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1  |  INTRODUC TION

Anderson's white- bellied rat (Niviventer andersoni) belongs to genus 
Niviventer, family Muridae, and order Rodentia. Niviventer contains 
17 recognized species with another 65 recognized as synonyms, 
spreading from the Himalayas and China to the Great Sunda Islands 
(Wilson & Reeder, 2007). All Niviventer species are distinguished 

from other murid rodents by the long, slender, flat craniums and the 
tail tips (Jing et al., 2007). They inhabit a variety of habitats ranging 
from damp forests to dry valleys. They are also in natural reservoirs 
or intermediate hosts for a variety of human pathogens (Keesing 
et al., 2010).

Niviventer andersoni is a species endemic to China with the larg-
est body size compared to the other congeneric species of Niviventer 
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Abstract
The phylogenetic structure of the genus Niviventer has been studied based on several 
individual mitochondrial and nuclear genes, but the results seem to be inconsistent. 
In order to clarify the phylogeny of Niviventer, we sequenced the complete mitochon-
drial genome of white- bellied rat (Niviventer andersoni of the family Muridae) by next- 
generation	sequencing.	The	16,291	bp	mitochondrial	genome	consists	of	22	transfer	
RNA genes, 13 protein- coding genes (PCGs), two ribosomal RNA genes, and one non-
coding control region (D- Loop). Phylogenetic analyses of the nucleotide sequences 
of all 13 PCGs, PCGs minus ND6, and the entire mitogenome sequence except for 
the D- loop revealed well- resolved topologies supporting that N. andersoni was clus-
tered with N. excelsior forming a sister division with N. confucianus, which statistically 
rejected the hypothesis based on the tree of cytochrome b (cytb) gene that N. confu-
cianus is sister to N. fulvescens. Our research provides the first annotated complete 
mitochondrial genome of N. andersoni, extending the understanding about taxonomy 
and mitogenomic evolution of the genus Niviventer.
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(Figure	1)	 (Ge	et	al.,	2017,	2021).	They	 live	 in	various	kinds	of	 for-
ests	 in	 both	 lowlands	 and	mountains	 (Li	&	Yang,	 2009).	 Fossil	 re-
cords showed that this species extended to the low- altitude regions 
of Southeast China during the late Quaternary in Chongqing and 
Guizhou, suggesting they migrated southward when the climate 
turned	colder	(Bahain,	2007;	Bekken	et	al.,	2004).

The phylogenetic position of N. andersoni has not been fully de-
termined, due to controversial phylogenetic topologies within the 
genus Niviventer. An early study proposed that the Niviventer could 
be divided into two primary groups: the N. andersoni- Division and 
the N. niviventer-	Division	(Musser,	1981).	Phylogenetic	trees	based	
on mitochondrial cytochrome b (cytb) gene showed that N. ander-
soni and N. excelsior were clustered together and comprised the N. 
andersoni- Division (Jing et al., 2007). Meanwhile, N. confucianus, to-
gether with N. fulvescens and N. cremoriventer, formed N. niviventer- 
Division, a sister division to N. andersoni-	Division	(Figure	1)	(Ge	et	al.,	
2021; He & Jiang, 2015; Lu et al., 2015; Zhang et al., 2016). However, 
this classification might be inconclusive due to the limited number of 
gene sequences used, since each gene evolves under different evo-
lutionary pressures and time scales (Choi & Kim, 2017). Compared 
to individual mitochondrial gene sequences, complete mitochondrial 
genome sequences can provide higher resolution and sensitivity for 
better revealing the evolutionary relationships among closely re-
lated species (Ladoukakis & Zouros, 2017; Wei et al., 2017).

