=2.

Separation of the PDE. This system can be solved by

separation of variables in the usual way. Look for solutions of the

form

yv a,uð Þ~ekaeivu ð27Þ

Substituting into the PDE (24) gives

0~a
2d2k2

l
{

l

2

 !
{

1

4
s2 1z4v2
� �

k~+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2alzs2z4s2v2ð Þ

8ad2

s ð28Þ

kv0 is inconsistent with the boundary condition y {?,uð Þ~0,

so only the positive root k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2alzs2z4s2v2ð Þ

8ad2

q
is of interest. y a,uð Þ

must be a sum of solutions of the form

yv a,uð Þ~ exp a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2alzs2z4s2v2ð Þ

8ad2

s0
@

1
Aeivu ð29Þ

Let ~yy a,vð Þ be the Fourier transform of y a,uð Þ,

y a,uð Þ~ 1ffiffiffiffiffiffi
2p
p

ð?
{?

~yy a,vð Þe{ivudv ð30Þ

Letting a~0 in (30), the terminal condition becomes

y0 uð Þ~ 1ffiffiffiffiffiffi
2p
p

ð?
{?

~yy0 vð Þe{ivudv ð31Þ

~yy0 vð Þ is the Fourier transform of y0 uð Þ,

~yy0 vð Þ~
ffiffiffi
8

p

r
1

1z4v2
ð32Þ

whence

~yy a,vð Þ~
ffiffiffi
8

p

r
1

1z4v2
exp a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2alzs2z4s2v2ð Þ

8ad2

s0
@

1
A

y a,uð Þ~ 2

p

ð?
{?

1

1z4v2
exp a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2alzs2z4s2v2ð Þ

8ad2

s0
@

1
Ae{ivudv

ð33Þ

The solution y a,uð Þ is thus the convolution of y0 uð Þ with a

kernel K a,uð Þ whose Fourier transform is

exp a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2alzs2z4s2v2ð Þ

8ad2

q� �
. A discrete approximation to (33) can

be computed numerically using the fast Fourier transform. Also,

the existence of a solution that blows up in the negative a direction

makes direct numerical solution of the PDE difficult—the Fourier

transform solution evades this problem.

Once y a,uð Þ is known, v a,qð Þ is calculated using (18), (22), and

(23).

v a,qð Þ~e
l
d

a
VdzVL3qð Þ{e

l
2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VdVL3q

p
y a, log

Vd

VL3
q

� �� �
ð34Þ

I have developed other methods for numerical solution of the

European model, but the Fourier transform method is most

efficient.

American and Hybrid European/American models
American model. In the European model, an L2d retains

the option to develop as a dauer until the L2d molt, and thus must

incur the maximum delay of 7.6 h that results from growth at the

slow L2d rate for that entire time. In fact, this is not correct—

under some conditions an L2d may abandon the option to become
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a dauer before the molt, effectively switching from an L2d to an L2

[2,12]. This early switch reduces the developmental delay incurred

by following the L2d pathway and is therefore advantageous in a

good environment.

In the American model (named after American-style financial

options), an L2d may switch to the L2 pathway at any time. If it

does so, its subsequent development proceeds at the normal

reproductive rate (eq (6)) rather than the slower L2d rate (eq (9)).

Calculation of the value of an L2d in the American model

proceeds backward from the molt in small time steps. Since at the

molt there is no longer any possibility of an early switch to the L2

pathway, terminal value is identical for the American and

European L2d and is given by (17):

vA 0,qð Þ~vE 0,qð Þ~ max Vd,VL3qð Þ ð35Þ

vA and vE are the L2d value in the American and European

models; vE is the function that was referred to simply as v in the

previous section.

