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A B S T R A C T

Background: Pulmonary hypertension (PH) is a pathophysiological problem that may involve several clinical 
symptoms and be linked to various respiratory and cardiovascular illnesses. Its diagnosis is made invasively by 
Right Cardiac Catheterization (RHC), which is difficult to perform routinely. Aim of the current study was to 
develop a Machine Learning (ML) algorithm based on the analysis of anamnestic data to predict the presence of 
an invasively measured PH.
Methods: 226 patients with clinical indication of RHC for suspected PH were enrolled between October 2017 and 
October 2020. All patients underwent a protocol of diagnostic techniques for PH according to the recommended 
guidelines. Machine learning (ML) approaches were considered to develop classifiers aiming to automatically 
detect patients affected by PH, based on the patient’s characteristics, anamnestic data, and non-invasive pa-
rameters, transthoracic echocardiography (TTE) results and spirometry outcomes.
Results: Out of 51 variables of patients undergoing RHC collected, 12 resulted significantly different between 
patients who resulted positive and those who resulted negative at RHC. Among them 8 were selected and utilized 
to both train and validate an Elastic-Net Regularized Generalized Linear Model, from which a risk score was 
developed. The AUC of the identification model is of 83 % with an overall accuracy of 74 % [95 % CI (61 %, 84 
%)], indicating very good discrimination between patients with and without the pathology.
Conclusions: The PH-targeted ML models could streamline routine screening for PH, facilitating earlier identifi-
cation and better RHC referrals.

1. Background

Pulmonary hypertension (PH) is a type of high blood pressure that 

affects the arteries in the lungs and the right side of the heart. During the 
6th World Symposium on Pulmonary Hypertension the definition of 
Pulmonary Hypertension has been amended [1], with a subsequent 
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confirmation in 2022 ESC/ERS guidelines [2]. According to this new 
guideline pulmonary hypertension is defined by a mean pulmonary 
arterial pressure (mPAP) equal to or greater than 20 mmHg, typically 
determined through invasive measurement via right heart catheteriza-
tion (RHC) [2]. So, this new guideline lowered the threshold for diag-
nosing of PH, from a mean pulmonary arterial pressure (mPAP) of 25 
mm Hg to above 20 mm Hg. This was based on several independent 
groups findings which showed that even a little increase in mPAP over 
20 mmHg is linked to a higher risk of death and the advancement of the 
illness [3,4]. However, according to current guidelines the new defini-
tion do not allow any specific therapy.

Right heart catheterization (RHC) is currently the gold standard 
diagnostic tool for pulmonary hypertension (PH) due to its accuracy in 
measuring pulmonary arterial pressure and cardiac output, which are 
critical for confirming a PH diagnosis and differentiating PH subtypes. 
However, RHC is an invasive tool, requires specialized facilities and 
trained personnel, which can be challenging in low-resource settings or 
for patients with comorbidities that increase the risks of invasive pro-
cedures. Therefore, it is of primary interest to improve a correct diag-
nosis using non-invasive tools. Transthoracic echocardiography (TTE) is 
the primary non-invasive imaging tool for raising diagnostic suspicion of 
PH. In clinical practice it is used to screen for PH and assess the severity 
and progression in patients already diagnosed with the condition. 
Indeed, TTE can estimate systolic pulmonary artery pressure (sPAP) by 
measuring the tricuspid regurgitant velocity (TRV), a surrogate for 
pulmonary pressures. However, ultrasound estimation of pulmonary 
artery systolic pressure is not always feasible and may be inaccurate in 
patients with suboptimal acoustic windows.

Consequently, no other procedure can accurately identify which 
patients should undergo RHC to ensure a reliable diagnosis of PH. As a 
result, PH often remains undiagnosed, contributing to disease progres-
sion and an increased risk of mortality.

In recent years, there has been a growing interest in machine 
learning algorithms for their performance in clinical decision-making in 
cardiovascular diseases [5]. In this scenario, machine learning has 
shown great promise in aiding the non-invasive detection of PH as an 
alternative or adjuncts to RHC for diagnosing and monitoring these 
conditions. In fact, with the application of machine learning algorithms 
on data that includes medical records, imaging studies, and other rele-
vant clinical information, non-invasive diagnostic models can be 
developed. In some observational studies, this model demonstrated to 
accurately predict the likelihood of PH, facilitating early detection and 
intervention without necessitating catheterization [6–9].

