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Background: Clear cell renal cell carcinoma (ccRCC) is the largest subtype of kidney tumour, with 
inflammatory responses characterising all stages of the tumour. Establishing the relationship between the genes 
related to inflammatory responses and ccRCC may help the diagnosis and treatment of patients with ccRCC.
Methods: First, we obtained the data for this study from a public database. After differential analysis and 
Cox regression analysis, we obtained the genes for the establishment of a prognostic model for ccRCC. As 
we used data from multiple databases, we standardized all the data using the surrogate variable analysis (SVA) 
package to make the data from different sources comparable. Next, we used a least absolute shrinkage and 
selection operator (LASSO) regression to construct a prognostic model of genes related to inflammation. 
The data used for modelling and internal validation came from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) series (GSE29609) databases. ccRCC data from the International 
Cancer Genome Consortium (ICGC) database were used for external validation. Tumour data from the 
E-MTAB-1980 cohort were used for external validation. The GSE40453 and GSE53757 datasets were 
used to verify the differential expression of inflammation-related gene model signatures (IRGMS). The 
immunohistochemistry of IRGMS was queried through the Human Protein Atlas (HPA) database. After the 
adequate validation of the IRGM, we further explored its application by constructing nomograms, pathway 
enrichment analysis, immunocorrelation analysis, drug susceptibility analysis, and subtype identification.
Results: The IRGM can robustly predict the prognosis of samples from patients with ccRCC from 
different databases. The verification results show that nomogram can accurately predict the survival rate 
of patients. Pathway enrichment analysis showed that patients in the high-risk (HR) group were associated 
with a variety of tumorigenesis biological processes. Immune-related analysis and drug susceptibility analysis 
suggested that patients with higher IRGM scores had more treatment options.
Conclusions: The IRGMS can effectively predict the prognosis of ccRCC. Patients with higher 
IRGM scores may be better candidates for treatment with immune checkpoint inhibitors and have more 
chemotherapy options.
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Introduction

The association between inflammatory responses and 
tumours was first proposed in the 19 th century (1). 
Since then, many studies on the relationship between 
inflammatory responses and tumours have been carried out. 
As early as 2002, an article from Nature related the origin 
of many tumours to the site of infection, especially with 
chronic inflammation (2). When the body is infected and 
inflammation occurs, tissue loss and repair occur, and this 
process greatly increases the possibility of tumorigenesis (3).  
More than 15% of malignant tumours are directly 
related to infections (4). For example, the development of 
bladder cancer is strongly associated with schistosomiasis 
infection. As a result, new treatments for bladder cancer 
have been developed (1). Further studies have found that 
the inflammatory response is involved in various stages of 
tumorigenesis, but the relationship between inflammation-
related genes and the prognosis of clear cell renal cell 
carcinoma (ccRCC) patients is poorly understood (5). With 
the increase in the number of studies on inflammatory 
responses, various inflammatory cells and factors in the 
tumour microenvironment can be used as important 
prognostic indicators for tumour patients (6). Some indicator 

combinations are considered more valuable, such as the 
systemic immune-inflammation index (SII), neutrophil-
to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio 
(PLR), or lymphocyte-to-monocytes ratio (LMR) (7-9). A 
study of 440,000 samples found that higher SII, NLR, and 
PLR scores were associated with a greater risk of kidney 
cancer, while the LMR showed the opposite (10).

Inflammatory cells and inflammatory factors each 
play important roles in the disease progression of 
ccRCC. A large number of studies have focused on 
macrophages, lymphocytes, and interleukins (11-13). 
Tumour-associated macrophages are very active in the 
tumour microenvironment (14), which in different 
microenvironments, can differentiate into two phenotypes, 
M1 and M2, among which the M2 phenotype is considered 
to be closely related to tumorigenesis (15,16). ccRCC can 
promote the polarisation of M2 macrophages through 
exosomes, and polarised M2 macrophages can further 
promote the progression of ccRCC (14). However, a higher 
dendritic cell number and macrophage infiltration in 
patients with ccRCC can show a worse prognosis (17). The 
expression level of FCER1G combined with the expression 
of CD68 is expected to be the prognostic index of patients 
with ccRCC after surgery (18). LAPTM4B and TRAF2 
can promote the polarisation of M2 macrophages through 
autophagy-dependent pathways, which in turn affects the 
prognosis of ccRCC patients (19,20). CCL5 can block 
epithelial-mesenchymal transformation in ccRCC cells via 
the PI3K/AKT pathway. In addition, extensive invasion of 
CCL5+ tumour-associated macrophages often indicates a poor 
prognosis in patients with ccRCC (21). RBM15 is likewise 
found to affect patient survival by promoting the polarisation 
of the macrophage M2 phenotype (22). Patients with different 
macrophage phenotypes also have different sensitivities for 
receiving sunitinib (23), those with high cathepsin Z expression 
are better served with anti-programmed cell death protein 1 
(PD-1) immunotherapy (24).

