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ABSTRACT Linkage mapping is one of the most commonly used methods to identify genetic loci that
determine a trait. However, the loci identified by linkage mapping may contain hundreds of candidate
genes and require a time-consuming and labor-intensive fine mapping process to find the causal gene
controlling the trait. With the availability of a rich assortment of genomic and functional genomic data, it
is possible to develop a computational method to facilitate faster identification of causal genes. We
developed QTG-Finder, a machine learning based algorithm to prioritize causal genes by ranking genes
within a quantitative trait locus (QTL). Two predictive models were trained separately based on known
causal genes in Arabidopsis and rice. An independent validation analysis showed that the models could
recall about 64% of Arabidopsis and 79% of rice causal genes when the top 20% ranked genes were
considered. The top 20% ranked genes can range from 10 to 100 genes, depending on the size of a QTL.
The models can prioritize different types of traits though at different efficiency. We also identified several
important features of causal genes including paralog copy number, being a transporter, being a
transcription factor, and containing SNPs that cause premature stop codon. This work lays the foundation
for systematically understanding characteristics of causal genes and establishes a pipeline to predict causal
genes based on public data.
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As the world’s population expands, food security faces a major chal-
lenge in the near future. By 2050, world population is projected to grow
by 34%, which will require a 70% increase of global food production
to meet the demand (The Food and Agriculture Organization 2009).
To catch up with the growing global food demand, it is important to
improve the efficiency of arable land usage by developing better crops.

Many agriculturally and medically important traits are quantitative
and controlled by multiple genetic loci. Examples include plant height,
grain yield, and flowering time in plants and common disorders such
as cancer, diabetes, and hypertension in humans. The variation in

quantitative traits allows organisms to adapt to various environments
(Baxter et al. 2010; Leinonen et al. 2013). Quantitative traits are de-
termined by a combination of genetic complexity and environmental
factors (Mackay 2001). The genetic complexity of quantitative traits
comes from the involvement of multiple quantitative trait loci (QTL)
and the non-additive interactions among them (Carlborg and Haley
2004; Mackay 2014). Causal genes of QTL are genes whose differ-
ences in the DNA sequence or state cause a phenotypic variation in
parental genotypes and are supported by multiple lines of experimen-
tal evidence including mutational analysis, transgenic complementa-
tion, and deficiency complementation (Weigel and Nordborg 2005).
To understand the evolutionary forces and molecular mechanisms
that shape the genetic architectures of adaptive traits, we need to
identify all major causal genes that contribute to phenotypic variation
of the traits and elucidate the molecular mechanisms of their actions.
Achieving this goal will facilitate rational engineering of plant traits
and more accurate prediction of the effects of their modifications on
the engineered plant.

QTL linkage mapping and genome wide association study (GWAS)
are two common approaches used to identify QTL, each with its own
strengths and limitations. Both mapping approaches are based on the
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co-segregation of a trait and genetic variants in a population. The
population for linkagemapping is usually the progenyof parental plants
thatdiffer ina trait, suchas anF2populationor recombinant inbred lines
(Bergelson and Roux 2010). GWASmapping uses a natural population
that has a heritable variation of a trait. Compared to GWAS, linkage
mapping does not suffer from issues like population structure and
suffers less from rare alleles (Bergelson and Roux 2010). For example,
the most significant seed dormancy QTL DOG1 identified by linkage
mapping was not identified by GWAS, likely due to the rarity of the
strong allele in the GWAS population (Bentsink et al. 2010; He 2014).
Confounding population structure can cause a high false positive rate
in GWAS, though some methods have been developed to ameliorate
it (Price et al. 2010). However, efforts to correct it could result in a
higher false negative rate (Brachi et al. 2010). Linkage mapping is less
prone to these issues, but it cannot identify QTL of minor effects when
the sample size is small (Otto and Jones 2000; Xu 2003; Martin and
Orgogozo 2013; Wellenreuther and Hansson 2016).

For QTL identified by linkage mapping, finding causal genes
underlying them is still a big bottleneck (Bergelson and Roux 2010).
In a typical rice linkage mapping, the size of a QTL can range from
200kb- 3Mb, which can harbor tens to hundreds of genes depending
on the mapping population and gene density (Bargsten et al. 2014;
Daware et al. 2017). Even in the post-genomic era where all the genes
in the genome are uncovered, identifying QTL causal genes is not
straightforward since many QTL either contain no obvious candidate
genes or too many genes potentially relevant for the trait (Nuzhdin
et al. 1999). Therefore, despite the many QTL that have been reported
in plants, only a few have been studied at the molecular level.

