
Research Article
Semiautomatic Segmentation of Glioma on Mobile Devices

Ya-Ping Wu,1,2 Yu-Song Lin,2 Wei-Guo Wu,1 Cong Yang,1 Jian-Qin Gu,3 Yan Bai,4 and
Mei-Yun Wang4

1School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
2Collaborative Innovation Center for Internet Healthcare and School of Software and Applied Technology, Zhengzhou University,
Zhengzhou, Henan 450001, China
3Henan Provincial Clinical Big Data Analysis and Service Engineering Research Center, Zhengzhou University People’s Hospital and
Henan Provincial People’s Hospital, Zhengzhou, Henan 450001, China
4Department of Radiology, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, Henan
450001, China

Correspondence should be addressed to Wei-Guo Wu; wgwu@mail.xjtu.edu.cn

Received 31 October 2016; Revised 28 February 2017; Accepted 23 March 2017; Published 27 June 2017

Academic Editor: Guanling Chen

Copyright © 2017 Ya-Ping Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Brain tumor segmentation is the first and the most critical step in clinical applications of radiomics. However, segmenting brain
images by radiologists is labor intense and prone to inter- and intraobserver variability. Stable and reproducible brain image
segmentation algorithms are thus important for successful tumor detection in radiomics. In this paper, we propose a supervised
brain image segmentation method, especially for magnetic resonance (MR) brain images with glioma. This paper uses hard edge
multiplicative intrinsic component optimization to preprocess glioma medical image on the server side, and then, the doctors
could supervise the segmentation process on mobile devices in their convenient time. Since the preprocessed images have the
same brightness for the same tissue voxels, they have small data size (typically 1/10 of the original image size) and simple
structure of 4 types of intensity value. This observation thus allows follow-up steps to be processed on mobile devices with low
bandwidth and limited computing performance. Experiments conducted on 1935 brain slices from 129 patients show that more
than 30% of the sample can reach 90% similarity; over 60% of the samples can reach 85% similarity, and more than 80% of the
sample could reach 75% similarity. The comparisons with other segmentation methods also demonstrate both efficiency and
stability of the proposed approach.

1. Introduction

Glioma is a prevalent fatal brain disease, accounting for
about 50% of instances among all intracranial tumors, which
is also the major malignancy brain disease with the highest
mortality and morbidity. Traditionally, the determination
and staging of glioma are mainly based on a radiologist’s
experience and intuition, leading to poor diagnosis stability
and reliability. Through accurately and reliably converting
medical images into quantified digital features, radiomics
provides an effective solution for automatic detection and
determination of glioma by describing the microenviron-
ment of tumor lesion [1–3]. In addition, it has been shown
to be effective in computer-aided diagnosis and computer-

assisted surgery and radiotherapy as well as medical research
of glioma patients by extracting personalized features for
individual patient.

Radiomics typically uses machine learning to train a
model for classification or prediction. The segmentation of
the region of interest (ROI) is the most critical step, which
is also the foundation of all subsequent analyses. In practice,
existing glioma segmentation is hard to be applied in clinical
routines because of the heterogeneous nature of glioma and
the image acquisition procedures. Firstly, due to the charac-
teristics of glioma, the tumor tissue shows no clear bound-
aries with normal tissues [4]. The gray levels between
different tissues have similar gray values in the MRI images.
In addition, glioma’s inherent complexity exhibits complex
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pathological changes (including hemorrhage, necrosis, and
edema appearance). In particular, the nature of the tumor’s
subregion is the gene mutation, so the heterogeneous nature
is chaotic [5]. Secondly, the glioma image contains Gaussian
white noise and bias field caused by coil magnetic of the
equipment, which can be expressed as low-frequency global
multiplicative noise, and therefore, these images show no
uniformity in the same tissue. Partial volume effect resulted
from equipment resolution indicating that the gray level of
pixel reflects the average gray level of voxel. Active or inactive
movement of patients between acquisition processes has neg-
ative impact on images. For the above reasons, glioma images
show blurry edges and uneven gray levels, thus making accu-
rate, repeatable, and stable segmentation a challenging task.
Indeed, accuracy and robustness of existing glioma segmen-
tation algorithms are insufficient; thus, radiologists are still
needed for assisted image segmentation to ensure the quality
of radiomics.

