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Abstract

Background: Inadequate refilling from extravascular compartments during hemodialysis can lead to intradialytic
symptoms, such as hypotension, nausea, vomiting, and cramping/myalgia. Relative blood volume (RBV) plays an
important role in adapting the ultrafiltration rate which in turn has a positive effect on intradialytic symptoms. It has
been clinically challenging to identify changes RBV in real time to proactively intervene and reduce potential
negative consequences of volume depletion. Leveraging advanced technologies to process large volumes of
dialysis and machine data in real time and developing prediction models using machine learning (ML) is critical in
identifying these signals.

Method: We conducted a proof-of-concept analysis to retrospectively assess near real-time dialysis treatment data
from in-center patients in six clinics using Optical Sensing Device (OSD), during December 2018 to August 2019.
The goal of this analysis was to use real-time OSD data to predict if a patient’s relative blood volume (RBV)
decreases at a rate of at least — 6.5 % per hour within the next 15 min during a dialysis treatment, based on 10-
second windows of data in the previous 15 min. A dashboard application was constructed to demonstrate how
reporting structures may be developed to alert clinicians in real time of at-risk cases. Data was derived from three
sources: (1) OSDs, (2) hemodialysis machines, and (3) patient electronic health records.

Results: Treatment data from 616 in-center dialysis patients in the six clinics was curated into a big data store and
fed into a Machine Learning (ML) model developed and deployed within the cloud. The threshold for classifying
observations as positive or negative was set at 0.08. Precision for the model at this threshold was 0.33 and recall
was 0.94. The area under the receiver operating curve (AUROC) for the ML model was 0.89 using test data.

Conclusions: The findings from our proof-of concept analysis demonstrate the design of a cloud-based framework
that can be used for making real-time predictions of events during dialysis treatments. Making real-time predictions
has the potential to assist clinicians at the point of care during hemodialysis.
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Background

Hemodialysis (HD) involves removal of fluid from the
circulating blood by ultrafiltration and refilling from the
extravascular compartments [1]. This process helps pre-
serve blood pressure and tissue perfusion [2]. However,
inadequate refilling could lead to a variety of intradialy-
tic symptoms, such as intradialytic hypotension (IDH),
fatigue, and cramping [3, 4]. IDH can lead to cardiac
complications and an increased risk of death [5-8].

Studies have shown the role of relative blood volume
(RBV) and how adapting the ultrafiltration rate has a
positive effect on intradialytic symptoms [9, 10]. How-
ever, it has been clinically challenging to identify
changes in RBV in real time to proactively intervene and
reduce potential negative consequences of volume deple-
tion. Hence leveraging advanced technologies to process
large volumes of dialysis and machine data in real time
and developing prediction models using machine learn-
ing (ML) is critical in identifying these signals.

A network of dialysis clinics routinely captured
hematocrit, oxygen saturation, and intravascular blood
volume during dialysis using Optical Sensing Device
(OSD) device [11-13]. The OSD provides clinicians with
the ability to have near real-time monitoring of the pa-
tient’s clinical status during HD. During dialysis treat-
ments, data is collected every ten seconds, which is
required to be stored, curated, and analyzed timely inter-
ventions. There is a dearth of knowledge about utilizing
this machine data for monitoring treatment level param-
eters and personalizing care for HD patients. This may
be secondary to traditional storage and computing re-
sources being unable to handle the processing of such
large data stores.

Big data technologies and cloud-based services are
novel tools that can provide the necessary infrastructure
to support such near real-time applications. Big data is a
field that incorporates ways to analyze, systematically ex-
tract information from, or otherwise deal with data sets
that are too large or complex to be dealt with by trad-
itional software [14]. Cloud technology moves big data
processing off local computers and onto shared web ser-
vices, allowing for greater optimization of resources and
faster processing as a result. Cloud platforms provides a
secure, efficient, and reliable way to process and analyze
data.

We conducted a retrospective analysis to assess dialy-
sis treatment data from 2019. This analysis was used to
develop a proof-of-concept that cloud infrastructure can
be used in clinical care and provide necessary data to
consider if implementation in the future is warranted.
The model developed in this proof-of-concept was not
utilized in clinical practice.