Lymphocyte and neutrophil infiltration in the tumour 
microenvironment can also help predict the prognosis 
and treatment of patients with ccRCC. Intratumoural 
CXCL13+CD8+ T cell infiltration in patients with ccRCC 
often indicates a poor prognosis (25). In addition, lower T 
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cells and higher neutrophil infiltration often lead to tumour 
recurrence and metastasis (26). Therefore, we can predict 
the prognosis of patients based on the ratio of neutrophils 
to lymphocytes in tumour tissue (27). Regulatory T cell 
(Treg) is thought to act as an inhibitor of the anti-tumour 
immune response (28). Infiltration of activated CD8+ cells 
suggests a better prognosis (12). TNFRSF9+CD8+ T cells 
can also predict the prognosis of kidney cancer (29). CD103+ 
lymphocytes are an indicator of poor prognosis in patients 
with ccRCC, and CD103+ lymphocytes usually accumulate 
in metastases in the lungs (30). In contrast, CD45RO+CD8+ 
T cells can delay the progression of ccRCC through various 
pathways (31). However, the antitumor activity of T cells 
may be limited by TGFβ1 (32). CD8+ T cell infiltration can 
also affect the prognosis of tumour cell PD-L1 (TC-PD-
L1)-positive ccRCC; thus, patients with a large number 
of CD8+ T cell infiltrates are at higher risk of ccRCC 
recurrence and death (33). IL-8 is associated with the stem-
like properties of ccRCC (34). While IL-23 is expected to 
provide a new therapeutic target for renal cell carcinoma (35),  
high IL-6 expression suggests a worse prognosis (13).

Therefore, there is a close relationship between 
the inflammatory response and tumour as a variety of 
inflammatory indicators are related to the prognosis of 
ccRCC. However, to the best of our knowledge, there 
has been no research on the relationship between genes 
related to inflammatory response and ccRCC. With the 
development of genetic testing technology, we have been 
able to obtain the expression of inflammation-related genes, 
available from public databases for analysis. In this study, 
we combined this data with bioinformatics to determine 
the relationship between genes related to inflammatory 
response and ccRCC and develop a prognostic model. 
On this basis, a more detailed analysis was carried out to 
facilitate personalized treatment development for ccRCC. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-1183/rc).

Methods

Data screening

All relevant data for this study are freely available through 
The Cancer Genome Atlas (TCGA), International 
Cancer Genome Consortium (ICGC), Gene Expression 
Omnibus (GEO), Human Protein Atlas (HPA) databases 
and Internet public sources. The genes associated with 

inflammation were retrieved from The Human Gene 
Database. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The data 
used to build the model corresponding to the ccRCC 
cohort and GSE29609 dataset were from the TCGA and 
GEO databases, respectively. In addition, ICGC data were 
used for external verification. To prove the applicability 
of the model, we added the E-MTAB-1980 cohort to 
double validate externally of the model. The ccRCC 
transcriptome data in the TCGA database was obtained 
through the TCGAbiolinks software package. ICGC data 
and E-MTAB-1980 cohort data were obtained directly 
from the website. In addition, ‘ccRCC’ was used to search 
the GEO database and a dataset with complete survival 
information and a sample size of not less than 30 was 
selected for the model construction. TCGA data, ICGC 
data, GSE29609 dataset, and data with incomplete survival 
information in the E-MTAB-1980 cohort were excluded. 
The GSE40435 and GSE53757 datasets from the GEO 
database were used to verify the differential expression of 
model-related genes. We searched the HPA database for  
immunohistochemistry of  model  genes using the 
HPAanalyze package. Immunohistochemical images were 
obtained from the HPA database.

Preliminary gene screening and data standardization

We downloaded a total of 15,631 genes related to 
inflammation from The Human Gene Database. We 
obtained 3,300 genes through differential analysis that were 
differentially expressed in normal tissue and ccRCC. To 
make the data comparable, we first standardised the data 
using the surrogate variable analysis (SVA) R package. After 
normalisation, we removed the samples with incomplete 
survival information and obtained a total of 759 standardised 
samples with complete survival information, including 567 
samples from the TCGA and GSE29609 datasets. This part 
of the sample was used to build the model and validate it 
internally. A total of 91 cases were sourced from the ICGC 
database. The data were used for the external validation 
of the model. In addition, the E-MTAB-1980 cohort had 
a total of 101 samples. The data from the E-MTAB-1980 
cohort were used for additional external validation. 
Through further analysis of the standardised samples, we 
obtained 1,353 prognostically relevant differential genes. 
These preliminary screened data were used to build the 
inflammation-related gene model (IRGM).