On theotherhand,with thepopularity ofmobile devices as
well as the development of wireless technology, smartphones
and tablets have become routine office tools. An increasing
number of doctors started to usemobile devices tohandle clin-
ical tasks, such as viewing medical images and submitting
diagnostic advice. Thus, in the context of semiautomatic
segmentation, it is desirable to allow doctors to do supervised
segmentation in their convenient time. Due to the limited
computingpowerofmobiledevices, it is challenging todirectly
process the raw image data on the devices [6–8]. In order
to improve the experience of interactive segmentation on low
bandwidth and often unstable wireless network, we often use
a client/server model where medical images are preprocessed
on the server while doctors supervise segmentation on the
mobile client. This framework thus requires small data
transfer between the mobile client and server and a fast
segmentation algorithm on the mobile client.

The contributions of this paper include the following:

(1) We adapted the multiplicative intrinsic component
optimization (MICO) algorithm [9] to denoise and
presegment tissues for further processing. The origi-
nal MICO often produces blurry edges, making the
preprocessed images less usable for radiologists.
Thus, we replaced its fuzzy membership function
with a binary function to obtain clear edges. We also
replaced the fixed iteration number with an empiri-
cally derived threshold for algorithm termination,
which reduces preprocessed image size for wireless
transfer from the server to mobile client. On the
mobile device, we used the multiseed region-
growing (MSRG) segmentation algorithm to auto-
matically calculate the region of interests based on
seeds chosen by the doctors.

(2) We experimentally evaluated the proposed approach
and compared with popular segmentation algorithms
to show its effectiveness and consistency. In addi-
tion, we implemented and evaluated the mobile
application to show that the MSRG algorithm runs
efficiently on mobile devices that allows for good
interaction performance.

2. Related Works

According to the degree of required human interaction, brain
tumor segmentation methods can be classified into three cat-
egories [10], manual segmentation, automatic segmentation,
and semiautomatic segmentation. Manual segmentation is to
label tumor lesions manually slice-by-slice by a radiologist
which is time consuming and tedious. Besides, it is challeng-
ing to repeat due to its strong subjective and heavy workload,
which is also of limited use for objective quantitative analysis.
Automatic segmentation is controlled entirely by the algo-
rithm, and there is no requirement of interaction with the
high segmenting speed. However, due to the severe inherent
heterogeneity of tumors together with bias field and noise,
the accuracy of the automatic segmentation algorithm is
often poor. In contrast, semiautomatic methods label the
ROI with less interaction, adapt to different images and
needs, and also achieve high accuracy and fast speed. There-
fore, semiautomatic segmentation can balance the contradic-
tion of segmentation accuracy and high labor intensity.
Experiment results obtained by Parmar et al. [11] show that
radiomics features extracted from semiautomatic segmenta-
tions had significantly higher reproducibility compared to
that of extracted from the manual segmentations. To obtain
stable radiomics features, the key is to reduce human interac-
tion and simultaneously guarantee the accuracy and repro-
ducibility as well as stability. Currently, the gold standard
of glioma image segmentation does not exist. In clinical
practice, two radiologists are often used to evaluate the
segmentation results. Thus, reproducibility and stability are
more significant in comparison with the accuracy.

The brain tumor segmentation algorithm can mainly
be divided into the following categories [12]: region-
based (or edge-based) method, classification and clustering
method, and methods with constraints, as well as some
hybrid methods.

Region growing is a classic region-based segmentation
method, adding a pixel to the collection with similar proper-
ties to the seed point and iterative increase collection until
achieving the target region segmentation. The key of region
growing is to design the rules of measure similarity as well
as the rules of growth. Rexilius et al. [13] initialized a
region-growing algorithm with a tumor map, which was
obtained from a multispectral histogram model adaptation.
Bendtsen et al. [14] used the region-growing method present-
ing a semiautomatic segmentation algorithm LuTA for lung
cancer and also apply it to analysis and evaluation of tumor
volume. Gu et al. [15] expanded the single-click ensemble
segmentation on the basis of LuTA and reduced the interac-
tions in semiautomatic segmentation through multiple initial
seeds produced in the core area, the external seeds produced
by the 3-dimensional view expansion along 24 directions,
and the stable tumor segmentation area generated by
region-growing algorithm iteration. Due to the requirement
of manually specifying the seed point and being sensitive to
noise, the segmentation results obtained through the multi-
seed region-growing algorithm are likely to contain lots of
holes, which generally require being combined into the
segmentation results based on the circumstances.
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The edge-based method uses the dramatic changes of
gray value in the edge of the object. An active contour model
(ACM) can use prior knowledge to solve image segmentation
problems. Sachdeva et al. [16] made use of content-based
intensity and texture patterns to evolve an active contour
towards the tumor boundary in different MRI modalities. A
level set segmentation algorithm expresses the evolving curve
impliedly as the zero level of high dimension level set function,
which possesses excellent theoretical foundation, can rapidly
expand to 3-dimensional segmentation, and is extensively
applied in glioma segmentation [17–19]. However, due to the
heterogeneity of glioma and unclear boundary between
tissues, level set segmentation has faced the problem of edge
overflow problem, requiring further improvement for glioma.