We created a ML application to identify patients at
risk of having their RBV decrease at a rate of at least
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-6.5% per hour anytime during HD. A dashboard
application was constructed demonstrate how reporting
structures may be developed to alert clinicians in real time
of at-risk cases.

Methods/design

General design

For this proof-of-concept analysis, we used data from
adult patients treated at six clinics (Fresenius Kidney
Care, Waltham, MA, United States) that universally
used OSD during HD as a standard of care between
December 2018 through August 2019. In these six
clinics, there was hardware previously setup to trans-
fer data from the OSD device to a secure Internet of
Things (IoT) private server on Amazon Web Services
(AWS; Amazon Web Services, Inc., Seattle, WA,
United States) using IoT software [15, 16]. The AWS
server was compliant with the Health Insurance Port-
ability and Accountability Act (HIPAA) [15]. Amazon
Web Services (AWS), Microsoft Azure, and Google’s
cloud platforms are the most broadly adopted web
services platform in the world [17-19].

The goal of this analysis was to use historic OSD data
to build a prediction model that can actively classify pa-
tients at risk of having their RBV decrease at a rate of at
least — 6.5% per hour within the next 15 min of HD
throughout the entire treatment. Also, we aimed to con-
struct a dashboard to that could be considered for deliv-
ery of alerts for patients predicted at risk.

This analysis was performed under a protocol that was
approved by New England Institutional Review Board
under a waiver of informed consent per title 45 of the
United States Code of Federal Regulations part 46.116(f)
(Needham Heights, MA, United States; NEIRB# 17-
1311567-1). The analysis was conducted in adherence
with the Declaration of Helsinki.

Patient population

We included data from patients who were greater than
or equal to 18 years of age and females were not known
to be pregnant.

Optical sensing device
The OSD (Crit-Line®, Bad Homburg, Germany) profiles
patient’s intradialytic status to assist clinicians monitor
the treatment assessment and intervention during
hemodialysis [20]. By monitoring blood volume percent
changes, caregivers can adjust treatment as necessary to
maximize fluid removal and prevent common intradialy-
tic symptoms, such as IDH, nausea, vomiting, and
cramping [9, 21-24], as well as minimize the risk of
worse outcomes [12, 25].

Per the manufacture’s specifications for RBV thresh-
olds [20], when the rate of change in RBV, based on the
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latest 15 min of data, is decreasing less than —3 % per
hour, the ultrafiltration rate might be increased without
immediate risk of intradialytic symptoms. In this case
the patient’s plasma refill rate is occurring at the same
or a greater rate than the ultrafiltration rate. When the
rate of change in RBV, based on the latest 15 min of data,
is decreasing between -3 and —6.5% per hour, it indi-
cates a suitable compromise between a high ultrafiltration
rate and the prevention of intradialytic symptoms. When
the rate of change in RBV, based on the latest 15 min of
data, is greater than — 6.5 % per hour, there is a rapid de-
crease in RBV and bears a higher risk for intradialytic
symptoms, such as lightheadedness, nausea, vomiting,
cramping, or hypotension. Prior studies have shown re-
ductions in intradialytic complications with ultrafiltration
based on RBV targets in relatively consistent ranges [9,
21-24], and that ultrafiltration performed targeting RBV
deceases between - 3 and - 6.5 % per hour associates with
better patient outcomes [12, 25].

Model data and features

The ML model was trained and tested on a static set of
historical observations from our system. Data was de-
rived from three sources: (1) OSDs, (2) HD machines,
and (3) patient electronic health records.

OSD data and treatment data from the 2008 T* dialysis
machines were collected every 10 s during dialysis treat-
ments. OSD data included variables like blood volume
alert level, RBV, changes in hematocrit, hemoglobin,
oxygen saturation, minimum oxygen saturation, and
oxygen alert level.

Dialysis machine data included variables such as sys-
tolic blood pressure, diastolic blood pressure, mean ar-
terial blood pressure, pulse, delivered equilibrated (e)Kt
V, average small molecular clearance [Kecn], projected
single pool (sp) Kt V, first plasma Na, body volume,
blood flow rate, conductivity, dialysate flow rate, inter-
vention performed on the machine, arterial pressure,
dialysate temperature, venous pressure, ultrafiltration
rate, blood volume processed, ultrafiltration goal,
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ultrafiltration volume removed, and remaining time on
dialysis in minutes (RTD).

