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1 |  INTRODUCTION

Colorectal cancer (CRC) is the third most commonly di-
agnosed cancer and the leading cause of cancer-related 

mortality in the world.1,2 The treatment of 5-fluorouracil 
(5-Fu)–based adjuvant chemotherapy (ACT) following cu-
rative surgery is considered as the standard treatment for 
patients with stage II and III CRC who are at high risk of 

Received: 22 August 2019 | Revised: 8 February 2020 | Accepted: 16 February 2020

DOI: 10.1002/cam4.2952  

O R I G I N A L  R E S E A R C H

Predicting the effect of 5-fluorouracil–based adjuvant 
chemotherapy on colorectal cancer recurrence: A model using 
gene expression profiles

Quan Chen |   Peng Gao |   Yongxi Song  |   Xuanzhang Huang |   Qiong Xiao |   
Xiaowan Chen |   Xinger Lv |   Zhenning Wang

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Quan Chen and Peng Gao contributed equally to this work. 

Department of Surgical Oncology and 
General Surgery, Key Laboratory of 
Precision Diagnosis and Treatment of 
Gastrointestinal Tumors, Ministry of 
Education, The First Affiliated Hospital of 
China Medical University, Shenyang City, 
China

Correspondence
Zhenning Wang, Department of Surgical 
Oncology and General Surgery, Key 
Laboratory of Precision Diagnosis and 
Treatment of Gastrointestinal Tumors, 
Ministry of Education, The First Affiliated 
Hospital of China Medical University, 155 
North Nanjing Street, Heping District, 
Shenyang City, 110001, China.
Email: josieon826@sina.cn.

Funding information
China Postdoctoral Science Foundation 
Grant, Grant/Award Number: 
2018M641746; Science and Technology 
Plan Project of Liaoning Province, Grant/
Award Number: NO.2013225585; National 
Key R&D Program of China, Grant/
Award Number: MOST-2017YFC0908300, 
MOST-2017YFC0908305; Program 
for Liaoning Innovative Research Team 
in University, Grant/Award Number: 
LT2016005

ABSTRACT
It is critical to identify patients with stage II and III colorectal cancer (CRC) who will 
benefit from adjuvant chemotherapy (ACT) after curative surgery, while the only 
use of clinical factors is insufficient to predict this beneficial effect. In this study, we 
performed genetic algorithm (GA) to select ACT candidate genes, and built a predic-
tive model of support vector machine (SVM) using gene expression profiles from the 
Gene Expression Omnibus database. The model contained four ACT candidate genes 
(EDEM1, MVD, SEMA5B, and WWP2) and TNM stage (stage II or III). After using 
Subpopulation Treatment Effect Pattern Plot to determine the optimal cutoff value of 
predictive scores, the validated patients from The Cancer Genome Atlas database can 
be divided into the predictive ACT-benefit/-futile groups. Patients in the predictive 
ACT-benefit group with 5-fluorouracil (5-Fu)–based ACT had significantly longer 
relapse-free survival (RFS) compared to those without ACT (P = .015); However, the 
difference in RFS in the predictive ACT-futile group was insignificant (P = .596). 
The multivariable analysis found that the predictive groups were significantly as-
sociated with the effect of ACT (Pinteraction = .011). Consequently, we developed a 
predictive model based on the SVM and GA algorithm which was further validated 
to define patients who benefit from ACT on recurrence.
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relapse.3 However, researchers have found that the rate of 
patients receiving ACT for stage II and III CRC is below 
50%,4,5 primarily due to the severe adverse effects of che-
motherapy. In addition, there were some patients who have 
received ACT treatment experienced more harm effect than 
the good due to the significant adverse effects of chemother-
apy that negatively affected their quality of life.6 Moreover, 
even after receiving the ACT treatment, the recurrence rate 
of stage II and III CRC in patients who received ACT is 
up to 30%.7 Therefore, to identify stage II and III CRC in 
patients who will benefit from adjuvant therapy has been 
defined as one of the most important areas in which to im-
prove cancer patient care and outcomes.6

With evolution of high-throughput technology, stud-
ies regarding the molecular mechanisms of disease and 
prognosis predictions for various cancers have made great 
progress by obtaining tumor genomic profiles.8 However, 
predictive models for the effect of ACT is found only in a 
limited number of studies 9 and were poorly in their predict-
ing effects. Zheng et al10 has analyzed a sort of differentially 
expressed genes (DEGs) from stage II-III drug-resistant 
colorectal cell lines and developed a drug corresponding 
score system, while the DEGs from drug-resistant col-
orectal cell lines may be irrelevant to drug sensitivity or 
resistance since they are simply supposed to identify the 
drug-induced transcription changes.11 Additionally, Tong 
et al12 used relative expression orderings (REOs) and at-
tained six gene pair-based signatures (6-GPSs) to predict 
the effect of ACT in patients with stage II-III CRC; how-
ever, the reliability of this method has been questioned 
due to the limited robustness of independent data sets and 
differences among their outcomes.9 Furthermore, the re-
sults of previous models compared the survival differences 
among the patients who received 5-Fu–based ACT, rather 
than identifying the patients who were suitable for 5-Fu–
based ACT.