Classification or clustering methods make use of voxel-
wise intensity and texture features to segmentation, which
is based on simple and intuitive idea that objects in the same
class have small distance and objects between classes have
broad distance. Ruan et al. [20] used SVM to segment brain
tumors, which can only be handled with the lower number
of modalities and one tumor region due to the binary classi-
fication characteristic of SVM. Deep neural networks
(DNNs) were proposed to automatic brain tumor segmenta-
tion [21–23]. Havaei et al. [21] used a tailored convolutional
neural network to segment glioblastomas. Zikic et al. [24]
applied decision forest classification with context-aware fea-
tures and an additional generative model as an input to iden-
tify tumor subcompartments from multimodal images. In
addition to the algorithm simply using voxel-wised informa-
tion, there have been numerous methods which attempt to
use additional information to improve segmentation result
[25–27]. Li et al. [9] proposed the multiplicative intrinsic
component optimization (MICO) algorithm, which can be
used to correct bias field and segment normal human tissue
at the same time. To the best of our knowledge, there is no

example applying the MICO algorithm into the pretreatment
of glioma segmentation.

Although there exist many segmentation methods, tumor
segmentation is still specifically designed for specific tasks
and the general solution has not yet formed. Segmentation
results have shown a great relationship with the initial state
and parameters of an algorithm. As mentioned before, in
radiomics applications, reproducibility and stability are more
important compared to accuracy. MICO [9] is an efficient
algorithm for normal human tissue segmentation; this paper
uses a modified MICO algorithm to preprocess a glioma
medical image on the server side, and then the doctors super-
vise the segmentation process on mobile devices. The prepro-
cessed images have small data size and simple structure,
which allows the follow-up steps to be processed on mobile
devices with low bandwidth and limited computing perfor-
mance. Through this way, a stable and reproducible method
for the semiautomatic segmentation of glioma in the mobile
environment is obtained.

The remainder of the paper is structured as follows: in
Methods, the authors present the methods used in seg-
mentation such as preprocessing on the server side, segmen-
tation with multiseeds on mobile devices, and postprocessing
like holes filling. In Results and Discussion, this paper
describes the segmentation performance and analyzes the
advances and unsuitable scenes of the method. Finally, in
Conclusions, the authors conclude the work and give an
outlook on future work.

3. Methods

In this work, the authors use the client/server framework
to implement the segmentation of glioma. On the server
side, a multiplicative intrinsic component optimization
algorithm is adjusted to be suitable for glioma medical
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Figure 1: Segmentation algorithm flowchart.
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images and to enable that it can denoise and presegment
tissues within which the same tissue voxels have the same
brightness for further processing. And then, due to the
special nature of preprocessed results, the radiologist can
complete segmentation on the mobile devices just by manu-
ally specifying seed at any position within the ROI. The
whole process of our method is shown in Figure 1.

3.1. Preprocessing on the Server Side. The preprocessing
algorithm denoises and presegments tissues from the gli-
oma imaging which is implemented by MATLAB®
R2015b (Version: 8.6.0.267246) on a Dell Precision Tower
5810 workstation with Windows 10 Enterprise (x64) which
CPU is Intel Xeon E5-1620V3@3.5GHz (8 CPUs) and has
16G memory.

Similar toothermedical images, thenoiseof glioma images
mainly derives from the following two aspects: one is the
random noise, which is assumed as the Gaussian white

noise in this paper, and the other is the bias field effect
caused by heterogeneous magnetic field of the equipment
coil, which manifests as low frequency multiplicative noise
with global gradient. Therefore, the image model can be
described using

I x = b x J x + n x , 1

where I x is the intensity of the observed image at voxel x,
b x is the bias field, J x is the true image, and n x is the
Gaussian white noise with zero mean.