Patient demographic information such as age, height,
access type, and clinic ID were referenced from the on-
premises clinical data warehouse. Patient measures in
the clinic on the day of treatment included pre-dialysis/
post-dialysis weight and the type of dialyzer used in
treatment.

OSD and 2008T* dialysis machine data from five sep-
arate time windows: 1, 5, 10, 15 min, and since-start-of-
treatment windows were used to derive additional intra-
treatment features using average, minimum, maximum
and standard deviation for each time window. The final
dataset spanned 751,354 treatment records and 493 in-
put variables including features for average, minimum,
maximum, and standard deviation for the continuous
variables at each time point.

Predictive model

The model was built using the AWS Sagemaker [26] de-
velopment platform. The curated final dataset of 751,354
treatment records was randomly split into training data
(80 %), validation data (10 %) and test data (10 %). The
target variable was a binary indicator of patients who ex-
perienced a decrease in RBV at a rate of at least — 6.5%
per hour during a dialysis treatment within the next
15 min. Figure 1 shows the ascertainment period and
the prediction period for the model.

The data showed a 22 % prevalence within observa-
tions in which RBV decreased at rate of at least 6.5%
per hour during a dialysis treatment. Given the imbal-
anced nature of our data, we limited our ML model se-
lection to algorithms that deal well with such data,
including support vector and random forest families [27,
28]. The final model was trained using a ML tool known
as an extreme gradient boosting (XGboost) algorithm
[29]. Hyperparameters are model-specific internal pa-
rameters that are initially set to certain default values to
cover general use cases. These parameters must be
tuned for the problem at hand to get optimal model
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performance [30]. After model selection, the Bayesian
optimization strategy implemented by Amazon Sage-
Maker was used to tune the model hyperparameters to
maximize the AUROC [31]. In the Bayesian tuning strat-
egy ML algorithms performance is modeled as a sample
of a Gaussian process [32, 33]. This allows information
from prior iterations to inform the next parameters to
try to optimize model performance, balancing both ex-
ploration of values not yet used with exploitation of the
best-known results.

The predicted probability output by the model was
converted to a binary prediction to predict positive and
negative cases of RBV decreasing at rate of at least -
6.5% per hour during a dialysis treatment. The cutoff
threshold for the binary prediction was set to 0.08, so if
the prediction score was above 0.08, then the patient
was flagged to be at risk of decreasing RBV. The thresh-
old was set by evaluating the results of the training and
validation data.

Feature importance from the gradient boosting algo-
rithm was used to derive top features (variables) that
were considered highly predictive of the outcome.
The feature importance is calculated using the gain
method, or the relative contribution of the corre-
sponding feature for each tree in the model. The
method works by averaging the training loss reduc-
tion caused by feature utilization for each split in the
decision tree [34].

Conceptional analysis design

Figure 2 shows a general design of the analysis setup.
Conceptually, the analysis consisted of three main com-
ponents: (1) Hardware and devices needed to monitor
patients, (2) Cloud-based Service for real-time data ana-
lysis and communication, and (3) On-premises secure
Data Warehouse to reference patient-protected informa-
tion needed for data analysis.
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In the cloud, IoT software processed incoming data
from the clinic. The data was then curated into a big
data store within the cloud. The big data store refer-
enced on-premises data warehouse to securely extract
patient-protected information and other clinical data
and then to securely feed into the ML model. These
multiple sources of data were made available to the Ma-
chine Learning Engine (MLE) which was also hosted in
the cloud. The MLE would then make a prediction
based on the data and generate an alert to the clinicians
and nurses for identified at-risk cases. The entire ana-
lysis pipeline had to be optimized to ensure low latency
(i.e. ensure timeliness of near real-time prediction). This
optimization process is beyond the scope of the current
discussion.

Cloud computing infrastructure flow for generating real
time dashboard

The data flow for the entire modeling pipeline within
AWS is shown in Fig. 3. Green arrows in Fig. 3 show
how the data flows from the clinics using OSD, the
dialysis machines, and the warehouse into the cloud
to train a model and provide data to the endpoint
interface. The orange arrows show how the data flows
in real time from the clinic using OSD and the data
warehouse. Each new message in the cloud data store
triggers a function, which creates 493 different fea-
tures used in the trained model. These features are
then provided as an input data parameter to the end-
point interface to generate a prediction and store the
results in another data store. The prediction results
are then used in a dashboard to generate a proof-of-
concept clinical user interface.