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1183/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1183/rc
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IRGM building and external data validation

We increased the number of samples to make our findings 
more reliable by combining the ccRCC data in the TCGA 
database with that from the GSE29609 dataset into 
one cohort. The patients with ccRCC were randomly 
divided into M and T cohorts using a 1:1 ratio with the 
createDataPartition function in the CARET package. The 
patients from the M cohort were used to construct the 
IRGM. We obtained the genes that were best used to build 
the model using a least absolute shrinkage and selection 
operator (LASSO) regression and cross-validation. After 
obtaining the formula for the IRGM, each ccRCC sample 
received an IRGM score. All normalised samples were 
divided into high-risk (HR) and low-risk (LR) groups based 
on the median sample score in the M cohort. Patients with 
IRGM scores above the median were classified into the 
HR group, and patients with scores below median were 
classified into the LR group. Tumour samples from the T 
cohort were used internally to verify the accuracy of the 
IRGM predictions. Next, the ICGC and E-MTAB-1980 
cohort samples with ccRCC provided a dual external 
validation. Specifically, the survival and ROC curves were 
drawn to display the verification results.

Differential expression of IRGM signatures (IRGMS) 
verification and query immunohistochemistry

Through the construction of IRGM and comprehensive 
verification, we confirmed that the genes related to the 
inflammatory response have a strong predictive ability for 
the prognosis of ccRCC. If the expression of model-related 
genes in ccRCC and normal kidney tissues was different, 
their important role was further confirmed. Therefore, we 
retrieved datasets from tumours as well as normal samples 
from the GEO database for validation and obtained the 
GSE40435 (N=101, T=101) and GSE53757 (N=72, 
T=72) datasets. The two datasets were used separately to 
validate the conclusions. In addition, immunohistochemical 
validation was used to characterise the genes using data 
from the HPA database.

Integration of common clinical indicators, nomogram 
construction and verification of its predictive efficacy

Although the IRGM’s ability to predict the prognosis of 
ccRCC is good, it still has certain limitations for daily use as 
it does not accurately predict patient survival. Nomograms 

have an excellent ability to accurately predict patient survival 
and guide clinical work. Combining the predictive power 
of IRGM and the function of nomograms, we constructed a 
nomogram for clinical guidance that uses common clinical 
information as indicators. Calibration and decision curve 
analysis (DCA) were used to verify the predictive power of 
nomograms. Further, the area under the receiver operating 
characteristic (ROC) curve (AUC) recognised the ability of 
the nomogram to predict ccRCC prognosis.

Pathway enrichment analysis

Next, we analysed the pathway enrichment of patients 
with different IRGM scores through multiple pathway 
enrichment assays.

Immune-related analysis

Immunotherapy has played a great role in the treatment 
of various tumours. Because research on immunotherapy 
for ccRCC started late, treatment options are limited for 
patients with advanced ccRCC. Therefore, immunotherapy 
for ccRCC has great research value. For different IRGM 
scores in patients with ccRCC, we performed immune-
related analyses to develop personalised treatment plans for 
patients with different IRGM scores.

Drug susceptibility analysis

Although chemotherapy is the classic treatment for ccRCC, 
the sensitivity of drugs varies greatly amongst patients. 
Moreover, the side effects of chemotherapy drugs are 
considerable. Therefore, it is very important to choose 
fewer and more effective drugs for patients with ccRCC. 
In this study, we used the oncoPredict package for drug 
susceptibility analysis to inform the selection of clinical 
chemotherapy drugs.

Subtype identification of ccRCC

In previous studies, we demonstrated that IRGMS can 
predict the prognosis of ccRCC. On this basis, we classified 
the samples into types by the expression of IRGMS. We 
analysed the relationship between different types and 
IRGM groupings using the Sankey plots. In addition, 
we clarified the value of type classification by conducting 
survival analysis of different types. Finally, the expression 
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of immune checkpoint-related genes in different types 
was used to understand the therapeutic effect of immune 
checkpoint inhibitors.

Statistical analyses

All statistical analyses in this study were performed using 
R software (version 4.2.2; The R Project for Statistical 
Computing, Vienna, Austria). Unless otherwise stated, a 
P<0.05 was set as the significance value in this study. Also, 

in all pictures: *, P<0.05; **, P<0.01; ***, P<0.001.