It is discovered through observation that the glioma
image consists of normal tissues such as protein, gray mat-
ter, and cerebrospinal fluid, as well as abnormal tissues
like the accompanying edema, and all tissues are well
defined. Without the loss of generality, it is assumed that
the same tissues in the image has consistent brightness,
and the boundaries between different types of tissues are

Figure 2: The user interface on the mobile device.
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clear and do not overlap. Based on this assumption, we
assume that glioma images contain N piecewise constant
regions. Noise energy is defined using (2) [9], and we
can reach balance when the energy is minimum.

F u, c, w =
Ω
∣I x −wTG x 〠

N

i=1
ciui x ∣2dx

=
Ω
〠
N

i=1
I x − wTG x ci

2
ui x dx,

2

where w = w1,…, wm
T , G x = g1 x ,…, gm x T is poly-

nomial basis functions, b x = wTG x , ci is the gray level of
the i-th tissues in the image, and ui is an array indicating
the i-th tissue or not, if the voxel is i-th tissue then corre-
sponding cell sets are 1 and 0 otherwise and ∑ui = 1,
J x =∑N

i=1ciui x .
Unlike the original, MICO produces blurry edges,

making the preprocessed images less usable for radiolo-
gists. The authors take off the fuzzy membership functions
from origin MICO update functions in order to get clear
boundary of glioma. After doing that, the result has a simpler
structure and can reduce the size of data transferred from the
server to the client and simplify the display and region-
growing segmentation algorithm on a mobile which has a
small screen as well as limited computing performance. To
be compared with the origin MICO, the authors call this spe-
cific MICO as HMICO, which means hard edge MICO in the
rest of the part of this paper. In this work, the authors use a
gradient descent algorithm to optimize u, c, w by minimizing
(2), fixing two parameters to optimize the third parameter.

ĉi = ΩI x b x ui x dx

Ωb
2 x ui x dx

, i = 1,…,N ,

ŵ =
Ω
G x GT x 〠

N

i=1
c2i ui x dx

−1

Ω
G x I x 〠

N

i=1
ciui x dx,

ûi =
1, i = imin x

0, i ≠ imin x
, imin x = argmin δi I x

3

A large number of experiments prove that an energy-
minimizing algorithm can be quickly converged in a finite
number of steps. According to general experience, the algo-
rithm converges to an available accuracy within 5–20 steps,

and the origin MICO algorithm sets 20 times as default steps.
To ensure the stability of the algorithm while reducing the
number of iterations, after every iteration, (4) was used to cal-
culate the energy descent rate ΔF , then terminate iteration
when ΔF is reaching a certain threshold value.

ΔF =
Fn−1 − Fn

Fn
4

3.2. Semiautomatic Segmentation on Mobile Devices. After
preprocessing, a semiautomatic segmentation algorithm
was implemented using region-growing segmentation with
multiseeds on a mobile device. We use Java as the program-
ming language and Android studio 2.2.3 as the GUI editor
and test phones including MI 5S plus and HUAWEI P9
whose operating system is based on Android5.0. The user
interface on the mobile device is shown in Figure 2.

Glioma images are pretreated by HMICO algorithms on
the server side; the N kinds of tissues in the images have been
labeled. The complicated growth pattern and the presence of
heterogeneity in glioma images render regions with heteroge-
neous brightness in the tumor being divided into other
regions by mistake. It can be found through observing the
tumor region that the majority of tumor region has relatively
uniform brightness, which has become uniform brightness
after pretreatment; the radiologists only need to select the
seed-growing points in the region, and they can obtain the
tumor region of interest through a region-growing algorithm.
In the case of the tumor region being pretreated as multiple
adjacent regions due to heterogeneity, the uniform region
of interest can be obtained through multiseed growing. The
steps of region-growing segmentation with multiseeds are
shown as follows:

(1) The radiologists set seed points and push these seeds into
a stack.
(2) Pop up the seed-growing point (x0, y0) from the stack
and take the 8 neighborhood pixels (x, y) into consideration
with (x0, y0) being the center. If (x, y) satisfies the growth cri-
teria, then combine (x, y) with (x0, y0) into the same region
and push (x, y) into the stack.
(3) End the growth, if the stack is empty, and implement
step 2.

Due to the caused heterogeneity, after the region-growing
algorithm, segmentation result may contain many subareas
in the main ROI area. These subareas can be well segmented
through multiseeds, causing large workload for radiologists.

Table 1: The similar indicator of segmentations.