Analysis of ML model performance
Performance of ML model was measured by the area
under the receiver operating curve (AUROC) in the
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training, validation, and testing datasets, as well as the
recall and precision in the testing datasets. AUROC
measures the rate of true and false positives classified by
the prediction model across probability thresholds.
Table 1 shows the definition of true/false positive and
negative predictions classified by the model in the
assessment of performance in the testing dataset.

Recall (sensitivity) measures the rate of true positives
classified by the model at a specified threshold and is
calculated as follows:

number of true positives

Recall =
(number of true positives + number of false negatives)

Precision measures the positive predictive value for the
model at a specified threshold and is calculated as follows:

number of true positives

Precision =
(number of true positives + number of false positives)

Similarly, Specificity for the model is defined as:

number of true negatives
number of true negatives + number of false positives)

Specificity = (

And the Negative Predictive Value (NPV) is defined
as:

number of true negatives

NPV =
(number of true negatives + number of false negatives)

AUROC, recall, precision, specificity and NPV metrics
yield scores on a scale of 0 (lowest) to 1 (highest). A
model performing at chance would yield an AUROC of
0.5. The cutoff threshold for classifying predictions was
selected to optimize recall and precision according to
the use case.

Results

Patient characteristics

We obtained data from 616 adult in-center HD patients
that were treated in six clinics to build the prediction
model. Patient demographics are shown in Table 2. The
descriptive statistics of numeric input variables used to
train the model are shown in Table 3.

Table 1 Definition of true/false positive and negative predictions classified by the model in the assessment of performance in the

testing dataset

True Patients correctly classified as having a risk of their relative blood volume (RBV) decrease at a rate of at least — 6.5 % per hour within
positives the next 15 min by the model.

False Patients incorrectly classified as having a risk of their RBV decrease at a rate of at least — 6.5 % per hour within the next 15 min by the
positives model.

True Patients correctly classified as not having a risk of their RBV decrease at a rate of at least — 6.5 % per hour within the next 15 min by
negatives the model.

False Patients incorrectly classified as not having a risk of their RBV

negatives the model.

decrease at a rate of at least —6.5 % per hour within the next 15 min by
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Table 2 Demographics of patients at the start of the study
period (entire cohort)
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Table 3 Descriptive Statistics of Numeric Input Variables
(Training Data)

Patient Characteristics Value Variable N Mean £ SD
Number of Patients 616 Diastolic Blood Pressure [mmHg] 562,012 7013 +1442
Average Age 64.5(SD: £14.83) Mean Arterial Blood Pressure [mmHg] 562,012 96.72+18.13
Male 578 % Mean Pulse [bpm] 562,012 71.83+11.08
Black 275 % Systolic Blood Pressure [mmHg] 562,012 1337542427
White 68.6 % Delivered equilibrated (E)Kt V 415,498 062+024
Hispanic 221 % Mean Kecn 539626 25238+33.25
Congestive Heart Failure 247 % Projected single pool (sp)Kt V 533,226 0.78 +0.54
Diabetes 39.1 % First Plasma Na [mEg/L] 537453 14024 +3.78
Hypertension 775 % Body Volume [L] 533226 34.84+846
Ischemic Heart Disease 245 % Critline Relative Blood Volume Alert [%)] 601,210  -1242+395
Average Albumin [g/dL] 3.8(SD: +0.38) Relative blood volume (RBV) [%] 601,210 -4.16+6.387

Changes in hematocrit [%] 601,210 2683 +1542
ML Model performance and feature importance Hemoglobin [g/dL] 601210 896+533
The resulting predictive model was tested on 10% Oxygen saturation [%] 601210 6939 +39.25
(753072 reC(‘)rds) of Fhe treatmfent da‘ta‘ from all 616 Minimum Oxygen Saturation [%] 601210 8837+ 1684
patients, which was withheld during training.