To narrow down the range of candidate genes in a QTL region,
conventional fine mapping is reliable but time-consuming and labor-
intensive. The basis of fine mapping is to create a population that has
more recombination events within a QTL in order to identify a smaller
genomic segment that co-segregates with the trait. However, the enor-
mous time and labor required for creating and screening a population
of progenies limits the usage of this method (Tuinstra et al. 1997).
Depending on the frequency of recombination, thousands of progenies
may need to be genotyped to get to a gene-scale resolution (Dinka et al.
2007). For example, 1,160 progenies were screened to identify the Pi36
gene in rice and as many as 18,994 progenies were screened to identify
the causal gene of Bph15 in rice (Yang et al. 2004; Liu et al. 2005).
The high cost associated with genotyping and phenotyping makes it
challenging to apply fine mapping to all QTL.

Alternative approaches to refine the candidate list of causal genes
include meta-analysis, joint linkage-association analysis, and other
computational methods including machine-learning algorithms. The
first twoapproaches require either the availability ofmanyQTLstudies
on similar traits or an additional association mapping experiment
(Buckler et al. 2009; Motte et al. 2014; Yin et al. 2017). Computational
methods including machine-learning algorithms have been devel-
oped to prioritize disease associated genes and genetic variants in
human (Perez-Iratxeta et al. 2002; Kircher et al. 2014; Ritchie et al.
2014; Hormozdiari et al. 2015). To distinguish disease-associated
from non-associated variants, a variety of information has been used,
including the effect of polymorphism (Ng and Henikoff 2003; Kircher
et al. 2014; Gelfman et al. 2017), sequence conservation (Pollard et al.
2010; Huang et al. 2017), regulatory information (Deo et al. 2014),
expression profile (Mordelet and Vert 2011; Deo et al. 2014), Gene
Ontology (GO) (Mordelet and Vert 2011), KEGG pathway (Mordelet
and Vert 2011), and publications (Perez-Iratxeta et al. 2002). In con-
trast, only two causal gene prioritization approaches are available
for plants. One method was developed for GWAS in maize based on

co-expression networks (Schaefer et al. 2018). Another method
was developed for linkage mapping based on biological process
GOs (Bargsten et al. 2014). To date, no machine-learning ap-
proach using multiple data types has been developed to address
this problem.

Here, we built a supervised learning algorithm to prioritize
QTL causal genes using known causal genes in Arabidopsis thaliana
(Arabidopsis) and Oryza sativa (rice) and a suite of publicly available
genetic and genomic data. For each species, we trained a predictive
model using features based on polymorphism data, function annota-
tion, co-function network, and paralog copy number. By testing the
models on an independent set of known causal genes, we demon-
strated its efficacy in prioritizing causal genes.

MATERIALS AND METHODS

Data sources and features used in QTG-Finder
Twenty-eight features were extracted from published genome-scale
data, which included eight polymorphism features, seventeen functional
annotation features, one co-function network feature and two evolu-
tionary features (Supplementary Table S3).

Arabidopsis polymorphism data of 1,135 accessions was down-
loaded from 1001 Genomes Project (https://1001genomes.org) (1001
Genomes Consortium 2016) and rice polymorphism data of 3,010
cultivars was downloaded from Rice SNP-Seek Database (http://
snp-seek.irri.org) (Mansueto et al. 2017). We used SIFT4G (v 2.4)
(Ng and Henikoff 2003) and SnpEff (v 4.3r) (Cingolani et al.
2012) to annotate the raw polymorphism data. The number of non-
synonymous SNP as annotated by SIFT4G was normalized to protein
length and used as a numeric feature (normalized_nonsyn_SNP).
Non-synonymous SNPs at conserved protein sequences were pre-
dicted to cause deleterious amino acid changes by SIFT4G. The pres-
ence of deleterious non-synonymous SNPs in a gene was used as a
binary feature (is_nonsyn_deleterious). If a gene contained any del-
eterious non-synonymous SNPs, the “is_nonsyn_deleterious” feature
was set to 1, otherwise it was set to 0. Other binary polymorphism
features such as “is_start_lost” (start codon lost) and “is_start_gained”
(start codon gained) were extracted from SnpEff annotations in
the same way. For “is_SNP_cis”, the Position Weight Matrices of
cis-elements were downloaded from CIS-BP database (Build 1.02)
(Weirauch et al. 2014) andmapped to 1kb upstream of all genes in the
genome using FIMO (v 4.12.0) (Grant et al. 2011). The cis-elements
with a matching score above 55 were imported into SnpEff library
to annotate the SNPs. This matching score cutoff was determined by
a cross-validation as described later.