It is difficult to directly build a predictive model using 
high-dimensional profiles, since there are substantially more 
gene expression profiles than the number of presented sam-
ples, and still we need to conclude the clinical information and 
follow-up information in analyzing matrix. A genetic algo-
rithm (GA) has been reported to have the ability to efficiently 
select relevant features among massive gene expression 
values prior to model building.13 Also, the Support Vector 
Machine (SVM) is capable of recognizing subtle patterns in 
complex datasets, which is regarded as a supervised learning 
algorithm and is widely applied in analyzing classification of 
high-dimensional data features.14 Moreover, some previous 
studies have successfully applied the SVM on the areas of 
cancer diagnosis and prognostic factors classification.15,16

Therefore, we performed SVM with GA to select ACT 
candidate genes and build a predictive model, termed the 
SVM-GA model, using the gene expression profiles from 

Gene Expression Omnibus (GEO) database. This predictive 
model was further validated using RNA sequence array ex-
pression profiles from The Cancer Genome Atlas (TCGA) 
database.

2 |  MATERIALS AND METHODS

2.1 | Data sources and preprocessing

We downloaded the transcriptome profiling expression values 
of three cohorts as a training cohort (GSE14333, GSE29621, 
and GSE39582) from the GEO database (National Center for 
Biotechnology Information, US National Library of Medicine 
8600 Rockville Pike, http://www.ncbi.nlm.nih.gov/geo/). 
These cohorts were collected from the same platform for 
cross-cohort data comparison using a GPL570 [HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. 
Meanwhile, we downloaded the level 3 mRNA sequence array 
expression data, fragments per kilobase million (FPKM), of 
patients with CRC from TCGA (https://cance rgeno me.nih.
gov/) database portal as a test cohort. The detailed informa-
tion of all cohorts was presented in Table 1.

The cohorts selected for analyzing were based on the fol-
lowing criteria:

1. large-scale human samples (numbers of patients  >  29) 
of mRNA gene expression profiles were obtained from 
the untreated, primary cancer tissues;

2. measured using the same technology platform from 
which clinical information (including ACT, censored in-
formation, and TNM stage) and raw expression data are 
available;

3. the quality of data was evaluated or proven (accomplished 
via the peer review process or published in scientific 
journals).

All raw values were quantile normalized and transformed 
into a log2 scale base. Relapsed patients with relapse-free sur-
vival (RFS) time below 36  months were moved to control 
bias. After deleting patients with unknown information, we 
included 706 patients with CRC in this study. Gene IDs in 
the microarray were mapped by probe IDs using the corre-
sponding platform CDF files or using a DAVID Functional 
Annotation Tool (https://david.ncifc rf.gov/). If multiple 
probe IDs were mapped to the same gene IDs, the arithme-
tic average of the expression values of these probes were 
calculated. Probes that could not be mapped were removed. 
Furthermore, we prudentially deleted the genes for which the 
expression values were at 0 FPKM from at least 50% of the 
samples in the TCGA dataset. To reduce the experimental 
batch effect and unwanted deviation, we used ComBat to cor-
rect batches.17

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14333
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29621
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://david.ncifcrf.gov/
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2.2 | Classifier for ACT benefit

To evaluate the appreciation of patients received ACT, we 
divided the patients into ACT-benefit and ACT-futile groups 
according to the treatment method of ACT and RFS time.18 
The patients were subsequently classified based on: (a) ACT-
benefit group: patients whose RFS time was greater than 
36 months who received ACT or was less than 36 months 
without ACT; (b) ACT-futile group: patients whose RFS 
time was greater than 36 months treated without ACT or was 
less than 36 months received ACT.

2.3 | Selection of ACT relevant genes and 
building a predictive model

After comparing the chi-square values calculated using the 
Wilcoxon test, DEGs from the ACT-benefit and ACT-futile 
groups in the training cohort were selected to build a pre-
dictive model. Significant DEGs and clinical variables were 
used as SVM input and the ACT-benefit/-futile results were 
used as the outcome.