Using a low threshold of 0.08, the model had a re- Oxygen Alert Level [%] 601210 6829+ 3464
call rate of 0.94, meaning the model was able to cap-  Blood Flow Rate [mL/min] 601,210 34899414223
ture 94 % of the observations that had a decrease in  Conductivity [mS/cm] 601,210 137+1.09
RBV at a rate of at least —6.5% per hour within the  Dialysate Flow Rate [mL/min] 601210 64303 +182.94
next 15 min. The precision of the model was 0.33. . ior Temnp [°C] 601210 3649+ 088
The specificity for the mochlel was 0.52 anfi the NPV Arterial Pressure [mmHa] 601210 16243+ 77.12
was 0.97. The AUROC (Fig. 4) for the final hyper- _
parameter tuned model was 0.89. The red dot on the Dialysate Temperature ['C] 601210 3286:+5256
figure shows the true positive rate and the false posi-  Venous Pressure [mmHg] 601,210 15684+7185
tive rate at a threshold of 0.08. Ultrafiltration Rate [mL/Hr] 601,210 5506+ 350.28

Figure 5 shows a list of the top 10 features from the  Blood Volume Processed [L] 601,210 42041+ 27147
tuned model that were most predictive of a patient ex- Remaining Time on Dialysis [Mi] 601210 9546+71.16
periencing their RBV decrease at a rate of at least — o0 co miy 601210 250646 + 104249
6.5% per hour during a dialysis treatment in the next _

15 min. It shows how valuable each feature was to the Ultrafiltration Volume Removed [mL] 601,210  1280.32 +999.72
model in predicting the outcome. Higher value of the  Age [Years] 560899 66,57 1435
feature implies it is more important in calculating the  Height [cm] 535433 1681%11
outcome of the model. Most Recent Post-Dialysis Weight [Kg] 552,865  80.12+ 24.05

Most Recent Pre-Dialysis Weight [Kg] 552,865  82.08 £ 2455
Proof-of-concept dashboard Average 30 days post dialysis weight [Kg] 552,865  80.06 + 24.08
Figure 6 shows the proof-of-concept dashboard for S

Average 30 days pre dialysis weight [Kg] ~ 552,865  82.03+/-24.59

a patient during dialysis treatment. The patient goes
through various stages of having a risk of RBV de-
creasing at rate of at least — 6.5% per hour (that is
entering Profile C as shown in the figure). The
probability of the prediction of profile C generated
from the model is above 80 % before the actual oc-
currence of the event denoted in red under the Pro-
file header. The RBV % at this point drops below -
6.5% as shown under the Blood Volume % header.
This dashboard illustrates that the model was able
to predict the occurrence of the event before it
happened.

SD Standard Deviation

Discussion

The findings from our proof-of-concept analysis suggest
the potential for real-time reporting and prediction of
treatment blood volume profiles that are associated with
an increased risk of intra-dialytic symptoms and would
subsequently be amenable to intervention. Furthermore,
the architectural framework demonstrated in this paper
can be used for making real-time predictions of other
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events during dialysis treatments; and as such this ana-
lysis serves as a proof-of-concept. Making real-time pre-
dictions can help clinicians and nurses to provide
proactive support at the point of care during dialysis
treatment. A practical implication for the present would
be that, if nurses and clinicians are alerted to the risk of
a drop in the blood volume 15 min prior to the RBV de-
creasing at rate of at least — 6.5 % per hour during a dia-
lysis treatment, they would have ample time to intervene
and adjust the ultrafiltration rate in order to prevent that
patient from entering the risk zone for intradialytic
symptoms like IDH [20].

Prior studies have been attempted to monitor
hematocrit and reduce intradialytic symptoms, however,
they were not used in standard practice because of the
difficulty in interpreting the OSD outputs updated every
10 s [9, 35]. The ML model presented in this analysis en-
hances the findings and delivers them in a comprehend-
ible way. The top predictors of a RBV decreasing at a
rate of at least — 6.5% per hour were shown to include
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the variability in RBV in the prior 10 and 15 min, mini-
mum arterial pressure in the prior 1 min, mean
hemoglobin in the prior 1 and 10 min(s), and minimum
blood flow rate in the prior 15 min, as well as other met-
rics related to atrial pressure, hemoglobin, and total
blood volume processed (Fig. 5). The feature importance
of these parameters appears to be identifying combina-
tions of minor signals providing early signs of issues
with ultrafiltration (e.g. peristaltic pump being starved of
flow due to higher resistance in the access circuit). Ul-
timately, this model may have the potential to support
the clinicians by classifying risk levels in near real-time.
This analysis also adds onto the proof-of-concept ana-
lysis from Barbieri et al., where they developed an artifi-
cial neural network model predicting session-specific Kt/
V, fluid volume removal, heart rate, and BP based on pa-
tient characteristics, historic hemodynamic responses,
and dialysis-related prescriptions [36, 37].