Alternative clinical scores to identify patients deserving of RHC are 
even more pressing considering recent pharmacological breakthroughs 
that have slowed disease progression and improved survival [10–12]. 
Therefore, a machine learning approach holds great potential for early 
diagnosis of pulmonary hypertension by improving the interpretation of 
complex datasets, automating pattern recognition, and personalizing 
predictive models. This can lead to earlier intervention, ultimately 
improving patient outcomes.

Accordingly, we aimed to develop and validate a machine lear-
ning–based AI algorithm for improving TRV capability to diagnose PH 
using anamnestic data and non-invasive parameters such as smoking 
habit, TTE results and spirometry outcomes.

2. Materials and methods

2.1. Study design and population

This single-center observational study was designed to identify pa-
tients with PH within cohorts belonging to categories at high risk of 
developing the disease, such as connective tissue disease, congenital 
heart disease, HIV infection and portal hypertension. The study popu-
lation consisted of 226 patients from high-risk groups for PH, recruited 
at the Pulmonary Hypertension Center of Monaldi Hospital, Naples, 

Italy, between October 2017 and October 2020. These patients under-
went diagnostic protocols according to the 2015 ESC/ERS guidelines 
[13] in force at the time, including clinical assessment, resting echo-
cardiography, and RHC. Exclusion criteria involved individuals with 
FVC < 40 % predicted, severe left heart disease, pregnancy, or 
confirmed PH diagnosis/treatment. Echocardiography was performed 
blindly to RHC results, and RHC was conducted for confirmation in all 
patients to minimize bias. Patients diagnosed with PH were followed up 
for three years.

2.2. Clinical assessment

Inclusion criteria for enrolment included demographic data, 
comorbidities, hospitalization data, vital signs, echocardiography, he-
modynamics measured by RHC, spirometry, blood gas analysis, lung 
function, WHO FC and six minutes walking distance (6MWD) and lab-
oratory tests.

2.3. Transthoracic Doppler echocardiography at rest

An echocardiographic examination was performed on all patients. 
Two-dimensional and color-flow-guided continuous-wave Doppler 
echocardiographic recordings at rest were obtained by experienced 
cardiac sonographers (EG and CN) using 3.6–4 MHz Duplex probes and 
conventional equipment (Vivid 7, GE Healthcare, Milwaukee, WI, USA) 
[14,15].

Tricuspid annular plane systolic excursion (TAPSE) was calculated in 
the apical 4-chamber view, using optimal longitudinal alignment. The 
determination of pulmonary artery systolic pressure (PASP) was based 
on calculating the RV-RA gradient using the modified Bernoulli equation 
and diameter and degree of collapse of the IVC according to the formula 
RAP + RV-RA gradient, where RV-RA gradient is 4 (peak tricuspid 
regurgitant jet velocity) [16].

For all calculations, the mean value of at least three TRV measure-
ments was used. The TAPSE/PASP ratio was calculated for each patient 
as an index of ventricular arterial coupling. The ejection fraction (EF) 
was then measured using the biplane method of disks (modified Simp-
son’s rule) [16]. The presence of pericardial effusion, the degree of 
tricuspid valve regurgitation, and the thickness of the interventricular 
septum were also assessed.

2.4. Right heart catheterization

RHC was performed in the supine position using trans jugular access 
with an 8 F introducer set (MXI100, MEDEX, Smiths Group PLC, UK) 
(MXI100, MEDEX, Smiths Group PLC, UK) and triple-lumen 7F-Swan- 
Ganz thermodilution catheters from Edwards Lifesciences (REF:131F7, 
Edwards Lifesciences LLC, Irvine, CA, USA). Pressures were continu-
ously recorded and averaged over several respiratory cycles during 
spontaneous breathing. Cardiac output (CO) was measured by thermo-
dilution by averaging three measurements with no less than 10 % 
variation between measured values. The zero-reference point for pres-
sure recordings was set at 1/3 of the thoracic diameter below the 
anterior thoracic surface according to the 2015 ESC/ERS guidelines 
[17]. PVR was calculated using the formula PVR= (mPAP-PWP)/CO. 
Pulmonary artery compliance was calculated as the ratio of stroke vol-
ume to pulse pressure (SV/PP): SV/PP (ML/mmHg) = (stroke volume) / 
(pulmonary systolic pressure - diastolic pressure).