Up to now, the mitogenomes of the four species (N. andersoni, 
N. confucianus, N. fulvescens, and N. niviventer) within the genus 
Niviventer have not been entirely sequenced or verified. Since com-
plete mitochondrial genomes have been used for taxonomic and 
phylogenetic analyses of diverse animal groups (Kim et al., 2020; 
Ladoukakis & Zouros, 2017; Lavrov & Pett, 2016; Wei et al., 2017), 
the lack of genetic data has limited our understanding of the phylog-
eny of N. andersoni. In the present study, we sequenced the complete 

mitochondrial genome of N. andersoni and described typical features 
of the N. andersoni mitochondrial genome revealing its phylogenetic 
relationships with other white- bellied rat species. Our findings high-
light the importance of complete mitogenome information in phylo-
genetic analyses for rodent species.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and genomic DNA 
extraction

Individuals of N. andersoni were collected from Lufeng County, 
Yunnan province, China (H =	 1875.43	m),	 in	 August	 2018.	 These	
individuals were sacrificed and dissected for organ collection. The 
heart, liver, spleen, lung, kidney, and muscle were kept in the cryo-
preservation tubes directly. All the samples were immediately put in 
liquid nitrogen for short storage, then transported to the laboratory 
in	dry	ice	and	stored	at	−80°C.	DNA	was	extracted	from	the	muscle	
using	mitochondrial	extraction	kit	(Solarbio)	and	stored	at	−80°C.

2.2  |  Mitogenome sequencing, 
assembly, and annotation

The mitochondrial DNA was subjected to random PCR (rPCR) as pre-
viously described (Li et al., 2010). Briefly, the extracted mitochon-
drial DNA was first synthesized by random primer (5’- GCC GGA GCT 
CTG CAG AAT TCNNNNNN- 3’). Then 2 μl of the synthetic product 
was used to perform the PCR in a 50- μl reaction mixture volume 
containing 10 μl	 PCR	 buffer,	 1	 mM	MgSO4,	 0.2	 mM	 each	 dNTP,	
40	pmol	universal	primer	(5’-	GCC	GGA	GCT	CTG	CAG	AAT	TC-	3’),	

F I G U R E  1 Niviventer andersoni. This 
photograph is adapted from Ge et al. 
(2021), Molecular Biology and Evolution, 
2021 (Wilson & Reeder, 2007) under 
proper copyright permission. The 
schematic diagram of the evolutionary 
tree embedded in the bottom of the 
picture shows the N. niviventer- Division 
and N. andersoni- Division
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and 1 U KOD- Plus DNA polymerase (Toyobo, Japan). The reaction 
was	conducted	 for	40	cycles	of	94°C	for	30	s,	54°C	for	30	s,	and	
68°C	for	2	min	followed	by	incubation	for	10	min	at	68°C.	The	prod-
ucts were analyzed by agarose gel electrophoresis.

The purified rPCR products were used to construct the sequencing 
library and sequenced on HiSeq- PE150 instrument (TIANGEN, Beijing, 
China). The raw reads were trimmed and filtered using Trimmomatic 
(Version	0.39)	 (Bolger	 et	 al.,	 2014).	 The	 cleaned	 reads	were	 aligned	
to NCBI non- redundant protein sequence database using BLASTx by 
DIAMOND (Buchfink et al., 2015). Mitochondrial reads were selected 
and de novo assembled into a complete mitochondrial genome using 
Geneious	 software	package	 (Version	2019.1.1)	 (Kearse	 et	 al.,	 2012).	
Protein-	coding	 genes	 (PCGs)	 were	 annotated	 using	 the	 NCBI	 ORF	
Finder	 (https://www.ncbi.nlm.nih.gov/orffi	nder/)	 and	 BLASTx	 with	
the vertebrate mitochondrial genetic code. The tRNA genes were iden-
tified using the tRNAscan- SE Search Server under the default search 
mode, using the vertebrate mitochondrial genetic code source (Chan 
&	Lowe,	2019).	Composition	skew	analysis	was	calculated	according	
to the formulas: AT skew = (A– T)/(A + T) and GC skew = (G– C)/(G + C) 
(Perna	&	Kocher,	1995).	Relative	synonymous	codon	usage	(RSCU)	val-
ues	were	calculated	using	CodonW	1.4.2	(Wu	et	al.,	2007).	The	circular	
mitochondrial genome map of N. andersoni was drawn using OGDRAW 
1.3.1	(Greiner	et	al.,	2019).