We used LIBSVM to build a model to predict the effect 
of ACT.15,19 The kernel function is the radial basis function 
(RBF). The accuracy of the model outcomes is measured by 
calculating the area under the receiver operating character-
istics curve (AUC). To increase the accuracy, some param-
eters (eg, cost(c) to reduce model overfitting and gamma (g) 
to control the degree of nonlinearity) were systematically 
optimized.

In this study, we performed GA by selecting variables 
according to previous studies.15,20 The GA was based on the 
results of “evaluations” for all input “chromosomes” in the 
inputting variables in the training dataset and the most opti-
mized variable subset was selected. In each generation, indi-
viduals were selected according to fitness, after which cross 
and mutation were constructed to a new set of solutions. The 
cardinal principle of GA is the process of natural selection; like 
natural evolution, after decoding the optimal individuals in the 
last generation can be used as an approximate solution to the 
problems.

To enhance the operating efficiency of the system algo-
rithm and maximize the possibility of selecting best chro-
mosome with the best fitness, we set the size of population, 
possibility of cross and possibility of mutation to 20, 10% 
and 30%, respectively. The iteration of GA was determined 
as 10 000 to reduce the possibility that the optimal solution 
by iteration of a single initial value. Fivefold cross-validation 
(CV) was performed to reduce the bias of training samples 
over-fit and helped to determine the best optimized param-
eters.20 Finally, the developed SVM-GA model was used to 
calculate a predictive score for each patient. The source code 
of the SVM-GA model was uploaded into the Github (https://
github.com/QuanC hen-cmu/SVM-GA-model).

2.4 | Determination of model cutoff point

We used the Subpopulation Treatment Effect Pattern Plot 
(STEPP) to determine the cutoff points to classify the sub-
group patients into predictive ACT-benefit/-futile groups.21 
Using the STEPP, we plotted the changes during the 3-year 
RFS time following the increasing predictive score, which 
was calculated by SVM-GA model. According to the cutoff 
point determined by STEPP, patients in the test cohort would 
be stratified into two groups, and then a log rank test was per-
formed to compare the difference in the RFS rate of patients 
with/without ACT between these two groups.

2.5 | Functional enrichment analysis

We carried out a KEGG pathway analysis using R cluster-
Profiler22 and a Reactome pathway analysis (https://www.
react ome.org/). A Fisher's exact test was used to select the 
relevant pathways.

2.6 | Sensitivity analysis

Sensitivity analysis was performed using propensity score (PS) 
analysis in this part. The patients in test set were adjusted using 

T A B L E  1  Datasets used in this study

Datasets Type Tissue Platform TNM Stage ACT Samples Median follow-upc 

TCGA mRNA CRC tissue HiSeqV2a II-III 5-Fu based 138 72.53

GSE14333 mRNA CRC tissue GPL570b II-III 5-Fu based 145 44.97

GSE29621 mRNA CRC tissue GPL570b II-III 5-Fu based 31 52.86

GSE39582 mRNA CRC tissue GPL570b II-III 5-Fu plus 
folinic acid

392 56.00

aHiSeqV2 = IlluminaHiSeq_RNASeqV2. 
bGPL570 = GPL570[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. 
cMedian follow-up for relapse-free survival time. 

https://github.com/QuanChen-cmu/SVM-GA-model
https://github.com/QuanChen-cmu/SVM-GA-model
https://www.reactome.org/
https://www.reactome.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14333
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29621
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
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the PS analysis by applying the nearest neighbor matching 
method. In this analysis, the PS match creates groups of patients 
with a similar probability of receiving the ACT on the basis of 
their baseline characteristics to minimize the differences among 
patients’ covariates, which could become confounding factors 
to evaluate the effect of ACT in a nonrandomized cohort.23-25 In 
this study, a PS of each patient means the likelihood of receiv-
ing ACT which was calculated by using a covariate adjustment 
method of clinicopathological factors. We initially performed 
logistic regression to select the significant clinicopathological 
factors which may effectively influence the evaluation of the 
effect of ACT. According to these covariates, a new set of un-
matched patients was identified. By using a 1:1.5 nearest neigh-
bor matching algorithm that pairs patients with the closest PS 
within a defined limit, the PS yielded two well-matched patient 
sets (logistic analysis algorithm). After PS matching, we vali-
dated the model in defining patients that benefit from ACT upon 
recurrence using the newly matched patients set.

2.7 | REO-based signature

The REO-based signature was promoted to predict the ef-
fect of 5-Fu–based ACT for patients with stage II and III 
CRC.12,26 We reobtained the CRC mRNA expression profiles 
of the test cohort and transformed them into a log2 scale. The 
duplicated genes were modified by calculating the arithmetic 
average of their expression. After comparing the expression 
orderings of the reported six gene pair signatures (6-GPS), 
the patients with at least a half of the REOs of the set of gene 
pairs were stratified into the high-risk group, whereas the re-
siduals were stratified into the low-risk group.