2.5. Statistical analysis

Continuous variables were expressed as mean and standard devia-
tion (SD). Data distribution was tested for normality through the Sha-
piro–Wilk test. Unpaired Student’s t-test or Wilcoxon rank-sum test, as 
required, was used for comparison between 2 groups. Categorical vari-
ables were expressed as a percentage and were compared using the chi- 
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square test or the Fisher’s exact test. A P-value (P) of < .05 was 
considered significant. Bonferroni’s correction was used for multiple 
hypothesis correction, if necessary. Statistical analyses were carried out 
to compare patients affected by PH and non. Statistical analysis was 
performed using R Core Team (version 4.2.1, Austria).

2.6. Machine learning classification

Machine learning (ML) approaches were considered to develop 
classifiers aiming to automatically detect patients affected by PH, based 
on the patient’s characteristics, anamnestic data, and non-invasive pa-
rameters, TTE results and spirometry outcomes (Fig. 1). The dataset was 
split into 60 % for training and cross-validation and 40 % for testing. The 
rationale behind this division was that, to minimize bias and overfitting 
issues, a classifier should be tested on a separate set of data. We per-
formed “stratified sampling”, where the split of training and testing was 
made by preserving the percentage of samples for each class (positive 
and negative to PH). Repeated (N = 100) 3-fold cross validation was 
employed. Since the dataset was unbalanced, we employed a synthetic 
minority over-sampling technique (SMOTE) to down samples the ma-
jority class and synthesizes new minority instances by interpolating 
between existing ones by using a ratios 1:2 (where the minority class is 
half the size of the majority class. Binary classification performance 
measures were adopted according to standard formulae [18].

2.7. Feature selection

Because of the large number of features available, it was essential to 
carefully select features to construct a robust model. It was important to 
ensure that the number of features utilized in the final classifier and 
their overall quantity were restricted to the number of subjects experi-
encing the event being detected. This limitation was crucial to mitigate 
the risk of overfitting in the machine learning model. Additionally, 
having a concise set of clinical features played a significant role in 

simplifying the clinical interpretation of the results, focusing attention 
on the most informative and relevant clinical features [19]. Therefore, 
the feature selection process involved two main steps: relevance anal-
ysis, as outlined in reference [20], and Elastic Net-based Feature 
Ranking, as described in reference [21].

According to Foster et al. [19], in the second stage of our feature 
selection process, we adopted a feature removal strategy. This approach 
was used to further reduce the number of features, in line with the rule of 
thumb that suggests having at least 10 times as many data points as there 
are features in the model. For example, in linear models, the number of 
parameters corresponds to the number of input features, with each 
feature being assigned a parameter, as described by Foster et al. [19].

The relevance analysis performed by Wilcoxon Signed-Rank Test and 
aimed to identify the features changing more significantly among PH 
and non-PH. All the features changing significantly between PH and 
non-PH (p-value less than 0.05) were selected at this stage.

The second stage focused on Elastic Net-based Feature Ranking, 
which is a regularization technique that introduces a linear L2 penalty to 
address the shortcomings of the Least Absolute Shrinkage and Selection 
Operator (LASSO). The Elastic Net method calculates feature weights 
while simultaneously conducting feature selection by assigning a weight 
of zero to most irrelevant or redundant features. To determine the 
penalty parameters, a K-fold cross-validation was performed on the 
training dataset. Features were then ranked in descending order based 
on their importance scores.

2.8. Risk score model

The chosen features were utilized to both train and validate an 
Elastic-Net Regularized Generalized Linear Model, from which a risk 
score was developed.

For the implementation of the Elastic Net (EN) model, we employed 
the "glmnet" method available in the "caret" package [22,23] within the 
R programming environment (version 3.6.0, http://www.r-project.org/

Fig. 1. : Framework of machine learning.
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). During each training of the EN model, we conducted a grid-search to 
fine-tune both α and λ parameters.

To elucidate, feature selection and training of the machine learning 
model, which encompassed tuning classifier parameters, were per-
formed on a subset consisting of 60 % of the total patient population. 
This training data was further employed to validate the classifier’s 
performance through k-fold cross-validation. Specifically, we adopted a 
repeated 3-fold person-independent cross-validation approach to vali-
date the model’s effectiveness. Subsequently, the model underwent 
testing on an independent dataset, comprising approximately 40 % of 
the total patient population. This test aimed to assess the model’s ca-
pacity to automatically identify PH patients.

The "risk score" of the model was obtained through regression 
analysis and serves as a threshold value that signifies the risk of PH. The 
determination of the cut-off points for risk probability scores was guided 
by test characteristics. Specifically, the cut-off was established as the 
median value derived from the distribution of probability plots in the 
test set.