As described above, vE {h,qð Þ is calculated by projecting the

terminal value back in time through a transformation, convolu-

tion, and back-transformation. Call this operation PE {hð Þ:

vE {h,qð Þ~PE {hð Þ:vE 0,qð Þ ð36Þ

If the time step h is small, vA {h,qð Þ will be the same as vE for

small values of q, i.e. poor environments, since the option to

become a dauer is valuable in a poor environment, and it is

unlikely that the environment will change from poor to good in the

short remaining time h. Similarly, for large values of q it is almost

certain that the dauer option will not be exercised. Thus, for large

q the L2d has the value of an L2 of age {h, VL3qe{lh. For

intermediate quality environments, the American L2d chooses the

option that maximizes its value:

vA {h,qð Þ~ max vE {h,qð Þ,VL3qe{lh
� �

~ max PE {hð Þ:vE 0,qð Þ,VL3qe{lh
� �

~PA {hð Þ:vA 0,qð Þ

ð37Þ

where PA {hð Þ is defined by:

PA {hð Þ:vA a,qð Þ:vA a{h,qð Þ

~ max PE {hð Þ:vA a,qð Þ,VL3qel a{hð Þ
� � ð38Þ

This is an approximation, valid only if h is so small that

switching to the L2 pathway at some time between {h and 0 will

not be much better than switching at the better of {h and 0. Of

course, vA {h,qð Þ can be regarded as the terminal value of vA for

an h step back to vA {2h,qð Þ. By iterating (38), vA a,qð Þ can be

approximated all the way back to the L1 molt. In practice this

calculation can’t be carried out exactly as described for numerical

stability reasons. However, a mathematically equivalent process in

which the transformed function yA a,uð Þ is corrected at each step

for the early exercise value can be made to work.

Hybrid model. In the American model, an L2d may discard

the dauer option at any time; if it does so immediately after the L1

molt, it will incur no delay. However, Golden and Riddle [2]

found that the real behavior is intermediate between American

and European models: if an L2d was switched to favorable

conditions immediately after the L1 molt, its development was

delayed by only 2–3 hours. This result suggests that an L2d can

change its mind before the molt, committing to reproductive

development and growing at the faster reproductive rate. The

mechanism of this delayed switch has recently been worked out

[12].

I used a hybrid American/European model to evaluate the L2d

for this case. In this model a worm that chooses the L2d pathway

at the L1 molt must develop as an L2d at least up to a

developmental age aEE, the early exercise stage. At any age after

aEE the worm may switch to the L2 pathway. In this model an L2d

of age aEE or greater has exactly the same prospects as in the

American model. For ages before aEE, the hybrid model worm has

a European option with expiration aEE on the American model

worm at aEE.

vH a,qð Þ~
a§aEE vA a,qð Þ
avaEE PE a{aEEð Þ:vA aEE,qð Þ

	
ð39Þ

This is not the only way to model the minimum delay, nor is it

obviously the correct one. For instance, it might seem more

plausible that the worm can choose at any time to switch from L2d

to L2, but that the switch can’t be executed immediately; that

some time is needed to unwind L2d development and restart L2

development. This model is very similar to the one described

above: the worm develops as an L2d for some minimum time, then

as an L2 after that. The difference is when it makes the choice. In

the model described by (39) the worm makes its decision to switch

later than in the slow switch model, where a worm must decide at

the L1 molt in order to switch to the L2 pathway at aEE. This early

decision is a disadvantage, since it is based on less current

information than in the hybrid model described. The hybrid

model was used for the value calculations in the body of the paper,

partly because it is computationally more tractable, but also

because it gives a higher value for the L2d and is thus useful in

establishing bounds.

Future prospects
The model for growth and value described here has two obvious

flaws. First, environment quality is modeled as a geometric

Brownian motion (3). This means it can grow or diminish without

bound, and in fact is expected to do one or the other in the long

term. The real environment, however, is more stable. If things are

very good, they will probably get worse; if things are very bad, they

will probably get better. Second, growth and environment quality

vary independently—they are governed by uncorrelated Brownian

motions W1 tð Þ and W2 tð Þ (eqs (3) and (6)). In reality the worms

will tend to grow faster in a good environment, slower in a poor

environment. It is mathematically straightforward to modify the

model so that the two Brownian motions are correlated, but this

gives biologically absurd results, because it correlates the

environment not with growth rate, but with worm age and

condition a tð Þ.
These problems are related, and they can be fixed in the same

way, by modeling the environment not as a geometric Brownian

motion, but as the exponential of an Ornstein-Uhlenbeck process

[27]. The Ornstein-Uhlenbeck process is mean-reverting and over

long periods has a normal distribution. In the simplest version of

such a model the growth rate of the worm (i.e., the rate of change

of a tð Þ) is directly proportional to environment quality, which is an

Ornstein-Uhlenbeck process. This model produces the product
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form (10) for value, not as an assumption, but as a derived