2.8 | Statistical programs and software

A threshold value of P < .05 was considered statistically sig-
nificant, except under special circumstances as described 
separately. All statistical analyses were performed using R ver-
sion 3.5.3 (https://www.r-proje ct.org/). The SVM algorithm 
was built using the LIBSVM program27 based on MATLAB 
2016a (MathWorks), and the source code was uploaded to 
Github (https://github.com/QuanC hen-cmu/SVM-GA-model). 
Meanwhile, the GA was coded based on MATLAB 2016a.

3 |  RESULTS

3.1 | Data preprocessing and characteristics

The outline of the overall study is shown in Figure 1. As is 
shown in Figure 1, the training cohort included 568 patients 
from GEO database and the test cohort included 138 patients 

from TCGA database. There were 401 (56.80%) patients with 
stage II CRC and 309 (43.77%) patients who received 5-Fu–
based ACT (Table S1). The clinicopathological factors in all 
datasets are presented in Table 2.

3.2 | Selection of 5-FU–based ACT 
candidate genes and building the SVM-
GA model

After performing a Wilcoxon test on the expression values 
of genes in the training cohort between patients in the ACT-
benefit group and ACT-futile group, we identified 240 sig-
nificant DEGs (P  <  .001 as the threshold; Supplementary 
file1).

With the help of SVM and GA, we constructed and op-
timized a predictive model by setting the TNM stage (stage 
II or III); 240 ACT candidate genes as the input variables 
and the information for the ACT-benefit/-futile groups as the 
outcome. The average fitness and the best fitness of each it-
eration increased progressively and was sustained at a steady 
level in the process of GA iteration evolution (Figure 2A). 
Finally, we obtained a model containing four genes and TNM 
stage (stage II or III) after parameter optimization (training 
dataset AUC = 0.703). The best optimized genes’ combina-
tion was EDEM1, MVD, SEMA5B, and WWP2. The model 
calculated a predictive score for each patient and that patients 
who received 5-Fu–based ACT in the training cohort had a 
longer RFS with the increase in predictive scores, whereas 
those without 5-Fu–based ACT exhibited a slightly down-
ward RFS trend (Figure 2B).

3.3 | Determining the cutoff point of the 
SVM-GA model

To classify patients into the predictive ACT-benefit/-futile 
groups, we used the STEPP to determine the cutoff point 
for the predictive scores. The results showed that there 
was a significant tendency toward ACT and both 3-year 
RFS differences (Figure 3A) and hazard ratio (Figure 3B) 
following the increasing predictive scores. Indeed, the pa-
tients who received ACT with a higher predictive score (the 
predictive scores greater than 0.8) tended to have a longer 
RFS compared to those with surgery only. Therefore, we 
grouped the patients into the predictive ACT-benefit group 
if the cutoff point greater than 0.8, and the remaining pa-
tients were grouped into the predictive ACT-futile group. 
For the predictive ACT-benefit group in training cohort, 
patients with surgery only had a significantly shorter RFS 
(P = .012, HR = 0.528, 95%CI = 0.318-0.876; Figure S1A). 
There were no significant differences between the patients 
who received 5-Fu–based ACT and those with surgery only 

https://www.r-project.org/
https://github.com/QuanChen-cmu/SVM-GA-model
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F I G U R E  1  Outline of the SVM-GA model flow
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in the predictive ACT-futile group (P = .059, HR = 1.308, 
95%CI = 0.989-1.729; Figure S1B).

3.4 | Validation of the SVM-GA model

We validated the predictive signatures in the test cohort 
from the TCGA dataset. Based on the determined cutoff 
point, the SVM-GA model stratified 138 patients into a 
predictive ACT-benefit group that included 31 (22.46%) 
patients and a predictive ACT-futile group that included 
107 (77.54%) patients. The patients who received 5-Fu–
based ACT in the predictive ACT-benefit group had a 
significantly longer RFS than those with surgery only 
(P  =  .015, HR  =  0.345, 95%CI  =  0.140-0.850; Figure 
4A); however, there was no significant difference be-
tween these two types in the predictive ACT-futile 
group (P  =  .596, HR  =  1.211, 95%CI  =  0.598-2.454; 
Figure 4B). Therefore, the results of external validation 
suggested that this predictive model could distinguish 
between patients who were and were not suitable for re-
ceiving ACT.