Functional annotation features were binary features based on
GO (Gotz et al. 2008; Jones et al. 2014) and Plant Metabolic Network
(PMN) (Schläpfer et al. 2017). Arabidopsis and rice genes were an-
notated by Blast2GO (BLAST+ 2.2.29) and InterProScan (v 5.3-46.0).
The molecular function GOs were then converted to high-level func-
tional groups such as transcription factor, receptor, kinase, transporter,
and enzyme to mitigate the effect of some inaccurate annotations
(Jones et al. 2007). To assess the performance of this approach, we
compared aggregated high-level GO annotations from Blast2GO
with aggregated high-level curated GO annotations from AmiGO
(http://current.geneontology.org/products/pages/downloads.html)
and un-aggregated GO annotations. Genes annotated as enzymes
were further classified into 13 PMN metabolic domains such as
carbohydrate metabolism and nucleotide metabolism (Schläpfer
et al. 2017). Unclassified genes in PMN were classified as “is_other_
metabolism”. Genes annotated as enzymes by GO but not present
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in PMN databases are either enzymes involved in macromolecule
metabolic processes or enzymes without a specific function assigned.
Since the majority of them are involved in macromolecule metabolic
processes, we named this group as “is_macromolecule_metabolism”.

Co-function networks of Arabidopsis and rice were retrieved
from AraNet and RiceNet (Lee et al. 2010; Lee et al. 2011). The sum
of all the edge weights of a gene was used as the “network_weight”
feature. We used the sum of edge weights because hub genes have
been proposed to be hotspots of phenotypic variation (Martin and
Orgogozo 2013).

Paralog copy number (paralog_copy_number) and essential gene
prediction (is_essential_gene) were taken from a previous publication
(Lloyd et al. 2015).

Arabidopsis and rice causal genes used for training and
independent validation
For model training and cross-validation, curated causal genes from
Martin and Orgogozo were used as positives for algorithm training
(Martin and Orgogozo 2013). In total, 60 Arabidopsis and 45 rice
causal genes were used as the initial training set (Supplementary
Tables S1 and S2). We curated and included gene identifiers and
trait categories in these tables (Supplementary Methods). For lit-
erature validation, we performed a further literature curation and
found eleven Arabidopsis and eighteen rice causal genes, which
were not included in the Martin and Orgogozo list (Supplementary
Methods and Supplementary Table S8).

The QTL regions used for independent validation were obtained
from previously published studies. Even though some studies fine
mapped the QTL, we still used the original QTL regions instead of
the fine-mapped regions since our method was developed to re-
place fine mapping. We included all genes between the markers
that were used to define a QTL for prioritization. When the genome
locations of the markers were not provided in the publication,
we searched their genome locations in Gramene marker database
(https://archive.gramene.org/db/markers/marker_view).

Algorithm training and parameter optimization
The QTG-Finder algorithm was developed in Python (v 3.6) with the
‘sklearn’ package (v 0.19.0) (Pedregosa et al. 2011). We developed an
extended 5-fold cross-validation framework (Figure 1A) to evaluate
training performance and optimize model parameters.

For the 5-fold cross validation, curated causal genes were used
as positives and the other genes from the genome were used as
negatives. The positives were randomly re-split into training and
testing positives in a 4:1 ratio and in an iterative manner. Training
and testing positives were combined with different sets of negative
genes that were randomly selected from the rest of the genome. To
increase the combination of positives and negatives, we re-split the
positives 50 times randomly and selected negatives 50 times. This
number of iterations ensured greater than 99% probability that
every positive sample co-occurred with every negative at least once
in the training or testing set during the cross-validation process.
The probability of co-occurrence was calculated as Equation 1. Pco
is the probability of co-occurrence of a positive and a negative in a
testing or training set. N is the total number of negative samples.
n is the number of negative samples selected as testing or train-
ing samples. R is the number of iterations used to re-split the
positive set. C is the number of cross-validation folds that contains
a positive sample. C was set to 4 for the training set and 1 for the
testing test. S is the number of iterations to randomly select the
negative set.

Pco ¼ 12

�Yn
i¼0

�
12

1
N2i

��R�C�S
(1)

We tested different classifiers and parameters and optimized the
model based on Area Under the Curve of the Receiver Operating
Characteristic (AUC-ROC). The average AUC-ROC from all iter-
ations was used to evaluate training performance. We tested three
classifiers: Random Forest, naïve Bayes, and Support Vector Machine
(Cortes and Vapnik 1995; Tin Kam 1998; Zhang 2004) (Supplemen-
tary Figure S1). For Random Forest, we tuned the number of trees
and the maximum number of features for each tree based on
AUC-ROC (Supplementary Figure S2). We used 100 trees and a
max_feature of 9 for Random Forest. For Support Vector Machine,
the RBF kernel was used and the C parameter was tuned. Random
Forest was chosen for further analysis since its performance was
slightly better than the other two classifiers. The ratio of positives
and negatives in training data were also tuned to maximize cross-
validation AUC-ROC (Supplementary Figure S3). The best per-
forming positives:negatives ratio was 1:20 for Arabidopsis and 1:5
for rice. For testing, a positives:negatives ratio of 1:200 was used
since it is close to the average ratio of causal and non-causal genes
in real QTL.