Cloud Computing Resources provide seamless tools to
build, analyze, and integrate real-time predictive models
without investing in many hardware and software re-
sources on premise. This allows for a secure and cost-
effective way of building predictive models when re-
sources are limited. These applications can also be
scaled on-demand, where support can be expanded from
tens to hundreds of clinics seamlessly.

Along with the disease burden, inadequate dialysis
process may play a role in the pathophysiology of car-
diac injury, cognitive impairment, and brain injury in
HD patients [38—40]. Large amounts of data collected
from the dialysis machines to build and deploy ML
models can be used in personalizing dialysis treatments
for HD patients. Optimizing dialysate temperature, mon-
itoring access flows, modeling retention solute clearance
and electrolyte profiling, and predicting IDH are other
examples of how machine data can be utilized to
personalize  treatments for patients.  Successful
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applications of analyzing and modeling large amounts of
clinical data from the machines will require technology
and a framework like what has been presented in this
paper.

This paper provides an important proof-of-concept
for the application of a ML-based model in the pre-
vention of intradialytic complications. However, it
should be stressed that while the decline in RBV dur-
ing dialysis is an important risk factor for IDH, the
critical decline in RBV and the level at which the pa-
tient experiences IDH also differs significantly be-
tween patients [7, 21]. IDH is an important risk
factor for mortality, as well as for ischemia of vital
organs, such as heart and brain, which may lead to
long-term organ damage. Therefore, methods to re-
duce the risk for this complication are of vital im-
portance [25, 40-42]. Other factors, such as an
impairment in vascular reactivity or the cardiovascular
status of the patient play an important role in the
sensitivity of the patient to a decline in RBV. More-
over, there is a possibility of misclassification of pa-
tients at risk, where the model predicts that the RBV
will decrease at a rate of at least —6.5% per hour
during a dialysis treatment whereas it does not; hence
the clinical intervention should be designed in such a
way that it does not have an adverse impact on the
treatment or the patient. In this respect, it is also im-
portant that profiles with a small decline in RBV may
carry the risk of adverse outcomes, possibly because

of its relationship with fluid overload [25]. Therefore,
the results of the model should always be interpreted
in the context of the patient.

The goal of this proof- of-concept project was to dem-
onstrate the architecture of how machine data can be
utilized in real time. The goal of the dashboard if imple-
mented is to capture as many patients as possible who
would have an adverse intradialytic event or have the
risk of dropping RBV at the rate of at least — 6.5% per
hour. Hence, the focus was on sensitivity rather than
specificity or precision when determining the threshold
used to evaluate model performance. However, in a real-
world implementation, the optimal threshold can be se-
lected to minimize either false positives or false nega-
tives, which will depend on the intervention and
reporting demands.

This architecture also demonstrates the capabilities of
a cloud-based framework in handling the large amounts
of patient and treatment data collected from dialysis ma-
chines. ML models can be utilized for personalizing care
in dialysis patients in real time. However, there will be
instances when the ML model will predict incorrectly, so
teams developing interventions using ML models need
to be aware of this limitation. This proof-of-concept
could also be used for predicting low or differing ranges
of RBV. The clinical team responsible for designing in-
terventions will need to interpret RBV targets and adjust
ultrafiltration rate in a personalized manner considering
each patient's wunique history of intradialytic
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complications. Also, the true performance of the ML
model can only be demonstrated after conducting ran-
domized clinical trials. The cloud-based framework
should allow scaling of this proof-of-concept analysis;
however, this has not been tested in real world applica-
tion. Models deployed at point of care could also be
used to receive feedback from the nurses and clinicians
to serve as refined input to retrain the model.

Conclusions

This proof-of-concept analysis demonstrated the poten-
tial of the creation and deployment of a real-time pre-
dictive model based on patient and dialysis treatment
data. The mechanics for triggering a model endpoint
based on real-time message capture and to produce real-
time reporting that includes treatment metrics coupled
with model inferences were successfully implemented.
The challenge will be to scale for large amounts of data
and to design appropriate interventions.
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