Algorithm
SI≥ 75% SI≥ 85% SI≥ 90%

Number of samples Proportion Number of samples Proportion Number of samples Proportion

Our method 109 84.50% 85 65.89% 42 32.56%

Snake 89 68.99% 75 58.14% 39 30.23%

RegionGrow 48 37.21% 34 26.36% 19 14.73%

LuTA 52 40.31% 38 29.46% 4 3.10%

CV 35 27.13% 22 17.05% 2 1.55%
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Besides, it is worth noting that these subareas almost
completely are contained in the main ROI area, so filling
these holes (the area ratio is smaller than the threshold value)
can obtain the complete area of the ROI.

4. Results and Discussion

In the experiment, the HMICO algorithm on the server side
is implemented in Matlab using ΔF ≤ 0 01 as terminate
threshold, and the preprocessed data was stored in the server
in the form of a file. The mobile terminal equipment utilizes
the Android 5.0 operating system. A native development kit
was used to interact with the preprocessed images or the
original image.

To measure the performance of the algorithm and the
scope of the algorithm, the Jaccard coefficient was used to
calculate the overlap with the ground truth [28], which
can range from 0 to 1 with 0 indicating no overlap and
1 implies the perfect overlap. Defining similar indicator
(SI) is as follows:

SI = SA ∩ SB
SA ∪ SB

, 5

where SA is the segmentation result of the semiautomatic
method and SB is the manual segmentations by a radiologist
due to the lack of a well-accepted ground truth.

In order to compare the performance of the method,
the authors use the classical segmentation algorithms for
comparative experiments. These algorithms include a clas-
sical level set method Chan-Vese (CV) [29], Snake [30],
LuTA [15], and region growing. All the experiments are
using the same origin data and using the same seed in
LuTA and region-growing as used on the mobile side
and initiate level set function around the seed by a circle
with a diameter of 2 pixels and initiate the snake mask
around the seed by 2 pixels.

4.1. Dataset and Segmentation Results. Experiments used
data sets from the Henan Provincial People’s Hospital, and

the data set includes 129 cases of various types of glioma
image. Besides, the data set has been hand marked and
confirmed by two experienced radiologists. Through com-
paring the manual segmentation results and the semiauto-
matic segmentation results in this paper, the algorithm
uses similar indicator defined by (5). After conducting
the test, the SI can reach 75% over more than 80% of
the samples. SI data is shown in Table 1.

After examining the segmentation results, the method in
this paper obtains good segmentation results with the images
that have a relatively smooth morphology in the boundary.
For these images, the segmentation results of our method
are quite consistent with the manual segmentation, as shown
in Figure 3.

For some of the cases that SI≥ 50%, the performance
of our method may be worse than those of the compared
methods, but when examining these cases, our method is
also found to have an acceptable result. For example, com-
pared with that of the snake algorithm, the SI of our
method is average less 13.42% with stand error of 7.69%,
for the detailed data; see Table 2. For the cases that
SI< 50%, the algorithm does not work, which will be dis-
cussed in chapter 4.5.

4.2. The Efficacy of Multiseeds and Hole Filling. Due to the
existence of strong tumor heterogeneity, the ROI may be
divided into several subregions or contain little holes. For
independent subregions, using multiseed region growing to
merge them can improve accuracy. For example, the SI of

Table 2: Comparison of SI on the cases that our method has
worse SI.

Algorithm Mean STD Max Min

Snake 13.42% 7.69% 36.14% 0.01%

RegionGrow 8.02% 5.93% 24.67% 0.15%

LuTA 5.63% 4.29% 10.35% 0.09%

CV 8.95% 4.93% 19.44% 0.23%

Figure 3: Glioma image segmentation results. Note: the first row is the original images, the second row is manually defined as ground truth
labeled by a radiologist, the third row is segmentation results of HMICO, and the fourth one is obtained by the method of the present paper.
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multiseed region growing can achieve 87% while region
growing with single seed is 53% as shown in Figure 4. For lit-
tle holes within the ROI, hole filling can be used to solve it
efficiently. For example, filling holes can improve the SI from
53% to 84% as shown in Figure 5. Compared with origin
growing with single seed on all samples, the SI of our method
with multiseeds and hole filling increases 2.57% on average.

4.3. Algorithm Reproducibility. Segmentation algorithm sta-
bility is one of the major challenges encountered during the
implementation of radiomics, therefore guaranteeing the sta-
bility and reproducibility of segmentation results under the
condition of guaranteeing that the acceptable accuracy is of
more important significance.