Feature importance analysis
We implemented a leave-one-out analysis to evaluate feature
importance. This method was based on the change of AUC-ROC
(DAUC-ROC) when leaving out one feature from the models. The
same cross-validation framework was used for this analysis. For
each iteration, we calculated AUC-ROC on the original and the
leave-one-out models developed with the same training and testing
datasets. The DAUC-ROC was calculated by subtracting the leave-
one-out AUC-ROC from the original AUC-ROC. With the results
from all iterations, we calculated the average DAUC-ROC for each
feature.

Independent literature validation
For validation, we applied the models to an independent set of
causal genes that were curated from recent literature and not used
for cross-validation. The models were trained by all known causal
genes from the initial list and negatives were randomly selected
from the rest of the genome. Model training was repeated 5,000
times using resampled training negatives from the genome in
combination with the same set of known causal genes. The
5,000 iterations were conducted to ensure that there was .99%
probability that each gene in the genome was selected at least
once. We applied the models to each of the independent causal
gene and all other genes located within the QTL. All genes within
the QTL were ranked based on the frequency of being predicted
as a causal gene.

Model performance for multiple QTL
To understand performance of the model when it was applied
to multiple QTL of the same trait, we conducted simulations.
We calculated the probability of including at least K causal genes
within the prioritized list at a given cut-off of the rank percentile
when applying the models to a total of N QTL with Equation 2. p is
the probability of a known causal gene to be included at a particular
cutoff of the prioritized list using the independent set of causal genes
found in the literature. x is the number of causal genes included in the
cut-off.
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Trait category analysis

The trait category analysis was performed in a similar way as the
independent literature validation except using different training and
testing sets. Each curated causal gene was tested once. For each round,
one curated causal gene was removed from the training set. Then the
model was trained and applied to rank the removed causal gene and
200 flanking genes.

Data Availability
The source code for QTG-Finder and related analyses such as cross-
validation, feature importance analysis, and trait category analysis are
available at https://github.com/carnegie/QTG_Finder. Supplemental
material available at FigShare: https://doi.org/10.25387/g3.8968769.

RESULTS

QTG-Finder: a machine-learning algorithm to prioritize
causal genes
We developed the QTG-Finder algorithm to accelerate finding causal
genes from QTL data and generated two predictive models in Arabi-
dopsis and rice. These two species were selected for model training
since they have the largest number of QTL causal genes (QTGs) that
have been discovered by fine mapping and map-based cloning in
plants (Martin and Orgogozo 2013). For model training, we selected
60 Arabidopsis and 45 rice causal genes as a positive set (Martin
and Orgogozo, 2013, Supplementary Tables S1 and S2). The negative
set was a set of genes randomly selected from the rest of the genome.
To train the models, we used 28 Arabidopsis features and 27 rice
features, including polymorphism features, functional categories of
genes, function inference from co-function networks, gene essential-
ity, and paralog copy number (Supplementary Tables S3, S4 and S5).
These features were generally independent from each other; most have
a Pearson’s correlation coefficient ,0.2 (Supplementary Figure S4).

We devised an extended cross-validation framework to optimize
the models (Figure 1A). With this framework, we evaluated the train-
ing performance with AUC-ROC and optimized parameters. We
used AUC-ROC for model optimization since our goal is not only
to identify causal genes (true positives) in the prioritized list but also
reduce the number of candidates by eliminating non-causal genes
(true negatives) from the prioritized list. To find the optimal param-
eters, we compared the AUC-ROC of different machine-learning
classifiers, modeling parameters, the ratio of positive:negative genes
in the training set, and different methods to generate GO features

(Supplementary Figures S2, S3, S4, and S5). Random Forest was
selected as the classifier since it was less prone to over-fitting and
performed better than the other classifiers tested (Supplementary
Figure S1). After optimization, AUC-ROC for the Arabidopsis
and rice models were 0.86 and 0.73, respectively (Figure 1B). The
optimized models were also evaluated by confusion matrix (Supple-
mentary Table S6). The true positive and true negative rates calcu-
lated from the confusion matrix indicated that the model was better
at classifying non-causal genes than causal genes.

Since the positive training set used was relatively small, we also
evaluated the relationship between training performance and size
of the training set. The AUC-ROC increased as a larger training set
was used. Interestingly, maximum gain in the AUC-ROC was achieved
with 20 causal genes for the traits represented by the training set
(Supplementary Figure S6).

Important features for predicting causal genes
With the optimized models, we asked which features were important
for causal gene prediction. Since Random Forest uses features and
their interactions for classification (Touw et al. 2013), the impor-
tance of a feature cannot be measured by simple enrichment or
depletion of a single feature in causal genes. Therefore, we evaluated
feature importance based on the change of AUC-ROC (DAUC-ROC)
when excluding a feature from the model (Lloyd et al. 2015). When
an important feature is excluded from the model, the AUC-ROC
should decrease.