2.9. Ethics

The study was conducted in accordance with the Declaration of 
Helsinki and its amendments, followed the International Conference on 
Harmonization Guideline for Good Clinical Practice, and was approved 
by local institutional review boards/ethics committees. All patients gave 
informed consent to the study which complied with the Declaration of 
Helsinki and was approved by the Institutional Review Board of Monaldi 
Hospital (protocol n. 4/18) and founded by an institutional grant from 
the Italian Ministry of Healthcare (GR-2016–02364727).

3. Results

3.1. Patient characteristics

From October 2017 until October 2020, a total of 226 patients were 
enrolled into the study at Ospedale dei Colli. Out of 226 PAH patients 
recruited, 168 were female (74,3 %) and 58 (25,7 %) were male (Table 1
and Table S1). For each recruited patient anamnestic data were 
collected, 6MWD, Spirometry and TTE. All recruited patients underwent 
RHC for definitive diagnosis of PH. Out of 226 recruited 143 had PH at 
RHC and 107 of them were female (74.8 %). Baseline characteristics of 
the cohort are displayed in Table 1. As shown in Table 1, smoking habit, 
LUPUS, TRV, systemic sclerosis, pulmonary thromboembolism, dilated 
left and right atrium and dilated right ventricle showed to be statically 
different between no PH and PH patients (p-value<0.05). On the other 
hand, Supplementary Table 2 (Table S2) shows all baseline character-
istics that were not statistically different between the two groups. 
Moreover, one of the most widely used parameters by TTE in the eval-
uation of patients with suspected PH is Tricuspid regurgitation velocity 
(TRV) [24]. ESC/ERS guidelines recommend grading the probability of 
PH based on tricuspid regurgitation velocity (TRV) at rest as low 
(≤2.8 m/s) [25] but as demonstrated by Marra and co-workers in 2018 
the cut-off for the risk evaluation of PH should be lowered to 2.55 m/s 
[26]. Therefore, based on TTE data we have derived TRV and estab-
lished a TRV threshold at 2.55, which resulted in a statistically signifi-
cant difference between the two groups of patients.

Most of the continuous variables were non-normally distributed; 
therefore, non-parametric test was employed (Wilcoxon sign rank test). 
As shown in Table 2, weight, RV1 and area of left atrium showed to be 
statistically different (p-value<0.01) between the two groups of patients 
and have lower values in no PH patients compared to PH patients. 
Whereas EF showed a statistically significant decrease in PH patients (p- 
value<0.05).

3.2. Machine learning classification

The data were stratified split into 60 % training (N = 138, 42 noPH 
vs 96 PH) and 40 % testing (N = 88, 41 noPH vs 47 PH). By using the 
whole dataset, we started our feature significance analysis utilizing 
relevance analysis (83 noPH vs 143 PH). From the relevance analysis, 12 
features showed a p-value less than 0.05.

In the subsequent phase, we utilized Elastic Net-based Feature 
Ranking to further reduce the number of features. This process involved 
applying Elastic Net-based Feature Ranking to the training set, and we 
also employed a repeated 3-fold cross-validation approach. As per the 
results obtained from Elastic Net-based Feature Ranking, we identified 
10 radiomic features that were potentially predictive. However, in 
alignment with the guidance provided by Foster et al. [19], considering 
the limited number of patients in our study, we adhered to the principle 
of using no more than one feature for every ten "observations/subjects" 
associated with the outcome of interest. Therefore, we selected the 
initial 8 features (Smoker, Pulmonary Embolism, TRV, dilated right 
ventricle, dilated left atrium, Systemic Sclerosis, area of left atrium 
Weight) for model development. The hyperparameters of Elastic-Net 
Regularized Generalized Linear Model were tuned during the training 
and validation. The optimized parameters were alfa= 0 and 
lambda= 0.77.

The final model was then tested on a dependent set of data consid-
ering the selected 8 features and performance are reported in Fig. 2. 
bThe model achieved an AUC of 83 % [95 % CI(63 %− 84 %)] with 95 % 
CI sensitivity (65 %− 94 %), 95 % CI specificity (53 %− 83 %) and an 
overall accuracy of 74 % [95 % CI (61 %, 84 %)], compared with an 
overall accuracy of 73 %, sensitivity of 63 % and specificity of 84 % and 
ACC of 73 % for training ste.

The model risk score is presented in Eq. (1). 

Table 1 
Baseline cohort characteristics statistically different between PH and no PH 
patients.