2.3  |  Phylogenetic analysis

Phylogenetic analysis was performed by comparing mitogenome se-
quences of N. andersoni with four other white- bellied rats in Niviventer 
genus and additionally with genomes of murid rodents from the 
genus Rattus (R. andamanensis, R. baluensis, R. norvegicus, R. tanezumi, 
R. tiomanicus), Mus (M. musculus), and Leopoldamys (L. edwardsi, L. sa-
banus) as outgroups and calibration points of the phylogeny (Table 1). 
Meanwhile, cytb, cox1, and ND2, the three genes commonly for phylo-
genetic analyses, were used to construct phylogenetic control trees. 
To further investigate the phylogenetic relationships of N. andersoni, 
the phylogenetic relationships were reconstructed based on the com-
plete mitochondrial genome. The D- loop region was excluded because 
of the rapid mutation rate in this region. The nucleotide sequences 
were aligned using ClustalX with default settings before concatena-
tion by DAMBE (Version 7.2) (Larkin et al., 2007; Xia, 2017). Models of 
evolution were evaluated using corrected Aikake Information Criteria 
(AICc) in jModelTest 2.1.10 to determine the best nucleotide substitu-
tion model (Darriba et al., 2012). Maximum likelihood (ML) analysis of 
the 13 PCGs in 13 species of rodent was also performed using MEGA X 
(Kumar et al., 2018). The support values of the ML tree were evaluated 
via a bootstrap test with 1000 iterations.

2.4  |  Estimation of divergence date

The 13 PCG sequences were aligned using Muscle program by 
codon method in MEGA. We calculated the differentiation time of 

species	using	13	PCGs	as	different	partitions	in	BEAST	v1.10.4	program	
(Drummond et al., 2012). The substitution models and clock models 
(uncorrelated lognormal relaxed clock) were unlinked among partitions 
in BEAST. The most appropriate substitution and variant sites model 
of	each	PCG	through	ModelFinder	program	was	estimated	according	
to the Bayesian Information Criterion (BIC) method (Kalyaanamoorthy 
et al., 2017), the result is shown in Table S1. Referring to previous re-
ports of divergence dates in Rattus genus, two priors of the most re-
cent common ancestor (tMRCA) were used to calibrate the molecular 
clock (Camacho- Sanchez & Leonard, 2020; Robins et al., 2008). The 
tMRCA of Rattus genus was set to normal distribution with mean 
value of 3.5 Mya and sdtev value of 0.25; the tMRCA of Rattus bal-
uensis and Rattus tiomanicus was set to normal distribution with mean 
value of 0.31 Mya and sdtev value of 0.1. The Yule process speciation 
model was used in tree priors. We ran the Markov chain of 120 million 
steps and sampling every 10,000 steps. The Tracer v1.7 program was 
used for checking the Effective Sample Size (ESS) of each parameter 
and ensured that they all reached convergence (ESS > 200), and the 
Maximum Clade Credibility (MCC) tree was created after discarding 
the first 10% of states by Tree Annotator program.

3  |  RESULTS

3.1  |  Genome organization

From	the	raw	reads,	a	total	of	1,578,672	high-	quality	reads	were	ob-
tained and used to assemble the N. andersoni mitochondrial genome. 
As a result, the complete mitochondrial genome sequence of N. an-
dersoni was deposited into NCBI with GenBank accession number 
MW030174.	The	mitogenome	of	N. andersoni was a circular DNA mol-
ecule	with	16,291	bp	in	length.	As	shown	in	Figure	2,	the	mitogenome	
organization of N. andersoni was similar to those of other rodents 
(Boore,	1999).	Thirty-	seven	typical	mitochondrial	genes	were	 identi-
fied, including 13 PCGs, 22 tRNA genes, and 2 rRNA genes (Table S2). 
Most of the genes were encoded by the heavy strand (H- strand), while 
ND6 and 8 tRNAs were encoded by the light strand (L- strand).

The total base composition of N. andersoni mitochondrial ge-
nome was estimated to be 33.7% for A, 25.8% for C, 12.1% for G, 
and	30.0%	for	T,	making	AT	and	GC	percentage	as	61.6%	and	38.4%,	
respectively, indicating that the mitochondrial genome biased to-
ward AT (Table 2). Such base composition bias has been reported to 
play a vital role in the replication and transcription of mitochondrial 
genome (Wei et al., 2010). It also showed a negative GC skew value 
(−0.347),	indicating	that	C	was	more	common	than	G	whereas	the	AT	
skewness	was	positive	(0.092)	suggesting	that	A	occurred	more	fre-
quently than T in the N. andersoni mitochondrial genome (Table 2).