consequence. q tð Þ in this case depends on the difference between

current environment quality and its long-term mean value. This

model unfortunately is too simple, since it has no room for

information about the environment with no immediate effect on

growth (for instance, the smell of food, or pheromones that

measure population density). It can be improved by modeling

environment quality as the product of two factors, one that directly

determines growth rate, and one that depends exponentially on a

second Ornstein-Uhlenbeck process representing environmental

information that doesn’t immediately affect growth.

I have not fully developed these models and do not use them in

this paper for two reasons. First, the PDEs they produce are more

complicated, and I have not yet found an efficient way to solve

them. Second and more important, these more complicated

models have more free parameters, which I have no good way of

estimating. For instance, the two time constants for mean-

reversion of the two Ornstein-Uhlenbeck processes are important.

Over times that are short compared to the mean-reversion time

constant, an Ornstein-Uhlenbeck process looks like a Brownian

motion. The Brownian motion models used here are reasonable

approximations to the Ornstein-Uhlenbeck process models if

mean-reversion times are longer than the duration of the L2d

stage.

Smart and Dumb worm strategies
The Smart and Dumb strategies are evaluated in a world where,

over long times, volatility is zero 50% of the time and infinite 50%

of the time. The Smart worm knows the current volatility and

makes the optimal decision based on both volatility and

environment quality. Its decisions and value can be understood

based on Figure 2. At zero volatility, the L2 curve intersects the

L2d curve at q~0:3, so the L1 chooses L2d if qv0:3 and L2 if

qw0:3. Its value at the L1 molt is

vsmart,0 qð Þ~ max Vde
laL1molt

d ,VL3qelaL1molt

� �
ð40Þ

For qv0:3 this reduces to Vde
laL1molt

d , the discounted value of the

dauer, and for qw0:3 it is VL3qelaL1molt , the discounted value of

the L3.

At infinite volatility, the intersection and hence the cutoff occurs

at q~2:4. Its value is

vsmart,? qð Þ~

max Vde
laL1molt

d zVL3qe
l

aL1molt{aEE
d

zaEE

� �
,VL3qelaL1molt

� �ð41Þ

In this expression the second term of the first argument is the value

of a worm that chooses L2d at the L1 molt, then, at aEE switches to

the L2 pathway.

Finally, the value of the smart worm is

vsmart qð Þ~0:5vsmart,0 qð Þz0:5vsmart,? qð Þ ð42Þ

This is piecewise linear with breakpoints at 0.3 and 2.4.

The Dumb worm doesn’t know the current volatility, and must

base its decision solely on q. If it chooses L2d and the volatility is 0,

its value is given by (40); vdumbL2d,0 qð Þ~vsmart,0 qð Þ. If the volatility

is infinite,

vdumbL2d,? qð Þ~Vde
laL1molt

d zVL3qe
l

aL1molt{aEE
d

zaEE

� �
ð43Þ

Thus, the long-term average value of the Dumb L2d is

vdumbL2d qð Þ~0:5vdumbL2d,0 qð Þz0:5vdumbL2d,? qð Þ ð44Þ

This is piecewise linear with a single breakpoint at 0.34. The

breakpoint is different from that for the Smart worm because the

Dumb worm, not knowing the volatility, may choose the L2d

pathway at zero volatility even when it is not optimal, i.e. at

qw0:3. By the time it reaches aEE it will discover its mistake, and,

if qw0:34, will switch to the L2 pathway, cutting its losses. If,

however, qv0:34, the optimum is now to become a dauer. This

cutoff is different from the cutoff the smart worm makes at zero

volatility, because the dumb worm has paid part of the price for

becoming a dauer. Its remaining cost to become a dauer is now a

4 h delay rather than a 7 h delay, so the dauer option is more

attractive.