Variables no PH PH p-values

Smoking Habit, n (%)   0.04
No 73 (88) 109 (76)  
Yes 10 (12) 34 (24)  
Hepatic cirrhosis, n (%)   0.09
No 83 (100) 137 (96)  
Yes 0 (0) 6 (4)  
TRV Threshold   0.01
<2.55 (m/s) 6 (7) 29 (20)  
> 2.55 (m/s) 77 (93) 114 (80)  
LUPUS, n (%)   0.03
No 83 (100) 134 (94)  
Yes 0 (0) 8 (6)  
Systemic Sclerosis, n (%)   0.009
No 52 (63) 113 (79)  
Yes 31 (37) 30 (21)  
Deep Venous Thrombosis, n (%)   0.09
No 81 (98) 131 (92)  
Yes 2 (2) 12 (8)  
Pulmonary thromboembolism, n (%)   0.04
No 76 (92) 116 (81)  
Yes 7 (8) 27 (19)  
Dilated right atrium, n (%)   <0.001
No 44 (75) 39 (41)  
Yes 15 (25) 57 (59)  
Dilated right ventricle, n (%)   <0.001
No 67 (82) 54 (39)  
Yes 15 (18) 85 (61)  
Dilated left atrium, n (%)   0.1
No 45 (54) 53 (38)  
Yes 38 (46) 87 (62)  

TRV: Tricuspid Regurgitation Velocity; In bold, P-values less than.05
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y ~ 1⋅14 + 0⋅29 * Smoker+ 0⋅59 * Pulmonary Embolism - 1⋅61 * 
TRVthresh + 2⋅61 * dilated right ventricle + 0⋅53 * dilated left atrium - 
1⋅08 * Systemic Sclerosis + 0⋅02 * area of left atrium + 0⋅01 * Weight(1)

The cut-off was chosen as the median of the distribution. The cut-off 
to automatically detect PH patients was 2.155 [95 % CI 1.99–2.77].

TRV
The same model was also trained and tested with one input variable: 

TRV. TRV measured through echocardiography has become a valuable, 
non-invasive diagnostic tool for assessing the likelihood of pulmonary 
hypertension (PH). Increased TRV can be an indicator of elevated pul-
monary artery pressures, which is a hallmark of PH. Therefore, to show 

that the presented model risk score has better discrimination power 
compared to the use of the exclusive TRV measurement, we have per-
formed an additive model risk score using only TRV and have presented 
the results in Fig. 3. As shown in Fig. 3 (A), AUC is much lower at 56 % 
[95 % CI (53 %− 58 %)] with 95 % CI sensitivity (49 %− 56 %), 95 % CI 
specificity (45 %− 52 %) than the AUC reported for the model risk score 
(Fig. 2 (A)). In fact, by employing only TRV, we can automatically 
discriminate PH patients with only 50 % accuracy vs 74 % accuracy if 
we consider a linear combination of different variables (Eq. 1). In other 
words, the model in Fig. 3 is performing no better than random chance. 
An accuracy of 50 % suggests that the model is not able to distinguish 
between classes or make meaningful predictions on the task at hand.

4. Discussion

To our knowledge, this study was the first to evaluate the imple-
mentation of a machine learning-based model for PH risk assessment in 
a primary care setting. This ground-breaking approach has the potential 
to significantly enhance patient outcomes and mitigate healthcare costs 
associated with the management of PH. The key finding of the current 
study were i) a machine learning-derived algorithm exhibits superior 
diagnostic accuracy when compared to the conventional TRV peak- 
derived sPAP method for diagnosing PH and ii) the diagnosis of PH 
can also be obtained with a good percentage of confidence from the 
analysis of non-invasive tests.

PH diagnosis is challenging, as it typically requires invasive mea-
surement by RHC. RHC is a highly specialized procedure that requires 
sophisticated equipment, trained personnel, and a hospital setting. This 
makes it expensive, with costs including not only the procedure itself but 
also pre-procedure assessments, post-procedure monitoring, and po-
tential hospital stays. In many healthcare systems, especially those with 
limited resources, the high-cost limits widespread access to RHC its use 
[2,27]. Moreover, unlike non-invasive diagnostics such as echocardi-
ography, RHC is an invasive procedure that involves threading a cath-
eter through the veins into the right side of the heart and pulmonary 
arteries. This introduces risks such as infection, bleeding, arrhythmias, 
and, in rare cases, more severe complications like cardiac perforation. 
For patients with comorbidities or advanced disease, these risks may 
outweigh the benefits, leading clinicians to avoid or delay the procedure 
[2,27]. Another aspect not to be neglected is the accessibility. RHC is 
typically available only at specialized centers, often in urban or aca-
demic settings. In rural or underdeveloped regions, patients may lack 
access to the facilities or specialists needed to perform the procedure. 
This limits its availability for early diagnosis and regular monitoring of 
PH patients. Moreover, even if recommended by a physician, the idea of 
undergoing an invasive heart procedure may cause significant anxiety, 

Table 2 
Comparison of continuous variables between no PH and PH patients.