3.2  |  Protein- coding genes

The	total	length	of	the	13	PCGs	was	11,420	bp,	composing	70.1%	of	
the mitogenome. The initiation codons of all PCGs in mitogenome 

https://www.ncbi.nlm.nih.gov/orffinder/
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of N. andersoni were typical ATN, except for ND1, which started 
with GTG. All PCGs of the mitogenome of N. andersoni terminated 
with complete (TAA) or truncated (T) stop codons, except for ND2 
which terminated with CAT (Table S2). The RSCU values of PCGs 
are displayed in Table S3, which also show that the PCG region has 
3,805 codons. According to the RSCU analyses, CUA (L), AUU (I), 
and AUA (M) were the three most frequently used codons. Leucine, 
isoleucine, and threonine were the most frequent PCG amino acids 
(Figure	3).	This	may	explain	the	negative	GC	skew	and	positive	AT	
skew of PCGs.

3.3  |  Ribosomal RNA and Transfer RNA genes

The mitogenome of N. andersoni contained the typical 22 tRNA 
genes throughout the genome and appeared to be highly A+T bi-
ased,	 ranging	 in	 length	 from	 59	 bp	 to	 75	 bp.	 Among	 these	 tRNA	
genes,	8	were	transcribed	on	the	L-	strand	and	the	remaining	14	were	
transcribed on the H- strand (Table S2). All the tRNA genes exhibited 
a typical cloverleaf structure, except trns1 which lacked a dihydrox-
yuridine (DHU) arm that was simplified to a ring shape. Loss of the 
DHU arm is common in the mitogenomes of many mammal animals 
(Wolstenholme,	1992).

The two rRNA genes (lrRNA, srRNA) encoding the small and large 
ribosomal subunits were located between tRNAPhe and tRNALeu on 
the L- strand of N. andersoni. The lrRNA and srRNA genes were 1567 
and	957	bp	 in	 length,	 respectively.	The	A+T content of rRNA was 
63.43%,	and	its	AT	skew	(0.204)	and	GC	skew	(−0.099)	showed	that	
more As and Cs were present in the rRNA than As and Gs (Table 2).

3.4  |  Phylogenetic analysis

Based on 13 PCGs of 13 species, we obtained a phylogenetic tree by 
ML method with 1000 replications in which Mus musculus was set 
as	 the	outgroup	 (Figure	4a).	Previous	 research	has	 suggested	 that	

ND6 gene should be excluded during phylogenetic analysis due to its 
high heterogeneity and consistently poor phylogenetic performance 
(Miya & Nishida, 2000). Thus, we constructed another phylogenetic 
tree based on PCGs excluding ND6	(Figure	4b).	As	a	result,	the	two	
phylogenetic analyses were similar. When compared with other 
white- bellied rat species, N. andersoni was phylogenetically closer 
to N. excelsior and clustered within genus Niviventer.	For	the	three	
independent trees generated for cytb, cox1, and ND2, we obtained 
three different topological structures. The ND2 tree showed similar 
topologies to the 13 PCGs combined, both showing that N. andersoni 
and N. confucianus were sister species. The cox1 tree showed a clus-
ter of N. confucianus, N. cremoriventer, and N. fulvescens.	For	cytb, N. 
confucianus was clustered with M. musculus	(Figure	S1).

The ML tree constructed based on the complete mitochondrial 
genome (except D- loop) showed the same topologies as those PCG 
trees	(Figure	5).	In	addition,	we	estimated	that	the	divergence	date	
of Niviventer	genus	was	about	4.65	million	years	ago	(Mya)	with	95%	
HPD of 3.83 Mya ~5.52 Mya, and the tMRCA of N. andersoni and N. 
excelsior	was	about	0.47	Mya	(0.37	Mya	~0.57	Mya,	95%	HPD).	The	
divergence date of N. andersoni and N. excelsior cluster from N. con-
fucianus	was	about	4.03	Mya	with	95%	HPD	of	3.28	Mya	~4.80	Mya	
(Figure	6).