Results

Research process and preliminary data processing results

The flowchart of this study is shown in Figure 1. First, 
we obtained 15,631 genes related to inflammation from 
the databases and obtained differential genes related to 
inflammatory response. We selected some genes to display 

HPA database Inflammatory-
related genes (n=15,631)

Removal of batch effects

Merge cohort (TCGA + GSE29609)

LASSO COX
construction

Nomograms
Pathway enrichment 

analysis
Immune-related 

analysis
Drug susceptibility 

analysis
Subtype 

identification

ICGC cohort                     M cohort                              T cohort                 E-MTAB-1980 cohort

Univariate independent prognostic analysis (coxPfilter <0.05) 
1,353 prognostically relevant differential genes were selected

Variance analysis (|logFC| >1, FDR <0.05) 3,300 differential genes 
were selected

TCGA database 
(N=72, T=542)

E-MTAB-1980
(T=101)

ICGC database

GSE29609

External validationInternal validation
External validationExternal validation

IHC validation

GSE40435
GSE53757

Verify differential expression

GEO database
GSE29609 (T=39)

GSE40435 (N=101, T=101)
GSE53757 (N=72, T=72)

Figure 1 Flowchart of this study. HPA, Human Protein Atlas; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; 
ICGC, International Cancer Genome Consortium; FC, fold change; FDR, false discovery rate; IHC, immunohistochemistry; M cohort, 
model cohort; T cohort, test cohort; LASSO, least absolute shrinkage and selection operator; COX, Cox regression model.
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through heat maps as well as volcano maps (Figure 2A,2B).

IRGM can stably predict patient prognosis in different 
datasets

After LASSO regression and cross-validation, we 
identif ied ten IRGMS (IGFBP3 ,  SCNN1B ,  IFI16 , 
LRRC19, GSTM3, IFI44, APOLD1, HPGD, CPA3, and 
PROM1), and obtained a model formula: IRGM score 
= EXP[(IGFBP3* − 0.512599540192771) + (SCNN1B* 
− 0.382216902501755) + (IFI16* − 0.41271812853661) 
+ (LRRC19* − 0.148895552969845) + (GSTM3* − 
0.319391421782252) + (IFI44* − 0.34161975189148) 
+ (APOLD1*  − 0.234401991849677) + (HPGD*  − 
0.28831346490327) + (CPA3* − 0.226306954924149) + 
(PROM1* −0.105416861915745)] (Figure 3A,3B). From the 
principal components analysis (PCA), the inflammation-
related genes alone could not distinguish high IRGM 
scores from patients with low IRGM scores (Figure 3C).  
However, the 10 identified IRGMS made a good distinction 
between patients with different IRGM scores (Figure 3D). 
The ROC curves of the M and T, ICGC, and E-MTAB-1980 
cohorts were all greater than 0.65 (Figure 3E-3H),  
which corresponded to the queue for modelling, internal 
validation, and double external validations of the model for 
ICGC cohort and E-MTAB-1980, respectively. Under such 
rigorous validation, we demonstrated that the model had 

the ability to predict the prognosis of patients from different 
sources. In addition, patients in the HR group always 
showed lower survival times than patients in the LR group 
(Figure 3I-3L). This suggested that patients with high IRGM 
scores have a worse prognosis. That is, IRGMS (IGFBP3, 
SCNN1B, IFI16, LRRC19, GSTM3, IFI44, APOLD1, 
HPGD, CPA3, and PROM1) is valuable in predicting the 
prognosis of renal clear cell carcinoma. From the above 
results, we can conclude that IRGM can stably predict the 
prognosis of patients with ccRCC in different datasets.

Differential expression and immunohistochemical 
validation of IRGMS

In a previous analysis, we screened ten IRGMS and 
further verified their significance. From the analysis of ten 
IRGMS (IGFBP3, SCNN1B, IFI16, LRRC19, GSTM3, 
IFI44, APOLD1, HPGD, CPA3, and PROM1) copy data, 
we found that the copy number of CPA3, IFI16, IGFBP3, 
LRRC19, PROM1, and SCNN1B increased, and the copy 
number of IFI44, HPGD, APOLD1, and GSTM3 decreased 
(Figure 4A). In addition, circle map showed that IFI44, 
GSTM3, and IFI16 are located on chromosome 1, CPA3 is 
located on chromosome 3, PROM1 and HPGD are located 
on chromosome 4, IGFBP3 is located on chromosome 
7, LRRC19 is located on chromosome 9, APOLD1 is 
located on chromosome 12, and SCNN1B is located on 
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chromosome 16 (Figure 4B). In the mutation data analysis 
results, we only found that SCNN1B had mutations  
(Figure 4C). For the ten IRGMS screened, the TCGA 
database analysis showed that CPA3, APOLD1, IGFBP3, 
IFI44, and IFI16 were highly expressed in tumour tissues, 
while HPGD, SCNN1B, GSTM3, LRRC19, and PROM1 were 
lowly expressed in renal clear cell carcinoma (Figure 4D).  
This was verified in the GSE40435 and GSE53757 datasets 
(Figure 4E,4F). However, through the HPA database, we 
only queried the immunohistochemistry of eight IRGMS 
(SCNN1B, IFI16, GSTM3, IFI44, APOLD1, HPGD, CPA3, 
and PROM1). Therefore, the results of the HPA database 

query were in line with our conclusions (Figure 4G).