No PH PH

Variables N Mean ± SD N Mean ± SD P- 
value

Age (years) 83 65.2 ± 14.8 143 65.2 ± 13.6 0.8
Weight (Kg) 79 71.2 ± 18.7 143 75.5 ± 16.1 0.04
Height (cm) 79 163.1 ± 8.2 143 164.6 ± 9.1 0.3
6MWD (m) 70 320.5 

± 136.8
126 314.5 

± 153.3
0.7

TAPSE (mm) 83 22.1 ± 5.6 143 21.1 ± 6.1 0.2
PASPs eco (mmHg) 83 55.2 ± 20.7 143 54.7 ± 22.6 0.9
TAPSE_PASPs (mm/ 
mmHg)

83 0.5 ± 0.2 143 0.5 ± 0.3 0.6

EF(%) 83 56.9 ± 7.7 143 55.1 ± 8.7 0.03
SIV (mm) 82 9.8 ± 1.5 143 10.1 ± 1.8 0.1
IVC (mm) 83 17.6 ± 5.2 143 17.7 ± 5.4 0.7
RV1 29 38.8 ± 7.8 94 44.4 ± 8.0 0.001
RV2 18 38.9 ± 10.3 86 38.9 ± 8.4 1
RV3 18 67.5 ± 8.8 85 72.1 ± 10.4 0.08
RA (mm) 11 35.2 ± 32.1 43 25.1 ± 6.9 0.5
LA (mm) 72 40.4 ± 5.7 125 42.6 ± 6.6 0.009
VSTD (mm) 51 47.2 ± 5.3 77 48.8 ± 8.3 0.1
VSTS (mm) 33 30.2 ± 5.1 51 30.8 ± 5.9 0.7
PW (mm) 50 9.3 ± 1.4 76 9.7 ± 1.5 0.3
AoR (mm) 48 30.8 ± 3.4 70 31.3 ± 3.6 0.5
E/e’ 40 9.3 ± 3.9 54 8.6 ± 3.5 0.3
PAAT (msec) 34 111.3 

± 19.9
41 103.5 

± 26.6
0.05

TRV (m/s) 83 3.3 ± 0.7 142 3.2 ± 0.9 0.9

6MWD: six minutes walking distance; TAPSE: tricuspid annular plane systolic 
excursion; PASPs: pulmonary arterial systolic pressure; SIV: interventricular 
septum; IVC: Inferior vena cava; RV1: right ventricular basal-diameter; RV2: RV 
mid-diameter; RV3: RV longitudinal diameter; RA: right atrial; LA: left atrial; 
VSTD:Diastolic LV internal dimension; VST: Systolic LV internal dimension; PW: 
Posterior Wall; AoR: Aortic root; PAAT: Pulmonary artery acceleration time; 
TRV: Tricuspid Regurgitation Velocity; SD, standard deviation. In bold, P-values 
less than.05.

Fig. 2. Model performance, performance of the binary naïve model on the testing set employing 8 features. A) Binary performance; B) ROC curve.
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leading some patients to refuse or delay it. And last but not least this may 
lead to unacceptable delays in diagnosis, which is associated with poorer 
outcomes [28]. Due to its peculiarity, only RHC as gold standard for 
diagnosis, there will probably be a delay from symptoms to the effective 
diagnosis, which will have a major negative impact on prognosis benefit 
[28].