4  |  DISCUSSION

In this study, we obtained the first annotated complete mitochon-
drial genome sequence of N. andersoni and conducted phylogenetic 
analyses based on the nucleotide sequences widely covering the mi-
tochondrial genome, including all 13 PCGs, PCGs minus ND6, and 
the entire mitogenome sequence except for the D- loop. The results 
provided a comprehensive view of the phylogenetic position of N. 
andersoni and the phylogeny structure of the genus Niviventer.

The phylogenetic topologies within the genus Niviventer have 
been studied for decades. This genus was initially divided into two 
groups based on cytb gene that were the N. andersoni- Division 

Genus Species Common name Gen Bank

Leopoldamys Leopoldamys edwardsi Edwards's long- tailed giant rat NC_025670.1

Leopoldamys sabanus Long- tailed giant rat MN964122.1

Mus Mus musculus House mouse NC_005089.1

Niviventer Niviventer confucianus Chinese, white- bellied rat NC_023960.1

Niviventer cremoriventer Dark- tailed tree rat NC_035822.1

Niviventer excelsior Large white- bellied rat NC_019617.1

Niviventer fulvescens Chestnut white- bellied rat NC_028715.1

Rattus Rattus andamanensis Indochinese forest rat NC_046686.1

Rattus baluensis Summit rat NC_035621.1

Rattus norvegicus Norway rat NC_001665.2

Rattus tanezumi Oriental house rat NC_011638.1

Rattus tiomanicus Malayan field rat MN126562.1

TA B L E  1 Complete	mitochondrial	
genomes used for phylogenetic analysis in 
this study

info:refseq/NC_025670.1
info:refseq/MN964122.1
info:refseq/NC_005089.1
info:refseq/NC_023960.1
info:refseq/NC_035822.1
info:refseq/NC_019617.1
info:refseq/NC_028715.1
info:refseq/NC_046686.1
info:refseq/NC_035621.1
info:refseq/NC_001665.2
info:refseq/NC_011638.1
info:refseq/MN126562.1
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including N. andersoni and N. excelsior, and the N. niviventer- Division 
including N. confucianus, N. fulvescens, and N. cremoriventer (Jing 
et al., 2007). However, as more Niviventer species were found and 
phylogeny on several other mitochondrial and nuclear genes was 

analyzed, it was proposed that this genus should be classified into 
four groups, or species complexes. Typically, N. andersoni and N. ex-
celsior were still classified into the same division, but N. confucianus 
was in a division different from N. fulvescens and N. cremoriventer 

F I G U R E  2 Mitochondrial	genome	map	of	Niviventer andersoni
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TA B L E  2 Nucleotide	composition	and	AT-	GC	skewness	of	the	Niviventer andersoni mitogenome

Niviventer andersoni Size (bp) A G T C A+T AT skewness GC skewness

Mitogenome 16,291 33.65 12.53 27.97 25.85 61.62 0.092 −0.347

PCGs 12,309 28.96 11.51 27.29 25.01 56.25 0.030 −0.370

tRNAs 1499 34.62 18.55 30.29 16.54 64.91 0.067 0.057

rRNAs 2524 38.19 16.48 25.24 20.09 63.43 0.204 −0.099

Control region 889 34.31 11.36 29.92 24.41 64.23 0.068 −0.365
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F I G U R E  3 The	relative	synonymous	
codon usage (RSCU) in the mitogenome 
of Niviventer andersoni. The box below the 
bar chart represents all codons encoding 
each amino acid, and the height of the 
column above represents the sum of all 
RSCU values

2

4

6
R

S
C

U

as.character(V4)
4.5
5
5.5
6

0

2

4

6

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu1Leu2 Lys Met Phe Pro Ser1 Ser2 Thr Trp Tyr Val

R
SC
U

GCU

GCG

GCC

GCA

UGU

UGC

GAU

GAC

GAG

GAA

UUU

UUC

GGU

GGG

GGC

GGA

CAC

CAU

AUU

AUC

AAA

AAG

CUA

CUC

CUG

CUU

UUA

UUG

AUG

AUA

AAC

AAU

CCU

CCG

CCC

CCA

CAA

CAG

CGA

CGC

CGG

CGU

AGC

AGU

UCA

UCC

UCG

UCU

ACA

ACU

ACC

ACG

GUU

GUG

GUC

GUA

UGA

UGG

UAC

UAU

F I G U R E  4 The	maximum	likelihood	analyses	of	phylogenetic	relationship	based	on	(a)	13	PCGs	and	(b)	12	PCGs	of	13	species