Excellent ability of the nomogram to predict patient 
survival

The nomogram constructively predicted that the 5-year 
survival rate of the sixth patient with ccRCC in the M 
cohort was 0.847 (Figure 5A). The calibration curve 
showed that the predicted results of the nomogram were 
almost identical to the actual results (Figure 5B). The AUC 
of the nomogram was 0.845, which fully demonstrated 
the prediction efficiency of the nomogram (Figure 5C). 
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The DCA decision curve also highlighted the predictive 
power of the nomogram (Figure 5D). Both univariate and 
multivariate independent prognostic analyses showed that 
the nomogram had the ability to predict survival in patients 
with ccRCC independently of other factors (Figure 5E,5F).

Pathway enrichment analysis of patients with different 
IRGM scores

First, the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) analysis showed that the pathways enriched by 
patients in the LR group were mainly related to compound 
metabolism and neurological activity. The pathways 
enriched in the HR group were related to diabetes, graft-
versus-host response, and coagulation function (Figure 6A).  
The Gene  Onto logy  (GO)  enr i chment  ana ly s i s 
demonstrated that the ontology enriched in patients in the 
LR group had a molecular function and cellular component. 
On the contrary, patients in the HR group were closely 
related to the biological process. Patients in the HR group 

presented acute inflammatory response, antimicrobial 
tumour response, humoral immune response, and other 
biological process pathways closely related to tumours 
(Figure 6B).

Patients with high IRGM scores benefit more from 
immunotherapy

Immune cells and immune-related functions of patients 
with ccRCC with different IRGM scores were enriched 
via single-sample gene set enrichment analysis (ssGSEA) 
enrichment analysis. Approximately 75% of immune cells 
showed differences in patients with different IRGM scores. 
Among them, 62.5% of the cells were more infiltrated in 
the HR group, and only 12.5% of the immune cells were 
more infiltrated in the LR group (Figure 7A). In the analysis 
of immune-related functions, 92% of immune-related 
functions had significant differences between patients 
with different IRGM scores. Further, all immune-related 
functions were more relevant in patients in the HR group 

0.0 0.2 0.4 0.6 0.8 1.0
Nomogram-predicted OS

0.05 0.10 0.15 0.20
Risk threshold

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Hazard ratio

0.0 0.5 1.0 1.5 2.0
Hazard ratio

0.0 0.2 0.4 0.6 0.8 1.0
1–Specificity

Nomogram
Risk
Age
Gender
Grade
All
None

1-year
3-year
5-year

Points

Age***

Risk***

Stage***

Risk, AUC =0.741
Nomogram, AUC =0.845
Age, AUC =0.639
Gender, AUC =0.508
Grade, AUC =0.726
Stage, AUC =0.822

Age

Gender

Grade

Stage

Nomogram

<0.001

0.775

<0.001

<0.001

<0.001

P value       Hazard ratio

Total points

Pr(futime >5)

Pr(futime >3)

Pr(futime >1)

P value       Hazard ratio

0.029

0.732

0.001

0.015

<0.001

1.029 (1.016–1.043)

0.955 (0.699–1.305)

2.282 (1.862–2.797)

1.892 (1.657–2.159)

1.463 (1.379–1.552)

1.018 (1.002–1.035)

0.946 (0.689–1.298)

1.454 (1.154–1.831)

1.295 (1.052–1.594)

1.220 (1.096–1.357)

Age

Gender

Grade

Stage

Nomogram

1.0

0.8

0.6

0.4

0.2

0.0

O
bs

er
ve

d 
O

S
0.10

0.05

0.00

N
et

 b
en

ef
it

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

20 40 60 80

25 35 45 55 65 75 85

40 60 80 100 120 140 160 180 200 220

0.92 0.88     0.8            0.6      0.4      0.2    0.07 0.02

0.94    0.9    0.84        0.7        0.5      0.3        0.1

0.985 0.975  0.96       0.92      0.85    0.75 0.65     0.45

Low

High
Stage I

Stage II

87.5

0.847

0.907

0.967

Stage III

Stage IV

0 100
A B C

D E F

Figure 5 Construction and verification of nomograms. (A) Nomogram predicts the prognosis of patients with ccRCC; (B) calibration curve 
for nomogram; (C) ROC curve for nomogram; (D) DCA curve of nomogram; (E) univariate independent prognostic analysis of nomogram; 
(F) multivariate independent prognostic analysis of nomogram. ***, P<0.001. OS, overall survival; AUC, area under the ROC curve; ROC, 
receiver operating characteristic; ccRCC, clear cell renal cell carcinoma; DCA, decision curve analysis.