Routinely screening of PH relies mainly on TTE results and particu-
larly on measurement of the TRV parameter [29], which largely depends 
on the operator’s skill and experience [29]. TRV is the key parameter to 
screen population at risk of having PH, according to ESC/ERS guidelines 
[6]. The accuracy of TRV measurement depends on the presence of a 
measurable tricuspid regurgitation jet. In some patients, particularly 
those with mild or absent regurgitation, it can be challenging or 
impossible to obtain reliable TRV values. This limits the utility of TRV in 
diagnosing PH in patients without significant TR, requiring other 
markers or invasive measures like RHC for confirmation. TRV is not the 
only possible measurable parameter that can be obtained from TTE but 
when comparing TTE estimated systolic Pulmonary arterial pressure 
(sPAP) with other echo-derived parameters such as pulmonary insuffi-
ciency (PI) gradients and right ventricular outflow tract acceleration 
time (RVOT-AT), several aspects come into play must be considered, 
particularly specifically in terms of accuracy, feasibility, and limitations, 
especially in patients with suboptimal acoustic windows [30]. Indeed, 
TTE-derived sPAP may face challenges in patients with suboptimal 
acoustic windows, such as those with chronic obstructive pulmonary 
disease (COPD), obesity, or prior chest surgeries. These conditions can 
limit visualization of cardiac structures and affect Doppler signal 
acquisition. In such cases RVOT-AT offers an advantage because it can 
often be measured even when tricuspid regurgitation is poorly visual-
ized, making it a more reliable marker of pulmonary pressures in pa-
tients with suboptimal windows [31]. Moreover, PI gradients can also be 
a useful secondary measure if pulmonary regurgitation is present, 
though it depends on clear Doppler signals, which may be hindered by 
poor acoustic windows.

This study assessed the utility of a machine learning-based approach 
in patients belonging to high-risk categories in developing PH. Patients 
at high risk of developing pulmonary hypertension (PH) often have 
certain predisposing conditions or genetic factors that increase their 
likelihood of pulmonary vascular disease. Systemic sclerosis, in partic-
ular, has a well-documented association with PH, likely due to vascular 
changes in the lungs that arise from the autoimmune and inflammatory 
processes in these diseases [29]. Patients in these high-risk groups often 
benefit from routine monitoring and early screening for PH, as early 
detection and management can significantly improve outcomes and 
quality of life. However, diagnosis of PH in high-risk groups presents 
unique challenges due to overlapping symptoms, complexities of un-
derlying conditions, and the limitations of non-invasive diagnostic tools. 
Overall, a combination of overlapping symptoms, complex disease 

presentations, and limitations in non-invasive diagnostics complicates 
early and accurate PH diagnosis in high-risk groups. Improved screening 
strategies and multidisciplinary approaches are needed to identify PH 
earlier in these populations. Indeed, the diagnosis of PH made in our 
study group using only the canonical noninvasive tools, in particular 
relying solely on TTE, would provide precise results in just half of the 
cases. However, the utilization of an integrated model, such as ours, 
enhances accuracy to 80 % of cases.

Several models have already been presented with the ability of 
discriminating PH patients [32–34] but they either are focused on a 
specific subgroup of PH such as PAH [35], [39] or have been applied to a 
single test [7,32] such as the DETECT study, which is a large, multi-
center, real-world, cross-sectional study. This was the first PAH detec-
tion study aimed at the development of an evidence-based algorithm 
using simple clinical data and non-invasive tests for earlier identification 
of PAH in a mildly symptomatic population. The DETECT algorithm was 
highly sensitive in the recognition of PAH patients in a cohort of SSc 
patients. However, the DETECT algorithm was not developed to identify 
other forms of PH. Indeed, the application of the DETECT algorithm to 
the total PH population missed 19 % of WHO group 2 PH patients and 
37 % of WHO group 3 PH patients, both of which are common in SSc 
[35].

Another example is that of Kogan et al.’s study who presented a ML 
approach able to predict PH based on information in Optum’s US-based 
de-identified dataset (2007–2019) [34]. Indeed, this study showed that 
by working on patient records alone it was possible to make a good 
approximation of the diagnosis in subgroups of patients with PH, 
providing the potential to improve patient outcomes by reducing the 
diagnostic delay in PH [34]. This study underscores the value of inte-
grating ML with large, longitudinal health records to create predictive 
models that assist in early diagnosis and risk stratification for complex 
diseases like PH.

The uniqueness of our model our model is that it was able to correctly 
distinguish between patients with PH and those without PH at diagnosis 
in cohort of patients who had all clinical indications to undergo RHC. 
This result was even more evident when comparing our model risk score 
with the one obtained from the model risk score obtained using the only 
TRV peak-derived sPAP method, which is the canonic non invasive 
method used to screen patients who will undergo RHC. Our model is 
clearly more specific and more sensitive when compared to the canon-
ical non invasive screening method and a possible explanation for that 
finding is that PH can stem from various underlying conditions. There-
fore, its complexity requires an evaluation that cannot be satisfied only 
by a single technique or measurement of a single parameter. Therefore, 
our analysis offers meaningful clinical implications for managing pul-
monary hypertension (PH) and optimizing healthcare resources. 
Certainly, speed up diagnosis time may lead to better prognostic strat-
ification and consequent better use of resources to identify subgroups of 