Furthermore, we performed univariate and multivariate 
regression analysis to identify the association between the 
effect of ACT and clinical characteristics. Among the pa-
tients in the predictive ACT-benefit group, those with ACT 
were significantly associated with a longer RFS compared 
to those with surgery only (univariable analysis HR = 0.345, 
95%CI  =  0.140-0.850, P  =  .021; multivariable analysis 
HR  =  0.266, 95%CI  =  0.095-0.742, P  =  .011; Figure 5, 
Table S2). In contrast, the results between the patients who 
received 5-Fu–based ACT and those received surgery only in 
the predictive ACT-futile group was not significant (univari-
able analysis HR = 1.211, 95%CI = 0.598-2.454, P = .595; 
multivariable analysis HR  =  1.490, 95%CI  =  0.673-3.298, 
P = .325; Figure 5, Table S2). The associations on RFS be-
tween ACT and the predictive ACT groups (ACT-benefit 
group vs ACT-futile group) regarding RFS were significant 
(univariable analysis Pinteraction = .028; multivariable analysis 
Pinteraction = .011; Figure 5). However, there was no significant 
association on RFS between ACT and the other characteris-
tics (Figure 5).

3.5 | Sensitivity analysis

Before PS matching, there were five factors (age, sex, T 
stage, N stage, and TNM stage) can significantly influence 
the effect of ACT by univariate logistic regression (Table 
S3). We obtained seventy-three patients in the newly test 
set after PS matching, the differences of clinicopathologi-
cal factors were insignificant between the patients who re-
ceived adjuvant chemotherapy and those who did not (Table 

T A B L E  2  Comparison of clinical factors between patients who 
received ACT and patients who did not receive ACT in all datasets

 

Case number (N%)

P*
Patients who 
received ACT

Patients who did 
not receive ACT

Agea <.001

<55 77 (26.64%) 45 (11.66%)  

55-65 83 (28.72%) 62 (16.06%)  

65-75 95 (32.88%) 136 (35.23%)  

>75 34 (11.67%) 143 (37.05%)  

Racea .054

White 22 (55.00%) 56 (57.14%)  

Black/
African

7 (17.50%) 4 (4.08%)  

Asian 1 (2.50%) 2 (2.05%)  

Unknown 10 (25.00%) 36 (36.73%)  

Gender .290

Male 162 (52.42%) 224 (56.42%)  

Female 147 (47.58%) 173 (43.58%)  

Site .184

Colon 292 (94.50%) 365 (91.94%)  

Rectum 17 (5.50%) 32 (8.06%)  

Gradea b .787

I 1 (5.00%) 1 (9.09%)  

II 15 (75.00%) 7 (63.64%)  

III 4 (20.00%) 3 (27.27%)  

Histological typea .709

AC 36 (90.00%) 86 (87.76%)  

MC 4 (10.00%) 12 (12.24%)  

T stagea <.001

T1 4 (1.69%) 1 (0.33%)  

T2 37 (15.68%) 95 (31.05%)  

T3 160 (67.79%) 168 (54.89%)  

T4 35 (14.84%) 42 (13.73%)  

N stagea <.001

N0 56 (24.03%) 161 (53.14%)  

N1 88 (37.77%) 111 (36.63%)  

N2 73 (31.33%) 22 (7.26%)  

N3 16 (6.87%) 9 (2.97%)  

TNM Stage <.001

II 86 (27.84%) 315 (79.35%)  

III 223 (72.16%) 82 (20.65%)  

Abbreviations: AC, adenocarcinoma; Black/African, Black or African American; 
MC, mucinous adenocarcinoma.
aLack of information in some series: 31 patients, lack of age information 
(GSE29621); 164 patients, lack of T stage information (GSE14333, GSE29621); 
170 patients, lack of N stage information (GSE14333, GSE29621, GSE39582); 
Grade information was only provided in GSE29621 series; histological type and 
race information were only provided in TCGA series. 
bGrade I = well differentiated; grade II = moderately differentiated; grade 
III = poorly differentiated. 
*P values were made by χ2-test. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29621
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14333
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29621
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14333
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29621
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29621


   | 3049CHEN Et al.

3).  In sensitivity analyses, patients who received ACT in 
the predictive ACT-benefit group remained significantly 
longer RFS than those who did not received ACT (P = .031, 
HR = 0.300, 95%CI = 0.094-0.958; Figure 6A). Additionally, 
there was no significant difference between these two types 
in the predictive ACT-futile group (P =  .430, HR = 1.288, 
95%CI = 0.576-2.879; Figure 6B).