Xiao et al. ccRCC inflammation-related genes and multi-database analysis2638

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2629-2645 | https://dx.doi.org/10.21037/tcr-23-1183

R
un

ni
ng

 e
nr

ic
hm

en
t s

co
re

0.00

−0.25

−0.50 R
un

ni
ng

 e
nr

ic
hm

en
t s

co
re

0.2

0.0

−0.2

−0.4

R
un

ni
ng

 e
nr

ic
hm

en
t s

co
re

0.8

0.6

0.4

0.2

0.0

R
un

ni
ng

 e
nr

ic
hm

en
t s

co
re 0.6

0.4

0.2

0.0

R
an

k 
lis

t m
et

ric

5.0

2.5

0.0

−2.5

R
an

k 
lis

t m
et

ric

5.0

2.5

0.0

−2.5 R
an

k 
lis

t m
et

ric

5.0

2.5

0.0

−2.5

R
an

k 
lis

t m
et

ric

5.0

2.5

0.0

−2.5

Enriched in low-risk group Enriched in low-risk group

Enriched in high-risk group

5000                                              10000
Rank in ordered dataset

5000                                              10000
Rank in ordered dataset

5000                                              10000
Rank in ordered dataset

5000                                              10000
Rank in ordered dataset

Enriched in high-risk group

KEGG neuroactive ligand receptor interaction

KEGG propanoate metabolism

KEGG tight junction

KEGG valine leucine and isoleucine degradation

KEGG Vibrio cholerae infection

GO CC apical part of cell 

GO CC apical plasma membrane 

GO MF active ion transmembrane transporter activity

GO MF active transmembrane transporter activity

GO MF inorganic molecular entity transmembrane transporter activity

KEGG chemokine signaling pathway

KEGG complement and coagulation cascades

KEGG cytokine cytokine receptor interaction

KEGG graft versus host disease

KEGG type I diabetes mellitus

GO BP acute inflammatory response

GO BP antimicrobial humoral response

GO BP humoral immune response

GO CC blood microparticle

GO MF endopeptidase regulator activity

A B
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(Figure 7B). Immune checkpoint inhibitors may thus offer 
new hope for patients with advanced ccRCC. We also 
observed that 36 immune checkpoint-related genes were 
significantly different in both the HR and LR groups, while 
30 more genes were expressed in the HR group than in the 
LR group (Figure 7C). This provides valuable directions to 
inform immunotherapy regimens.

Chemotherapy drug susceptibility

The HR group was more sensitive to most chemotherapy 
drugs, including 5-fluorouracil, AZ960, AZD7762, 
bortezomib, buparlisib, dasatinib, pictilisib, PRT062607, 
taselisib, XAV939. AZD3759, BI-2536, erlotinib, ibrutinib, 
and osimertinib were more effective in patients in the LR 
group (Figure 8).

Subtype identification

Using matrix plots, delta area plots, consistency cumulative 
distribution function plots, and tracking plot as criteria, 
we divided the samples of patients with ccRCC into 
three subtypes (Figure 9A-9D). In the Sankey chart, we 
observed that patients with the C1 subtype were almost 
evenly distributed in the HR and LR groups, patients 
with the C2 subtype were almost all distributed in the 
HR group, while patients with the C3 subtype were 
distributed in both HR and LR groups (Figure 9E). In the 
t-distributed stochastic neighbour embedding (tSNE) plot, 
we observed well-distinguished subtypes (Figure 9F,9G).  
The survival analysis results of the three subtypes were 
significantly different; the C1 subtype had the best 
prognosis whereas the C2 subtype had the worst prognosis 
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(Figure 9H). Further research is warranted to better clarify 
these findings.