Niviventer excelsior

Niviventer andersoni 

Niviventer confucianus

Niviventer cremoriventer

Niviventer fulvescens

Leopoldamys edwardsi

Leopoldamys sabanus

Rattus norvegicus

Rattus andamanensis

Rattus tanezumi

Rattus baluensis

Rattus tiomanicus

Mus musculus

100

100

100

100

100

100

100

100

100

96

0.050

Niviventer

Leopoldamys

Rattus

Mus

Niviventer

Leopoldamys

Rattus

Mus

Niviventer excelsior

Niviventer andersoni

Niviventer confucianus

Niviventer cremoriventer

Niviventer fulvescens

Leopoldamys edwardsi

Leopoldamys sabanus

Rattus norvegicus

Rattus andamanensis

Rattus tanezumi

Rattus baluensis

Rattus tiomanicus

Mus musculus

100

100

100

100

100

100

100

99

99

94

(a) (b)

0.050

F I G U R E  5 The	maximum	likelihood	
analyses of phylogenetic relationships 
based on complete mitochondrial genome 
minus the D- loop

Niviventer excelsior

Niviventer andersoni

Niviventer confucianus

Niviventer cremoriventer

Niviventer fulvescens

Leopoldamys edwardsi

Leopoldamys sabanus

Rattus norvegicus

Rattus andamanensis

Rattus tanezumi

Rattus baluensis

Rattus tiomanicus

Mus musculus

100

100

100

100

100

100

100

100

100

96

0.050

Niviventer

Leopoldamys

Rattus

Mus



    |  7 of 9LIU et aL.

(Ge et al., 2021; He & Jiang, 2015; Lu et al., 2015; Zhang et al., 2016). 
Although the latter classification has been accepted by most re-
searchers recently, the phylogenetic topologies were still based on 
a limited number of genes only, which might lead to bias. Therefore, 
more genetic sequence, especially the nuclear genome, is required 
to further clarify it.

Our results based on the complete mitochondrial genome par-
tially supported the latter four- division taxa. The results suggest 
that N. andersoni and N. excelsior clustered together, then with N. 
confucianus, and these three formed a division, and N. fulvescens and 
N. cremoriventer formed another division. Since each gene evolves 
under different evolutionary pressure and time scale, it has been 
known that one gene tree for a population may differ from other 
gene trees for the same population depending on the subjective se-
lection of the genes (Choi & Kim, 2017). Our results also suggested 
that the inconsistency among evolutionary trees of mitochondrial 
single gene could be verified by mitochondrial whole genome evo-
lutionary analysis.

Nevertheless, the phylogenetic topologies of the genus 
Niviventer revealed by maternally inherited mitochondrial genome 
alone may not agree with that obtained with nuclear genome, due 
to incomplete lineage sorting, mitochondrial introgression, and re-
cent hybridization (Barbosa et al., 2018; Rubinoff & Holland, 2005). 
The long divergence time of N. andersoni/N. excelsior and N. confu-
cianus also indicates a potential large genetic difference between 

them. Thus, nuclear genomic sequences are required to draw a 
complete picture of the Niviventer taxa. Unfortunately, complete nu-
clear genomic sequences are not available for any Niviventer species. 
Therefore, more nuclear genes or even complete nuclear genome 
should be included in the analysis to provide more comprehensive 
view of the phylogenetic topologies in the genus Niviventer.

5  |  CONCLUSION

We have sequenced and annotated the complete mitochondrial 
genome of N. andersoni for the first time and compared it with 
closely related species of the family Muridae. The mitochondrial ge-
nome structural features were similar to the other species in genus 
Niviventer. In the phylogenetic analysis based on the sequences of 
the 13 PCGs, the PCGs excluding ND6, and the complete mitoge-
nome without D- loop, N. andersoni was consistently clustered with 
N. excelsior, together forming a sister group of N. confucianus. The 
complete mitochondrial genome of N. andersoni will extend our un-
derstanding about the evolution of the genus Niviventer, as well as its 
relationship to other murid rodents.
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