For both Arabidopsis and rice models, eight features decreased
AUC-ROC when removed (Figure 2A and Supplementary Table S7).
The six most important features for Arabidopsis were paralog copy
number, transporter, the number of non-synonymous SNPs normal-
ized to protein length (normalized_nonsyn_SNP), receptor, transcrip-
tion factor, and SNPs causing premature stop codon (is_stop_gained)
(Figure 2A). The six most important features for rice were paralog
copy number, macromolecule metabolism, network weight sum,
transcription factor, transporter, and SNPs causing premature stop
codon (is_stop_gained). Four out of the six most important features
were consistent between Arabidopsis and rice models, which were
paralog copy number, transporter, transcription factor, and SNPs
causing premature stop codon.

For the six most important features in Arabidopsis and rice, we
examined their ratio in known causal genes vs. randomly selected
genes in the genome (Figure 2B). Compared to other genes in the
genome, the causal genes in both species tended to have more paral-
ogs, higher frequency of being a transporter or a transcription factor,
and higher frequency of containing SNPs that cause premature stop
codons. In addition, Arabidopsis causal genes were more likely to be a
receptor and rice causal genes were more likely to be a non-hub gene.

Figure 1 Model training and optimization based on
cross-validation. (A) model training and cross-validation
framework. We randomly selected negatives from the
genome and iterated to maximize the combinations
of training and testing data. (B) The ROC curve of
Arabidopsis and rice models after parameter opti-
mization. True and false positive rates were based
on the average of all iterations. The gray diagonal
line indicates the expected performance based on
random guessing. The number in parentheses indi-
cates Area Under the ROC Curve (AUC-ROC).
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The rest of the features contributed less to, but did not impair
much, the model performance (DAUC-ROC, 0.02). Since there was
no strong evidence that they impair prediction, we did not remove
them from the models for further analysis.

Validating QTG-Finder by ranking an independent set
of QTL genes
To assess the predictability of QTG-Finder models, we searched the
literature for a separate set of known causal genes from the initial
training set. We found eleven Arabidopsis and eighteen rice genes
that are likely causal genes underlying QTL when interpreting

linkage mapping with additional evidence such as functional
complementation, fine mapping, joint linkage-association analy-
sis or genetic analyses (Supplementary Table S8). These causal
genes were not used for model training or cross-validation.

To examine model performance independently, we applied the
QTG-Finder models to this new set of causal genes. For each known
causal gene, we ranked all the genes within its QTL region, based on
the frequency of being predicted as a causal gene from5,000 iterations.
Since the number of genes in a QTL region varies, we used a gene’s
rank percentile for evaluation. The rank percentile of a gene indicates
the percentage of QTL genes that had higher ranks than the gene
of interest.

Based on the rank percentile of these known causal genes, we
evaluated model performance at different cutoffs of rank percentile
such as 5%, 10%, or 20%. We calculated the percentage of known
causal genes being recalled at different cutoffs (Figure 3A). The top
20% of the ranked genes included seven Arabidopsis (�64%) and
fourteen rice (�79%) causal genes (Supplementary Table S8). This
set included 10-100 non-causal genes. With a more stringent cutoff
of 5%, four Arabidopsis (�27%) and three rice (�26%) causal genes
were prioritized. We examined the molecule types, trait categories,
and features of the eight known causal genes (4 Arabidopsis and
4 rice) that were not prioritized within the top 20%, but did not
observe any special trend.

We also asked whether the different strengths of experimental
evidence of the causal genes affected the model performance. Causal
genes were grouped based on the type of supporting experimen-
tal evidence (Table S6). The first group included genes with weak
supporting evidence such as mutational analysis. The second group
contained genes supported by stronger evidence such as fine map-
ping, functional complementation, and joint linkage-associate anal-
ysis. The average rank percentile of the two groups was similar; 18%
for the first group and 16% for the second.

Sincemost linkagemapping studies identifymultipleQTL, we asked
what the probability is of identifying causal genes from multiple
QTL simultaneously. We calculated a theoretical model performance
on multiple QTL identification as the probability of identifying causal
genes for at leastNQTL when applying the model to all QTL of a trait
(Figure 3B and C). For example, assuming there were five QTL (N = 5)
of a trait identified by a linkage mapping study and each QTL con-
tained one causal gene. For the Arabidopsis model, the probability
of identifying at least one causal gene would be 99% when the top
20% genes of all QTL were tested experimentally. The probability of
identifying all five causal genes would be 10%when the top 20% cutoff
was used. We further compared the performance of all three cutoffs,
top 20%, top 10%, and top 5%. The probability of identifying at least
one out of five causal genes would be no less than 80% for all three
cutoffs. However, the probability to recall at least four out of five
causal genes at top 20% would be 40%, 14% (at top 10%), and 2%
(at top 5%). Therefore, a less stringent cutoff, top 20%, performs
much better than a more stringent cutoff if one is interested in
finding most of the causal genes or causal genes of a particular QTL.
However, if the goal is to identify any causal gene, then screening the
top 5% of all QTL may be a more strategic approach.