The value of the L2 is by definition independent of volatility

vdumbL2 qð Þ~VL3qelaL1molt ð45Þ

Finally, the value of the Dumb worm is

vdumb qð Þ~ max vdumbL2d qð Þ,vdumbL2 qð Þð Þ ð46Þ

The Dumb worm cutoff, the intersection of vdumbL2d qð Þ and

vdumbL2 qð Þ, is at q~1:2. The difference between vsmart qð Þ and

vdumb qð Þ, plotted in Figure 4B, thus has breakpoints at 0.3, 0.34,

1.2, and 2.4

vsmart qð Þ{vdumb qð Þ~

qv0:3 0

0:3vqv0:34 0:42q{0:13

0:34vqv1:2 0:05q

1:2vqv2:4 0:13{0:05q

2:4vq 0

8>>>>>><
>>>>>>:

ð47Þ

Parameter estimation
While the qualitative conclusions of this analysis are robust to

numerical assumptions, it is necessary to insert specific numerical

values for the parameters to estimate quantitative consequences.

These parameters are not fixed. Some are known to be subject to

genetic control, and the same can be presumed of the rest. To

estimate the consequences of uncertainty on value, I attempted to

estimate likely values of these parameters in the current C elegans
population.

Data sources. The most important inputs into the model are

measured times of developmental events and rates. Different

papers report different values, in part because they were measured

at different temperatures, the most common being 20uC and

25uC. By matching the times of specific events such as hatching

and the molts, I adjusted all times and rates to a common

standard, choosing Hodgkin and Barnes [7] as the base 20uC life

history to which others were matched.

Data come from the following sources:
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N Hodgkin and Barnes [7]: Life cycle duration, wild-type and

tra-3 brood sizes and progeny production rates, sperm

production rate.

N Cutter [28]: Alternative brood size and sperm production rate.

N Wood [29]: egg-laying, hatch, and molt times.

N Golden and Riddle [30]: minimum and maximum L2d

durations, time to form and recover from dauer.

N Knight et al. [31], and data provided by Armand Leroi

(personal communication): body volumes and growth curves.

To calculate v a,qð Þ, numerical values for parameters a, l, d, s,

aEE, Vd, and VL3 are needed.

s: volatility. I did not attempt to estimate volatility, but left it

as a free parameter in the simulations. The volatility s is the root-

mean-square rate of change of the natural logarithm of

environment quality with the square root of time and has units

of s2K. Since the meaning of numerical values in these units is

difficult to interpret, I instead plot a derived quantity I call

‘‘uncertainty’’:

uncertainty~es
ffiffiffi
T
p

{1 ð48Þ

T is the duration of the L2d stage (the modal duration in variable

growth rate models), and es
ffiffiffi
T
p

the factor by which environment

quality changes in this time. 1 is subtracted so that a completely

predictable environment has uncertainty 0. An uncertainty of 100

means that the environment at the end of the L2d is expected most

often to be between 101 times better and 101 times worse than at

the beginning.

a: growth speed. a is the drift in the Brownian motion

growth model. This parameter sets the time scale. It determines

how long a worm that successfully grows from age a1 to age a2

takes to do it. The values of a at which particular events such as

molts occur are defined to be the times after fertilization under

ideal laboratory conditions at 20uC, so ideal conditions would

correspond to a~1. Growth rate depends on conditions, especially

food availability and quality [32]. Thus, one would expect the

growth rate in the wild to be lower. On the other hand, food

deprivation more severe than that which slows growth 3–4-fold

leads to larval death (unpublished observations). a should thus be

chosen so that most worms take between a and 4a hours to

advance in age by a. In the simulations presented here I choose a
so that the typical (modal) worm requires 32.8 h for L2d

development, twice the time required under ideal conditions.