3.6 | Evaluation of the SVM-GA model 
stratified by TNM stage subgroups

We stratified patients in the predictive groups using the TNM 
stage and found that neither stage II nor III patients in the pre-
dictive ACT-futile group exhibited a significant difference 
between the patients who received ACT and those with sur-
gery only (P = .707 and P = .896 for stage II and III patients, 
respectively; Figure S2). There were no patients with stage II 

stratified into the predictive 5-Fu–based ACT-benefit group 
(Supplementary file2). The selected patients with stage III re-
ceived ACT in the predictive ACT-group had a significantly 
longer RFS compared with those with surgery only, while this 
was consistent with the previous finding (P = .015; Figure 5A).

3.7 | Functional analysis on ACT-
relevant genes

The top 10 significant pathways according to KEGG and 
Reactome are presented in Figure S3 (Fisher's exact test, 
P < .05). The DEGs with high expression values in the ACT-
benefit group were mostly enriched in the pathways relevant 
to MAPK, NTRs, and Notch (Figure S3A,B), whereas genes 
with high expression values in the ACT-futile group were 
mostly enriched in the pathways about Nonsense-Mediated 
Decay (NMD) and p53 signaling (Figure S3C,D).

F I G U R E  2  Establishment of the 
SVM-GA model using the training cohort. 
A, Results of genetic algorithm (GA). 
The iterations of each variable in GA are 
presented in the longitudinal axes and 
the selected variables in the SVM-GA 
model are presented in the transverse axes. 
B, SVM-GA model predictive scores 
distribution, patient relapse-free survival 
time, and expression heatmap
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3.8 | Evaluation the effectiveness of the 
6-GPS REO-based signature

We compared the relative orderings of 6-GPS and stratified 
the patients into 5-Fu–based high-/low-risk groups (Figure 
S4A). In both the predictive 5-Fu–based high- and low-risk 
groups, there were no significant RFS differences between 
the patients who received ACT and those with surgery only 
(P  =  .676 for high-risk group and P  =  .222 for low-risk 
group; Figure S4B,C). Similarly, there were also no sig-
nificant RFS differences between high- and low-risk group 
among patients who received ACT or those with surgery only 
(P = .113 for patients who received ACT and P = .818 for 
patients with surgery only; Figure S4D,E). Therefore, the 
6-GPS REO-based signature was not considered suitable for 
the test cohort.

4 |  DISCUSSION

In 2019, the American Society of Clinical Oncology pro-
posed that defining patients who would benefit from adjuvant 

therapy is a secondary priority area for accelerating progress 
against cancer and improving patient therapy outcomes.6 
However, there remains an absence of proof with regard to 
which biomarkers can be used to predict the effect of 5-Fu–
based ACT on recurrence for stage II-III CRC patients. 
Moreover, some studies10,12 developed models to predict 
the effect of ACT on prognosis using gene expression pro-
files with unsatisfactory results. Zheng et al10 built a drug 
corresponding score system using DEGs from stage II-III 
drug-resistant colorectal cell lines, in which the DEGs were 
proposed to identify drug-induced transcriptional changes 
rather than drug sensitivity or resistance.11 Therefore, we 
thought that the predictive model based on DEGs from drug-
resistant colorectal cell lines was not suitable for predicting 
the effect of ACT. Additionally, Tong et al 12 developed a 
REO-based signature to predict the effect of 5-Fu–based 
ACT. However, when we processed the 6-GPS in the test 
cohort, no significant difference was found between the pa-
tients who received ACT and those with surgery only in both 
the high- and low-risk groups (Figure S4B,C). This unwanted 
result was partially due to that REO was a rank-based model 
and some subtle quantitative information might be lost.28 

F I G U R E  3  STEPP analysis between 
the concentrated continuous variables 
(predicted values of SVM model) and the 
effect of adjuvant chemotherapy (ACT) in 
the training cohort. A, Relapse-free survival 
(RFS) rates at 36 mo of patients with ACT 
and surgery only according to patients’ 
subpopulations clustered by predictive 
values. B, Hazard ratio of patients with 
ACT according to patients’ subpopulations 
clustered by predictive values (solid line) 
with a 95% confidence interval (dashed 
lines)
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Meanwhile, the 6-GPS was presented by comparing the dif-
ferences in survival among patients who received ACT rather 
than directly distinguishing patients who were suitable for 
5-Fu–based ACT.