To compare our results with an existing QTL prioritization method
for rice (Bargsten et al. 2014), we examined how genes in our rice
validation set were prioritized in that study. Only three out of eigh-
teen genes were prioritized as candidates when the top 9% genes
in QTL regions were considered. For QTG-Finder, eight out eigh-
teen genes were prioritized as candidates when the top 9% genes
were considered.

Figure 2 Important features of causal genes and their enrichment or
depletion relative to the genome background. (A) Feature importance
as indicated by the change of AUC-ROC (DAUC-ROC) when excluding
each feature. The DAUC-ROC indicates the average value of all iter-
ations. Error bars indicate standard deviation. The features with a
name that starts with “is_” are binary variables. (B) The enrichment
or depletion of the top 6 features in Arabidopsis and rice models.
The enrichment/depletion were indicated by the ratio of causal genes
to genome background. ns, not shown because the feature is not one
of the top 6 features in that species.
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Trait type preference of QTG-Finder models
Since the training set included genes for different types of traits at an
imbalanced ratio, we asked how QTG-Finder models would work for
each type of traits (Figure 4A). The independent validation in the pre-
vious section was based on causal genes related to plant development
and disease resistance (Supplementary Table S8). However, this vali-
dation set was not large enough for a systematic analysis and did not
have any abiotic-stress-related causal genes. Therefore, we performed a
rank analysis for different trait categories using the known causal genes
from the initial training set (60 for Arabidopsis and 45 for rice). For
this rank analysis, each causal gene was removed from the training
set once and used for a rank test. The removed causal gene and its
200 neighboring genes in the genome were used as a testing set. We
applied the models to each testing set to obtain the rank for each
causal gene. Then we calculated the average rank for the causal genes
in the four trait categories: development, abiotic stress, biotic stress
and “other”. The “other” category included traits in seed hull color,
oil composition, necrosis, etc. (Supplementary Tables S1 and S2).

Model performance varied for different trait categories. Both
abiotic and biotic stress traits had better performance than de-
velopmental traits (Figure 4B). This could be because the develop-
mental trait category has more diversified traits and genes than the
abiotic and biotic stress trait category. In addition, the Arabidopsis
model performed slightly better than the rice model for all trait cat-
egories. This trait category analysis can guide us to determine rank
cutoffs when applying models to different types of traits.

DISCUSSION
Linkage mapping is a useful tool to identify the genomic regions
responsible for many agriculturally and medically important traits.
However, it is not straightforward to identify the genes that cause
phenotypic variation of the trait from these genomic regions. The
discovery of causal genes still requires time-consuming and labor-
intensive fine mapping. In this study, we developed a machine-
learning algorithm to reduce the number of candidates to be tested
experimentally in order to accelerate the discovery of causal genes.

A machine-learning algorithm to prioritize QTL
causal genes
Several causal variant or gene prioritization methods have been de-
veloped for human data but not many in plants (Bargsten et al. 2014;
Kircher et al. 2014; Jagadeesh et al. 2016; Schaefer et al. 2018). Most
prioritization methods have been developed for GWAS mapping in
human, an organism where linkage mapping cannot be performed.
However, linkage mapping can capture rare alleles and has been
broadly used to study quantitative traits of livestock, crops, and

model organisms. A causal gene prioritization is especially helpful
for large QTL identified by linkage mapping, which can constitute
tens to thousands of genes. One method has been developed in
rice to prioritize causal genes for linkage mapping (Bargsten et al.
2014). This method is based on the hypothesis that causal genes
from multiple QTL of the same trait are more likely to have the same
biological process GO terms, and therefore genes with overrepre-
sented biological process GOs were prioritized as causal genes. How-
ever, this method gives no predictions for �15% of traits and lack an
unbiased performance evaluation since the same set of causal genes
was used to determine the cutoff and evaluate performance. We eval-
uated performance of this GO-based method with the causal genes
from the validation set used in this study. The GO-based method
identified fewer causal genes compared to QTG-Finder when a sim-
ilar fraction of QTL was prioritized. Another method named Camoco
has been developed in maize to prioritize causal genes for GWAS
(Schaefer et al. 2018). Camoco prioritizes genes based on the relative
strength and degree of co-expression among genes near GWAS
peaks. The success of this method depends highly on the gene
expression dataset being appropriate for the trait of interest. For
example, an expression dataset of root tissues may work better for
root-related traits than shoot-related traits. In addition, this method
may not be able to capture causal genes that are transiently expressed
or expressed at low levels (Moyers 2018). Since each of these ap-
proaches utilizes different sets of information, they may be used in
conjunction with the QTG-Finder.