d: L2d delay. The L2d matures more slowly than the L2 [30],

which results in delayed development. This is accounted for by the

factor d in the SDE for L2d growth. It is the L2 duration divided

by the maximum L2d duration, d~ 8:8hð Þ= 16:4hð Þ~0:54.

aEE: L2d early exercise time. Golden and Riddle [30]

report that a worm grown under dauer-inducing conditions until

the L1 molt, then shifted to conditions that favor reproductive

development was delayed in development by 2–3 hours, the

average of which corresponds to 3.2 h after correction for

temperature. If a worm exercises the option to switch to the L2

pathway at developmental age a, it will develop at rate d from the

L1 molt until it reaches a, then at rate 1 from a to the L2 molt.

The total time required is thus:

t~
a{aL1molt

d
z

aL2molt{a

1
ð49Þ

Substituting aL2molt~0, aL1molt~{8:8, d~0:54, t~8:8z3:2
~12:0 and solving for a shows that a worm that experienced a

3.2 h delay must have switched from L2d to L2 pathway at

a~{5:1h; i.e., it spent 7 h as an L2d, during which it advanced

as far in development as an L2 would in 3.8 h, followed by 5 h as

an L2. Since this was the minimum developmental delay,

aEE~{5:1h is the earliest time at which an L2d may exercise

the option to switch to L2.

l: discount rate. The discount rate, a key parameter,

measures how rapidly value increases with a, v!ela. I estimated

this in three ways.

Method 1: larval growth: The main business of a hermaphrodite

larva is to eat and grow in size, in order to eventually become an

adult with a large intestine and gonad that can support the

manufacture of eggs from food. It is a reasonable guess, then, that

the value of a larva is proportional to its size. Larval growth is

approximately exponential [31]. Using size measurements help-

fully provided by Armand Leroi (personal communication), I

estimated the rate of larval growth to be lg~0:064h{1,

corresponding to a doubling time of 10.9 h.

Method 2: reproductive rate: In the long run, the value of any

worm lies in its future progeny. The total value of future progeny,

discounted to the present, should equal the value of the worm.

v~

ð?
0

p að Þe{lrada ð50Þ

Here p að Þ is the rate of production of eggs by a worm of age a
and lr is the reproductive rate estimate of the discount rate. I

neglect mortality, since it is very low before or during the

reproductive period under laboratory conditions. If age 0 is

fertilization and the newly fertilized egg is the accounting unit,

v~1 and (50) becomes the Euler-Lotka equation.

Hodgkin and Barnes [7] reported that an egg takes 64.4 h to

mature to the point at which it produces its first egg. Thereafter it

produces 5.3 per hour until the sperm supply runs out at 327. (50)

thus becomes

1~

ð64:4z327=5:3

64:4

5:3e{lrada ð51Þ

This is solved by lr~0:068h{1, doubling time 10.3 h. I have

observed that a single worm placed on a standard bacteria-seeded

6 cm plate exhausts the food and gives rise to between 100,000

and 200,000 descendants in 7 days (unpublished data), consistent

with a reproductive rate in this range. Chen et al. [33] and

Muschiol et al. [34] have published estimates of reproductive rate

in the same ballpark, 0.042 h21 and 0.057 h21, respectively.

Unfortunately, I couldn’t use these estimates directly, since they

sample at rather long intervals (24 h for Chen et al. [33], 6 h for

Muschiol et al. [34]) and do not report the timing of develop-

mental milestones that can be used to standardize age.

Method 3: sperm production: The two previous methods both

estimated the rate of increase of value under laboratory conditions

where food is not limiting. In the wild it is likely that worms

frequently have limited resources and thus grow more slowly. This

is accounted for in the model: a is assumed to increase at a slower

rate in nature than in the lab (see ‘‘a: growth speed’’ estimate

above), and future value is discounted by a rather than by time.

However, it is also true that when food is limited worms are
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smaller and produce fewer progeny [35]. Thus, the discount rate

in nature may be lower than the previous two lab-based estimates.