The reproducibility of the segmentation algorithm
mainly derives from two aspects. One is the iterations of
the pretreatment algorithm; in order to improve iteration
efficiency, this paper adopts the energy decrease rate
threshold as the iteration-stopping condition; as uniform
original parameters are adopted in the initialization, the
same intermediate segmentation results can always be
obtained for the same image. The other one derives from
the selection of seed points; as the pretreated tumor region

has same gray value, the same segmentation results can
always be obtained through the algorithm in this paper,
regardless of the position of seeds in the region of interest.
Taking the above reasons into account, this algorithm has
extremely high segmentation stability.

4.4. High Compression Performance for Mobile Devices. In
order to realize real-time transmission, image segmentation,
and image display of glioma on mobile equipment, the issues
of real-time data transmission under low bandwidth wireless
network, seed interactive selection onmobile equipment with
small screen size, and completion of segmentation of the
region of interest and real-time display on the screen under
limited calculated performance of mobile equipment should
be solved. All these issues have been excellently solved by
the algorithm in this paper.

Moreover, since there are only four subregions in each
processed image, the storage space can be extensively
saved by coding each image. In practice, the data, prepro-
cessed by HMICO on the server, is stored and transferred
using unit 8 for a better implementation and reducing
reconstructing time on the client. We tested our method
on 1935 slices of 129 samples. Results show that the average

Figure 4: The effective of multiseed region growing. Note: the top row presents the original image, the ground truth labeled by a radiologist,
and the result of HMICO from left to right. The bottom row shows the result of region growing with single seed, multiseeds, and the final
result of our method, respectively. For this example, the SI of multiseed region growing can reach 87% while that of region growing with
single seed is only 53%.
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size of the original images is 238.53K, while the transferred
result of HMICO is 22.18K on average, which is about one-
tenth of the original image.

Since the same region will get the same gray value after
preprocessing, the algorithm will always obtain the same seg-
mentation result when the seed is placed inside the ROI,
demonstrating the robustness of our method. This has a con-
siderable advantage, especially for mobile devices operated by
a finger click on the small screen.

Since the data is preprocessed on the server, the time con-
sumed by RegionGrow on the mobile is less than 0.01 s,
which can be ignored. So, we only compare the computation
time of MICO, LuTA, CV, and Snake on the server, as shown
in Table 3. It can be concluded from Table.3 that the average
execution time of MICO is 1.86 s, the second best, and the
standard deviation is 0.63, which demonstrates the stability
of MICO.

4.5. Unsuitable Scenes. The algorithm does not work when
ROI edges are blurred, or ROI presents a large number of
the cross with other normal tissues, or ROI’s gray level con-
tains much overlapping with neighboring tissues. Figure 6
shows two unsuitable scenes of the algorithm, the top row
is the original image, and the bottom row is the correspond-
ing segmentation result labeled by radiologist.

5. Conclusions

This paper adopts the modified hard edge multiplicative
intrinsic component optimization algorithm for the pre-
treatment of glioma data, and the data are characteristic
of small data volume and simple structure: thus, they can
be excellently applied into a mobile equipment with low
bandwidth, small screen, and limited calculated perfor-
mance; the algorithm has excellent stability, which allows
the doctors to conduct semiautomatic manual segmentation
in their convenient time, and it is of excellent practical value.

Through analyzing the experiments, compared with
manual segmentation, more than 30% of the sample can
reach 90% similarity; over 60% of the samples can reach

Figure 5: Schematic diagram of fill holes. Notes: the top row presents original image, the ground truth labeled by a radiologist, and the result
of HMICO from left to right. The bottom row shows the result of region growing, the result of fill holes, and the final result of our method,
respectively. For this example, the similarity of HMICO segmentation results (including holes) is 58%, while that after fill holes is 84%.

Table 3: Execution time comparison.

Algorithm Mean Max Min STD

MICO 1.86 3.05 0.41 0.63

RegionGrow 0 0.01 0 0

LuTA 1.35 27.83 0.06 3.18

CV 3.81 6.21 0.79 1.28

Snake 2.82 3.89 1.33 0.57
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85% similarity, and over 85% of the sample can reach 80%
similarity, especially for the glioma images with a clear
boundary. After being optimized for the glioma image, the
algorithm obtains higher computational efficiency with bet-
ter robustness.

The algorithm performance provided in this paper is
poor for glioma images with a partially blurred edge and
those having a large amount of gray overlapping with other
normal tissues. Other targeted algorithms will be considered
in the future work to solve such problems, and the automatic
decision algorithm should be developed to further reduce the
frequency of manual intervention.
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