In this study, we built a supervised learning algorithm using
multiple features and validated its efficacy with an independent
dataset from the literature. The models could accelerate the dis-
covery of causal genes by ranking all the genes in a QTL region
and prioritizing the top 5%, 10%, or 20% genes, which are most
likely to contain the causal gene, for experimental testing. Based
on an assessment using independent data in the literature, we calcu-
lated the performance when applying the models to all QTL of a trait
and compared three cutoffs (top 5%, 10%, and 20%). The less stringent
cutoff (top 20%) had a higher chance to findmore causal genes (Figure
3B and C) but yielded more candidates that needed to be tested by
experiments. The more stringent cutoff (top 5%) had a lower chance
to find all causal genes but yielded a smaller set of candidates to test.
The probability for themodels to find at least one causal gene is high for
all three cutoffs. If the goal were to find at least one causal gene for
functional studies and the particular QTL regions did not matter, the
5% cutoff would be more efficient. If the goal were to discover all causal
genes and understand the genetic architecture of a trait, the 20% cutoff
would be better. Similarly, if a particular QTL were of interest for dis-
covering the underlying causal gene, the 20% cutoff would be better.

Figure 3 Model performance at differ-
ent thresholds. (A) Percentage of recalled
causal genes of a single QTL at different
rank thresholds. Dashed lines indicate
the background of random selections.
(B-C) The probability of causal gene
recall when analyzing multiple QTL
simultaneously.
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There are several conceptual and practical advantages of QTG-
Finder algorithm. First, this algorithm combines multiple types of
publically available data including polymorphisms, function anno-
tations, co-function network and other genomic data, which have
not been applied to prioritize causal genes from linkage mapping
studies. Second, models were trained on causal genes from various
traits and can be applied to several types of traditional traits, though
the prioritization efficiency was not equivalent. Third, validation
from the literature provides guidance on what proportion of genes
to prioritize in practice rather than arbitrarily selecting a threshold.
Fourth, the models treat each QTL independently and have the
flexibility to prioritize a specific QTL of interest.

Two limitations of this study are the small number of known causal
genes in plants and the impurity of negative set used formodel training.
As a positive dataset, we used 60 Arabidopsis and 45 rice causal genes
that have been verified bymap-based-cloning. Even though the positive

dataset are of high quality, the sample size may not be large enough to
represent all categories or features of causal genes and therefore lead to
ascertainment bias. The models may perform better on over-represented
gene categories or features in the training set. A larger positive training
set will mitigate this bias. For example, the qTARO database is a useful
resource to find potential new causal genes for rice, though these genes
would need to be curated further (Yonemaru et al. 2010). The negative
set was composed of genes randomly selected from the rest of the
genome. Though we excluded known causal genes, there could still
be some uncharacterized causal genes. As a result of these limita-
tions, 20% cutoff will still yield�100 candidates for large QTL, which
is challenging for experimental characterization unless at least a
medium-throughput phenotyping method is available. Fortunately,
plant science is entering an era of high-throughput phenotyping
with advances in automation, computation and sensor technology
(Fahlgren et al. 2015; Araus et al. 2018). Our study establishes an
extendable framework that can be easily updated with new training
datasets and features. As more causal genes are uncovered, the new
data can be easily incorporated to improve the models.

The current models included genes in the reference genomes of
rice and Arabidopsis. Even though the majority of causal genes are
present in the reference genomes, there are exceptions. For example,
SUB1A, SNORKEL1, and SNORKEL2 are causal genes absent in the
rice reference genome Nipponbare (Xu et al. 2006; Hattori et al. 2009).
Those genes cannot be predicted with the current models. In the future,
this could be addressed by using pan-genome gene information and
presence–absence variation (Zhao et al. 2018).

Important features for predicting QTL causal genes
Many causal genes were repeatedly found to cause phenotypic var-
iation of similar traits, which is also known as genetic hotspots of
phenotypic variation or gene reuse (Martin and Orgogozo 2013). By
examining 1,008 causal alleles in animals, plants, and yeasts, Martin
and Orgogozo found de novomutations to occur repeatedly at certain
genes or orthologous loci and causing similar phenotypic variations
either among lineages or within a single lineage. The prevalence of
gene reuse suggests that causal genes are likely to have some genetic
and genomic characteristics that allow them to be repeatedly used for
phenotypic variation. The mechanism for gene reuse is not clear but
it may be influenced by factors such as the availability of standing
genetic variation, mutation rate, pleiotropic constraint, and epistatic
interactions of a gene (Conte et al. 2012; Conte et al. 2015).

While many QTL causal genes have been cloned, their features have
not been systematically examined before. Instead of evaluating each
feature individually, we trained Random Forest models and evaluated
feature importance for all features by adopting the leave-one-out
strategy. Several of the most important features were consistent
between Arabidopsis and rice models: containing SNPs that cause a
premature stop codon, paralog copy number, being a transporter,
and being a transcription factor.