Hodgkin and Barnes [7] showed that a tra-3 mutant that

increases sperm production and thus produces 499 progeny delays

progeny production by 2.6 hours. Despite the larger brood, this

mutant has a slower population growth rate than wild type. In fact,

these numbers predict that tra-3 worms should grow 3.01% more

slowly than wild-type, in agreement with the measured difference

of 2.8160.62% in eating races, suggesting that Hodgkin and

Barnes correctly identified the reason for slower growth.

Surprisingly, however, the schedule of wild-type sperm produc-

tion is not optimal for a discount rate of 0.068 h21. Comparison of

wild-type and tra-3 suggests that the production of each sperm

delays egg production 2.6/(499–327) = 0.015 h. This places the

start of sperm production at 64.4–0.0156327 = 59.5 h. The value

of a worm that makes n sperm is thus estimated to be

v n,lð Þ~
ð59:5z0:015nzn=5:3

59:5z0:015n

5:3e{lada

~5:3e{59:5l e{0:015nl{e{0:20nl

l

ð52Þ

(This equation is valid only for sperm production that delays egg

production. As Cutter [28] has pointed out, many sperm are

produced before adulthood and their production may have no

effect on the timing of oogenesis. This consideration has no effect

on the calculations that follow.) With l~0:068h{1, v n,lð Þ is

maximized not at 327, but 204 sperm, at a maximum value of 1.07

eggs. One possible explanation is that the discount rate in nature is

lower than 0.068 h21. By assuming that sperm production is

approximately optimal for the discount rate in nature, I can

estimate that rate. The optimal n is that for which
L
Ln

v n,lsð Þ~e{59:5ls 1:08e{0:20nls{0:080e{0:015nls
� �

~0. Letting

n~327 and solving for ls gives ls~0:042h{1, doubling time

16.4 h. Using Cutter’s measured sperm production rate of

23.6 h21, the discount rate estimated by this method is instead

0.027 h21, doubling time 36.4 h. Here I prefer the rate estimated

from Hodgkin and Barnes’s data, as it’s based on progeny timing,

the most directly relevant numbers. However, there is no obvious

reason why these two numbers should differ, and I suggest the

discrepancy between 0.027 and 0.042 is a measure of the likely

error in this estimate.

Summary: Three distinct methods give estimates of the discount

rate l ranging from 0.027 h21 to 0.068 h21. The method I

consider best gives l~0:042h{1, corresponding to a doubling

time of 16.4 h.
Vd, VL3: new dauer and L3 values. Vd and VL3 are

expressed in terms of l. I use a mature dauer as my unit of

account. A dauer needs 14.5 h to recover to an L4 [2, corrected

for temperature], so the value of an L4 right after the dauer molt is

VL4~e14:5l. Assuming that the L4 resulting from the dauer molt

and the L4 resulting from the L3 molt are equivalent, VL3 can be

estimated by discounting the L4 value by the length of the L3

stage, 9.5 h, to give VL3~e 14:5{9:5ð Þl~e5:1l.

Vd is the value of a newly formed dauer, right after the L2d

molt. This is not 1, because full maturation of the dauer takes

15.9 h and is irreversible, once begun [2]. Thus Vd~e{15:9l.

Software and calculations
Calculations were done in Mathematica (Wolfram Research,

Inc). All calculations are included in Dataset S1 as Mathematica
notebooks.

Supporting Information

Dataset S1 Calculations. Calculations were done in Wolfram

Mathematica. This dataset contains Mathematica notebooks that

carry out the calculations and explain them in detail. There are

two principle notebooks, amer_model_v6.nb and calcula-

tions_v2.nb. Files init_v3.m, init_v3.nb, itoCalculus_v6.m, itoCal-

culus_v6.nb, and Shreve.m contain supporting code necessary for

amer_model_v6.nb and calculations_v2.nb to evaluate. PDF

printouts of the two main notebooks are also provided so that

they can be read without Mathematica.
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