Discussion

We constructed a prognostic model containing ten 
IRGMS and verified it with an internal and two sets of 
external data. The validation showed that the model can 

stably predict the prognosis of patients in various datasets. 
Subsequently, the differential expression of IRGMS and 
immunohistochemistry were also verified. However, we 
could not validate the model with local samples, which 
could be improved using adequate external data validation. 
After completing the model construction, we developed 
nomograms and performed pathway enrichment analysis, 
immunocorrelation analysis, drug susceptibility analysis, 
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Figure 7 Comprehensive analysis of immunity in patients with different risk groups. (A) Column plot of immune cell differences in patients 
with different risk groups; (B) column chart of differences in immune function of patients in different risk groups; (C) column plot of 
differences in immune checkpoint-related gene expression in patients with different risk groups. *, P<0.05; **, P<0.01; ***, P<0.001. aDCs, 
activated dendritic cells; DCs, dendritic cells; iDCs, immature dendritic cells; NK, natural killer; pDCs, plasmacytoid dendritic cells; Tfh, 
T follicular helper; Th, T helper; TIL, tumour-infiltrating lymphocyte; Treg, regulatory T cell; APC, antigen-presenting cell; CCR, C-C 
chemokine receptor; HLA, human leukocyte antigen; MHC, major histocompatibility complex; IFN, interferon.



Xiao et al. ccRCC inflammation-related genes and multi-database analysis2640

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2629-2645 | https://dx.doi.org/10.21037/tcr-23-1183

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                            High
Risk

Low                           High
Risk

Ib
ru

tin
ib

 s
en

si
tiv

ity

8

6

4

Ta
se

lis
ib

 s
en

si
tiv

ity

6

4

2

0

X
A

V
93

9 
se

ns
iti

vi
ty

8

7

6

5

O
si

m
er

tin
ib

 s
en

si
tiv

ity

6

5

4

3

2

1

A
Z

D
37

59
 s

en
si

tiv
ity

6

5

4

3

2

D
as

at
in

ib
 s

en
si

tiv
ity

8

6

4

2

0

P
ic

til
is

ib
 s

en
si

tiv
ity

6

4

2

0

P
R

T0
62

60
7 

se
ns

iti
vi

ty 6

5

4

3

B
I-

25
36

 s
en

si
tiv

ity

3

2

1

0

E
rlo

tin
ib

 s
en

si
tiv

ity

6

5

4

3

2

B
up

ar
lis

ib
 s

en
si

tiv
ity

3

2

1

A
Z

96
0 

se
ns

iti
vi

ty 6

4

2 A
Z

D
77

62
 s

en
si

tiv
ity

4

2

0

B
or

te
zo

m
ib

 s
en

si
tiv

ity 0.03

0.02

0.015-
Fl

uo
ro

ur
ac

il 
se

ns
iti

vi
ty

15

10

5

0

Risk      Low      High

2.3e−07 4.6e−15 4.6e−16 6.8e−14

1.8e−103.8e−114.9e−071.7e−07

8.2e−06 2.3e−05 1.2e−07 5.6e−090.00027

P<2.22e−16

5e−09

Risk      Low      High Risk      Low      High Risk      Low      High Risk      Low      High

Risk      Low      HighRisk      Low      HighRisk      Low      HighRisk      Low      HighRisk      Low      High

Risk      Low      High Risk      Low      High Risk      Low      High Risk      Low      High Risk      Low      High

Figure 8 Drug susceptibility analysis.

and subtype identification. Nomograms have been used 
to determine the survival rate of patients. The pathway 
enrichment analysis showed that ccRCC was closely related 
to inflammatory responses. Immune-related analyses can 
identify patients who have high IRGM scores and are 
better candidates for immunotherapy. The results of the 
drug susceptibility analysis showed that patients in the HR 
group had more options when choosing chemotherapy 
drugs. The subtype identification allows us to develop more 
personalised treatment plans for patients with ccRCC. 
Therefore, IRGMS (IGFBP3, SCNN1B, IFI16, LRRC19, 
GSTM3, IFI44, APOLD1, HPGD, CPA3, and PROM1) are 
valuable in predicting the prognosis of patients with ccRCC 
and guiding treatment.

In humans, the main function of APOLD1 is to encode 
apolipoprotein, which has an important role in regulating 
vascular function (36). APOLD1 plays an important 
role in inflammatory response-related diseases, such as 
diabetic nephropathy and osteoarthritis (36,37). Similarly, 
this gene can predict the prognosis of patients with 
ccRCC (38). CPA3 is associated with histone deacetylase 
activation (39). This gene has played a remarkable 
role in predicting the prognosis of breast, skin, lung, 
adenocarcinoma, colorectal, and ovarian cancers (40-44).  