We extracted polymorphism features from re-sequencing data
of many accessions, which provide more information about the
existence of standing genetic variation in the species than the poly-
morphism data used for linkagemapping, which typically comes from
two parental lines. DNA polymorphisms such as nonsense SNPs,
deleterious non-synonymous SNPs, SNPs at cis-regulatory elements,
and SNPs at splice junctions have been used as features to classify
causal and non-causal variants of human diseases (Kircher et al. 2014;
Jagadeesh et al. 2016). These SNPs can directly affect the function or
expression of a gene and therefore are more likely to be causal than
the rest of the SNPs. Our results indicate Arabidopsis and rice causal

Figure 4 Performance comparison across trait categories. (A) Trait
categories of known causal genes from the training set. (B) The rank
percentile of causal genes of different trait categories. Each causal
gene and 200 neighboring genes were used as testing set only once.
All other known causal genes were used for training. Each dot indicates
a known causal gene. The gray dashed line indicates 20% rank
percentile. The trait categories of causal genes are defined in Tables
S1 and S2.
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genes were more likely to carry a SNP that causes premature stop
codon (nonsense SNP) than an average gene in the genome. We
also found Arabidopsis causal genes were more likely to have more
non-synonymous SNPs than an average gene in the genome. Be-
sides the high impact SNPs in coding regions, we also examined
polymorphisms in non-coding regions since about 90% of human
trait/disease-associated SNPs are located outside of coding regions
(Hindorff et al. 2009). The SNPs at cis-regulatory elements did not
show a high feature importance in our algorithm, although this might
be due to limited exploration of non-coding sequences in plants. The
CIS-BP database contains cis-elements of 44% of the transcription
factors in Arabidopsis (Weirauch et al. 2014). Developing a more
accurate and complete map of functional non-coding regions based
on conserved noncoding sequences (Van de Velde et al. 2014) will
potentially make non-coding polymorphism features more useful for
prioritizing causal genes in the future. The SNPs linked to causal
SNPs might add background noise and reduce the capability to dis-
tinguish causal genes from non-causal genes. This could be a reason
why half of the polymorphism features were not significantly enriched
in the causal genes (Supplemental Table S3).

Paralogs contribute to the evolution of plant traits by provid-
ing functional divergence that gives plants the potential to adapt
to complex environments (Panchy et al. 2016). Through evolution,
genes involved in signal transduction and stress response have
retained more paralogs while essential genes like DNA gyrase A
have retained fewer paralogs (Lloyd et al. 2015; Panchy et al.
2016). By acquiring new functions or sub-functions, paralogs al-
low plants to sense and handle different environmental conditions
in a more comprehensive and adjustable way. For example, the eight
paralogous heavy metal ATPases (HMAs) in Arabidopsis are all
involved in heavy metal transport but have different substrate
preferences, tissue expression patterns, and subcellular compart-
ment locations (Takahashi et al. 2012). Three of them, HMA3,
HMA4, HMA5, are known causal genes of QTL identified by link-
age mapping. The known causal genes we analyzed have more
paralog copies than other genes in the genome. This suggests that
many plant causal genes are playing a role in providing more
phenotypic tuning parameters to allow plants to adapt to complex
environments.

When the training set is small, there is a possibility of ascertainment
bias. For example, theGO features, is_transporter and is_transcription_
factor, may be considered as important features because of their
enrichment in the current training set. We will have more confidence
of the importance of features when more known causal genes
become available.

The important features of causal genes identified by linkage
mapping may be different from those identified by GWAS. Given
the difference of the two genetic approaches, linkage mapping tends
to identify large-effect alleles of protein-coding regions, while GWAS
tends to identify common alleles with a wider range of effect sizes at
protein-coding regions or non-coding regions (Singleton et al. 2010).
Therefore, whether the features used in this study can be applied to
GWAS remains open. It would be interesting to systematically com-
pare causal genes identified by linkage mapping and GWAS in the
future.

Overall, QTG-Finder is a novel machine-learning pipeline to pri-
oritize causal genes for QTL identified by linkage mapping. We trained
QTG-Finder models for Arabidopsis and rice based on known causal
genes from each species, respectively. By utilizing information like
polymorphisms, function annotations, co-function networks, and
paralog copy numbers, the models can rank QTL genes to prioritize

causal genes. Our independent literature validation demonstrates
that themodels can recall about 64% of causal genes for Arabidopsis
and 79% for rice when the top 20% of ranked QTL genes were
considered. The algorithm is applicable to any traditional quanti-
tative traits but the performance was different for each trait type.
Since QTG-Finder is a machine-learning based pipeline, extending
the training set and adding features can easily expand and improve
the models. We envision that frameworks like QTG-Finder can ac-
celerate the discovery of novel quantitative trait genes by reducing the
number of candidate genes and efforts of experimental testing.
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