In this study, we built a predictive model to define the 
patients who will be suitable for 5-Fu–based ACT, termed 
the SVM-GA model. The model was built based on the SVM 
algorithm which was a robust algorithm that could select the 
most optimized subset with the help of a GA. Based on the ex-
ternal validation, patients who received ACT in the predictive 
ACT-benefit group had a longer RFS than those with surgery 

only (P  =  .015; Figure 4A), whereas there was no signifi-
cant difference between two patient subsets in the predictive 
ACT-futile group (P = .596; Figure 4B). This demonstrated 
that the predictive model can directly distinguish between 
patients who were and were not suitable for ACT. The 
SVM-GA model can be further validated using the uploaded 
code. At the same time, in order to evaluate the robustness 
of the SVM-GA model, we performed a multivariable anal-
ysis. Except our model, there was no significant association 
between the effect of 5-Fu–based ACT and the variables con-
taining the TNM stage, age, and sex (Pinteraction > .05; Figure 

F I G U R E  4  Relapse-free survival (RFS) in the predictive adjuvant chemotherapy (ACT) groups in the test cohort. In total, 138 patients with 
CRC from TCGA database are included in these analyses. A, RFS in the predictive ACT-benefit group. B, RFS in the predictive ACT-futile group. 
95%CI, 95% confidence interval; HR, hazard ratio
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5). Thus, the SVM-GA model can be applied in clinical de-
cision using the code we uploaded to directly distinguish the 
patients who would be ACT-benefit or not.

We directly compared the ACT-received subgroups of 
the ACT-benefit and ACT-futile groups and found the re-
sult was not significant (median RFS of ACT-received pa-
tients: 60.033  months vs 55.933  months for the predictive 

ACT-futile and ACT-benefit groups, respectively; log rank 
P = .845). The main function of our SVM-GA model may be 
that it could tell the CRC patients whether they need ACT if 
a certain series of genes were expressed on primary tumor. 
We suggested the predictively ACT-benefit patients should 
receive ACT as possible, otherwise the patients’ RFS will be 
significantly shortened (3-year relapse rate: 18.2% vs 60.0% 

F I G U R E  5  Association between the relapse-free survival (RFS) and predictive adjuvant chemotherapy (ACT) groups or clinical 
characteristics in the test cohort. A, Univariate analysis. B, Multivariate analysis adjusted for age, sex, TNM stage, and predictive groups. P values 
for association between clinical characteristics and ACT-benefit group 
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for the patients without ACT and the patients with ACT, re-
spectively; P = .015; Figure 4A). Additionally, as for as the 
patients were predicted with ACT-futile, the tendency to re-
lapse after surgery would not be significant if they refused 
ACT for some reasons (3-year relapse rate: 69.0% vs 65.0% 
for the patients without ACT and the patients with ACT, re-
spectively; log rank P = .596; Figure 4B).

Since the TNM stage of CRC in patients is considered to 
be one of the independent factors that can impact the effect 
of 5-Fu–based ACT,29,30 we performed a subgroup analy-
sis to identify the influence of the TNM stage in this study. 
The results suggested that our model was able to distinguish 
the patients with stage III who should be suitable for ACT 
(P = .015; Figure 4A). However, interestingly, patients with 
stage II CRC was completely predicted to be ACT futile. 
Some recent studies have reported there were no significant 
effect of ACT on both DFS and OS between patients with 
stage II CRC who received 5-Fu–based ACT and those with 
surgery only.31,32 After analyzing the patients with stage II 
in the test cohort, we found there was no significant associa-
tion between the patients who received ACT and those with 
surgery only (HR = 1.183, 95%CI = 0.492-2.844, P = .707; 
Figure S2A). Because the patients with stage II CRC in the 

test cohort actually had worse RFS compared to those with 
surgery only, we cannot come to conclusion that the SVM-GA 
model was not able to accurately define the stage II CRC pa-
tients who will benefit from ACT. Simultaneously, this re-
search sample size in the test cohort was small. Besides, our 
predictive model should be expected to distinguish the stage 
II CRC patients who will benefit from 5-Fu–based ACT after 
expanding the number of study patients.

Four genes (EDEM1, MVD, SEMA5B, and WWP2) and 
TNM stage (stage II or III) were included when establishing 
the SVM-GA model. We also performed KEGG and Reactome 
analyses based on the selected genes with high expression val-
ues in the ACT-benefit/-futile groups. Except the EDEM1, the 
expression levels of the other genes in the ACT-benefit group 
were upregulated. The downregulation of EDEM1 has been 
reported to be correlated with a strong activation of cellular 
autophagy,33 which could improve sensitivity to chemother-
apy and promote the death of tumor cells.34 The function of 
MVD is to mediate the relative expression of protein kinase B 
(Akt)35,36; the level of Akt has also been reported to decrease 
the resistance to 5-Fu in CRC cells possibly by activating the 
PI3K/AKT pathway.37 The enrichment results of ACT-benefit 
genes using Reactome suggested that the beneficial effect of 

T A B L E  3  Baseline characteristics before and after propensity score analysis in the test cohort

Characteristic

Before matching After matching

Patients who 
received ACT
(N = 40)

Patients who did 
not receive ACT
(N = 98) P*

Patients who 
received ACT
(N = 29)