As a member of the glutathione-S-transferase (GST) 
family, GSTM3 can regulate tumour susceptibility (45). 
GSTM3 is associated with the risk of kidney cancer (46).  
A study of 329 cases of ccRCC and 420 healthy controls 
found that GSTM3 has an inhibitory effect on ccRCC (46). 
Similarly, GSTM3 plays an important role in glioma, 
pancreatic cancer, and oesophageal cancer (47-50). Overall, 
these studies also confirm the value of our study. HPGD 
undertakes a wide range of functions in the body and the 
proteins it encodes are distributed throughout the body (51).  
In addition, HPGD is associated with a variety of tumours 
(52-54). The effects of IFI16 on various tumours are 
different. IFI16 can accelerate the progression of cervical 
cancer through the STING-TBK1-NF-κB pathway (55). 
However, in triple-negative breast cancer, IFI16 has an 
anti-tumour effect (56). In addition, ARPC1B can promote 
radiotherapy resistance by blocking the degradation of IFI16 
in glioma stem cells (57). IFI44 is an important protein-
coding gene in the human body that can influence the 
formation of microtubule structures (58), while it can be 
a prognostic marker for osteosarcoma as well as head and 
neck cancer (59,60). In addition, IFI44 in small-cell lung 
cancer can lead to gefitinib resistance (61). As a member 
of the family of insulin-like growth factor (IGF)-binding 



Translational Cancer Research, Vol 12, No 10 October 2023 2641

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2629-2645 | https://dx.doi.org/10.21037/tcr-23-1183

Consensus matrix k=3

Consensus CDF Tracking plot

Samples

k

Cluster

Cluster

Risk

Risk Low

C3 C2 C1

High

Delta area

1
2
3

C1
C2
C3

C1
C2
C3

C1
C2
C3

227
129
211

193
96

180

160
77

147

131
57

125

90
38
102

60
25
68

36
17
46

22
13
27

12
9
20

7
9
15

3
3
7

0
0
3

0
0
1

Cluster

C
lu

st
er

P<0.001
High
Low

2
3
4
5
6
7
8
9

2

3

4

5

6

7

8

9

C
D

F

1.0

0.8

0.6

0.4

0.2

0.0
tS

N
E

2

20

10

0

−10

−20

−30

tS
N

E
2

20

10

0

−10

−20

−30

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

R
el

at
iv

e 
ch

an
ge

 in
 a

re
a 

un
de

r 
C

D
F 

cu
rv

e 0.5

0.4

0.3

0.2

0.1

Consensus index
0.0 0.2 0.4 0.6 0.8 1.0

k
2 3 4 5 6 7 8 9

−30 −20 −10 0 10 20 30
tSNE1

−30 −20 −10 0 10 20 30
tSNE1

0 1 2 3 4 5 6 7 8 9 10 11 12
Time, years

0 1 2 3 4 5 6 7 8 9 10 11 12
Time, years

Number risk

A B C D

E F G H

Figure 9 Identification of model-associated genotypes. (A-D) Matrix heatmap at k=2, delta area plot, consistency CDF plot, tracking plot; (E) 
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proteins, IGFBP3 does not have the same effects on various  
tumours (62), including ccRCC, when it is highly expressed 
in breast cancer, pancreatic cancer, and squamous cell 
carcinoma of the head and neck (63-65). Overexpression 
of IGFBP3 is also associated with a poor prognosis for 
ccRCC, which is consistent with the conclusions of this 
study. Nonetheless, cyclovirobuxine can inhibit IGFBP3 
and thus the deterioration of ccRCC (66). In addition, 
IGFBP3 expression in prostate cancer tends to promote 
the progression of the disease (67). However, in lung 
cancer, IGFBP3 can improve the survival rate of patients 
and delay the invasion of tumour cells (68). LRRC19 is 
a transmembrane receptor in the LRR family (69). The 
protein product of LRRC19 is specifically expressed in 
the kidney, spleen, and intestine and is involved in local 
inflammatory responses (70). In addition, LRRC19 is 
associated with the prognosis and adjuvant treatment of 
ccRCC (71,72). As a member of the prominin family, 
PROM1 is often considered a biomarker for cancer stem 
cells (73). CD133 is downregulated in ccRCC as an encoding 
product of PROM1 (74). Moreover, PROM1 can be used as a 
prognostic marker in liver cancer and ovarian cancer (74,75), 
while the function of SCNN1B is to encode the formation of 
partial epithelial sodium channels (76). Lastly, SCNN1B can 
inhibit colorectal cancer in various ways (77).

Conclusions

IRGMS (IGFBP3, SCNN1B, IFI16, LRRC19, GSTM3, 
IFI44, APOLD1, HPGD, CPA3, and PROM1) are valuable 
to the prognosis of ccRCC. Patients with higher IRGM 
scores may be better candidates for treatment with immune 
checkpoint inhibitors and can have more chemotherapy 
options.
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