Fig. 3. : Model performance with TRV, Performance of the binary naïve model on the testing set for TRV feature. A) Binary performance; B) ROC curve.
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patients who need more aggressive therapies and approaches. This 
approach could be a great support particularly in two specific forms of 
PH, pulmonary arterial hypertension (PAH) and the thromboembolic 
form (CTEPH). Detecting PAH and CTEPH in their early stages can be 
very challenging due to nonspecific symptoms and subtle initial pre-
sentations. An advanced version of our prototype might make a signif-
icant impact on patient care, enabling an early, targeted and efficient 
response to complex pulmonary vascular conditions since there are 
specific, targeted therapies for these PH subtypes.

5. Limitations

This is an observational retrospective, nonrandomized, single-center 
study representative of a cohort of adult patients belonging to classes at 
high risk of developing PH who came to the “Ospedale dei Colli” to 
assess the eventual progression of the disease. Consequently, the 
recruited patients did not undergo specific interventions for our protocol 
but followed the standard diagnostic procedure already provided by 
international guidelines. Indeed, all recruited patients underwent RHC 
as normally expected. Our ML model was applied using all data available 
to the clinician prior to RHC and therefore non-invasive. One of the 
major limitations of our study is the limited and unbalanced number of 
patients recruited for each class. Moreover, our model is based on the 
measurement of TRV, and considering the aforementioned caveats this 
limits the performance of our model. However, our work strived to 
propose a prototype that might be remodelled on a much larger and 
heterogeneous court and other parameters such as right ventricular 
outflow tract acceleration time (RVOT-AT) and/or pulmonary insuffi-
ciency gradients may be used as an alternative to TRV.

In our study group of 226 subjects, we had TRV measurements for 
225 patients, with 108 of these showing TRV values between 2.7 and 
3.4 m/s. Given the pilot nature of this study and the limited sample size, 
calculating standalone performance metrics (sensitivity and specificity) 
for TRV at the specific thresholds of 2.55 m/s (rule-out) and 3.4 m/s 
(rule-in) would be challenging at this stage, as it could result in less 
reliable metrics due to small subgroup numbers. Therefore, we intend to 
conduct a more comprehensive analysis in a future study with a larger 
cohort. This will allow us to better assess the standalone performance of 
TRV thresholds independently and to make a more robust comparison 
with our model.

Recognizing that findings from a limited sample size cannot be 
generalized, upcoming research will confirm the findings from this 
initial study on a larger data pool. Nonetheless, we have implemented 
various methodological approaches to address this concern. In fact, we 
utilized conventional machine learning techniques, which have lower 
computational complexity compared to more advanced ML algorithms, 
resulting in fewer parameters to train and minimizing overfitting. 
Moreover, to counter the limited number of patients in the study, we 
employed no more than 1 feature for every 10 patients to develop the 
models. Finally, we balanced the dataset using synthetic samples and we 
conducted repeated cross-validation to ensure the reliability of the re-
sults and reduce overfitting.

6. Future directions

This study represents a pilot analysis, and we recognize the impor-
tance of validating our model on larger datasets to enhance its robust-
ness and reproducibility. As a future direction, we plan to conduct a 
more extensive assessment of the model’s performance across specific 
subgroups within PH and PAH, including gender, ejection fraction (EF), 
body mass index (BMI), and TRV risk categories. We believe that 
examining potential performance differences among these subgroups 
could yield insights with important clinical implications.

By explicitly exploring subgroup variations, we aim to further the 
model’s clinical relevance and applicability, ensuring that it can serve as 
a reliable tool across diverse patient populations. We have revised the 

manuscript to outline this future direction.

7. Conclusion

In conclusion, current AI research is still in the early stages, but 
accumulating evidence suggests that AI-guided research allows re-
searchers to explore novel risk factors contributing to the pathogenesis 
and pathophysiology of several pathologies especially in what regards 
cardiovascular pathologies and could represent the missing link in 
obtaining early diagnosis for events that in other cases could be fatal 
[36]. Furthermore, the use of artificial intelligence for the management 
of large amounts of data could be helpful with risk stratification and 
follow-up of specific patients more accurately. Currently, our machine 
learning-based approach was effective in evaluating patients belonging 
to high-risk categories for PH. Indeed, with a good approximation, it was 
able to recognize patients with the disease compared to patients with 
normal pressures in the pulmonary circulation.
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