Patients who did not 
receive ACT
(N = 44) P*

Age     <.001     .072

<55 14 (35.00%) 12 (12.24%)   5 (17.24%) 11 (24.99%)  

55-65 12 (30.00%) 16 (16.33%)   11 (37.93%) 7 (15.91%)  

65-75 11 (27.50%) 38 (38.78%)   10 (34.48%) 13 (29.55%)  

>75 3 (7.50%) 32 (32.65%)   3 (10.35%) 13 (29.55%)  

Gender     .004     .669

Male 15 (37.50%) 63 (64.28%)   14 (48.27%) 19 (43.18%)  

Female 25 (62.50%) 35 (35.72%)   15 (51.73%) 25 (56.82%)  

T stage     .019     .342

T1 2 (5.00%) 1 (1.02%)   1 (3.45%) 1 (2.27%)  

T2 31 (77.50%) 92 (93.88%)   22 (75.86%) 39 (88.64%)  

T3 7 (17.50%) 5 (5.10%)   6 (20.69%) 4 (9.09%)  

N stage     <.001     .197

N1 11 (27.50%) 80 (81.64%)   11 (37.93%) 26 (59.10%)  

N2 17 (42.50%) 9 (9.18%)   10 (34.48%) 9 (20.45%)  

N3 12 (30.00%) 9 (9.18%)   8 (27.59%) 9 (20.45%)  

TNM stage     <.001     .077

II 11 (27.50%) 80 (81.64%)   11 (37.93%) 26 (59.09%)  

III 29 (72.50%) 18 (18.36%)   18 (62.07%) 18 (40.91%)  

*P values were made by χ2-test. 
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ACT was strongly associated with the “PI5P, PP2A, and IER3 
Regulate PI3K/AKT Signaling” pathway (Figure S3A,C), as 
these regulators could activate PI3K/AKT signaling and inhibit 
Akt dephosphorylation to overcome 5-Fu resistance in CRC 
cells.38 WWP2 has been reported to improve the sensitivity to 
chemotherapy39 by binding to Notch3 in ovarian cancer cells 
and inducing WWP2 associated Myc degradation in myeloma 
cells.40,41 Moreover, a functional analysis found NMD path-
ways correlated with the futile effect of ACT. Furthermore, 
researchers identified CRC cells with NMD activity to be cor-
related to microsatellite sequence instability (MSI)42; CRC 
cells with MSI were found to become more resistant to 5-Fu 
than those with microsatellite sequence stability (MSS).43,44 
However, while the relationship between SEMA5B and che-
motherapy in CRC is unclear, it has been shown to activate 

both calcineurin and calpain-mediated pathways,45 which 
could functionally enhance tumor cell autophagy and apopto-
sis.46 Although we identified some relevant ACT signatures, 
evidence regarding the specific molecular mechanism of these 
signatures remains unclear which required a further experi-
mental validation. Overall, our model used these signatures to 
determine the optimal chemotherapy options for patients with 
stage II-III CRC.

This study had some limitations. The cutoff point was 
determined using normalized profiles; hence, a large-scale 
sample is required to validate this best cutoff point, which 
can be measured by real-time PCR or assays using paraf-
fin-embedded specimens as a standard. In addition, these 
public datasets were lacking additional clinical informa-
tion (eg, the number of dissected lymph nodes, MSI and 

F I G U R E  6  Relapse-free survival (RFS) in the predictive adjuvant chemotherapy (ACT) groups after PS matching in the test cohort. In total, 
73 patients with CRC from TCGA database are included in these analyses. A, RFS in the predictive ACT-benefit group. B, RFS in the predictive 
ACT-futile group. 95%CI, 95% confidence interval; HR, hazard ratio
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histological type), which is necessary to define high-risk 
stage II CRC patients and validate the robustness of our 
predictive model. Also, there were also lacking information 
on chemotherapy's poisonous side effects, which should be 
considered when making a proper recommendation on ACT 
to a given patient. Moreover, it can be expected that the can-
didate four genes deduced from transcriptional abundance 
could be measured by some experimental methods such as 
reverse transcriptase PCR (RT-PCR) or in situ hybridiza-
tion in primary CRC tissues. Thus, it is worth developing 
biological confirmation to measure the four candidate genes 
for the clinical application of the SVM-GA model in future 
prospective studies.

In summary, we developed an SVM-GA model to pre-
dict the effect of 5-Fu–based ACT on recurrence in patients 
with CRC. This model can help clinicians optimize their 
decision making for patients with CRC who are suitable 
for 5-Fu–based ACT and avoid the adverse effect of che-
motherapy on patients who are predicted to be ACT-futile. 
However, further studies are needed to validate these 
results.
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