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Abstract

Background: Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic
diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species
distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B.
tabaci lineages in cotton growing areas of Pakistan.

Methods/Principal Findings: Sequence diversity in the DNA barcode region (mtCOI-59) was examined in 593 whiteflies from
Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and
Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to
better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15
BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-39 to allow their
assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this
gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new
lineage ‘‘Pakistan’’. The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while
Asia II 5, Asia II 7 and ‘‘Pakistan’’ were only present in Punjab. The haplotype networks showed that most haplotypes of Asia
II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan.

Conclusions: DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the
B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant
lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.
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Introduction

The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyr-

odidae) is now recognized as a cryptic species complex [1,2]

composed of at least 34 [3–7] morphologically indistinguishable,

but reproductively isolated species [8,9]. Members of the complex

damage a wide range of agricultural and horticultural crops

through both their feeding activity and their role in the

transmission of plant viruses. Three members of the complex,

Asia 1, Asia II 1, and Middle East-Asia Minor 1 (MEAM 1), have

been previously identified from Pakistan where they are associated

with the transmission of cotton leaf curl disease (CLCuD) which

causes a significant reduction in yield [10,11]. The severity of

CLCuD varies across Pakistan with higher losses in central

(Punjab) than southern (Sindh) Pakistan [12]. There has been a

continuing debate as to the identity of the whitefly lineages in these

regions and whether differences in the vector pool account for the

differing levels of infection on cotton plants from these provinces.

Ahmed et al. [11] found that MEAM 1 was restricted to Sindh and

Asia II 1 to the Punjab, whereas Asia 1 was found in both regions.

Because Asia II 1 was associated with a higher incidence of

CLCuD in both Punjab and northeastern India [11,13], it is

thought to play an important role in the transmission of this

disease.

A number of DNA-based techniques have been used to identify

species of whiteflies [14–19]. However, most of our understanding

of genetic relationships in the B. tabaci complex comes from the

examination of sequence diversity in the mitochondrial cyto-

chrome c oxidase I (COI) gene. Frohlich et al. [20] were the first to

use COI to distinguish lineages of B. tabaci, employing the 39 end

of the gene, a standard adopted by subsequent investigators with

the result that 383 different haplotypes have now been identified
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for this gene region [21]. Analysis of these haplotypes has revealed

the presence of 28 distinct networks plus seven unconnected

haplotypes [22]. Of these networks, 24 correspond to the putative

species identified by Dinsdale et al. [3]. Researchers have shown

that different species in the B. tabaci complex have varied global

invasion histories [22] and that these lineages have differential

roles in transmitting leaf curl disease to various crops [23,24].

Prior studies have shown that local differences in the abundance

of different species within the B. tabaci complex are due, at least in

part, to competition [25–28] with one member of the complex

often displacing another [26,29,30]. Furthermore, shifts in both

distribution and abundance can occur rapidly [26,29] as the

invading species gains an advantage over the established species by

asymmetric mating interactions [31]. Such displacements or

expansion in species ranges have important implications for pest

and pest-vectored disease management strategies [32]. Concerns

[33] have already been raised in relation to the spread of varied

members of the B. tabaci complex and the viruses they transmit.

The rise of DNA barcoding as a tool for species identification

across the animal kingdom [34–36] has led to a database that now

includes 2.9 million COI-59 sequence (barcode) records derived

from more than 318K animal species. Efforts are underway to

construct comprehensive DNA barcode reference libraries for

various animal groups including pest species [37–40]. These

libraries not only aid the documentation of biodiversity [41], but

also facilitate the identification of invasive species [42,43].

However, because little sequence analysis has been directed

toward the barcode region in B. tabaci, there is no ‘translation

table’ to connect the lineages of this species which have been

recognized based on their COI-39 sequence with their COI-59

counterparts [43].

In this study, we use DNA barcodes to discriminate the lineages

of B. tabaci found in India and Pakistan, reveal their genetic

diversity and subsequently test if their distributions have shifted in

the cotton-growing areas of Punjab and Sindh since a study in

2007–2009 [11]. We also employ barcodes to separate species of

the B. tabaci complex and begin construction of the ‘translation’

matrix from COI-39 to COI-59. Because barcode reference

libraries enable species identification, the study provides insights

into the diversity, movement, and distributional patterns of species

in the B. tabaci complex in the region.

Table 1. COI-59 (BIN)/COI-39 (species) translation, BIN distances and host plants of the members of the Bemisia tabaci complex.

Analysis group n (.500 bp) Max dist (K2P) Dist to NN BIN Host plants Country of origin

BIN [54] Dinsdale species [3]

– B. tabaci complex 762 19.7 -

AAM1243 – 14 0.8 9.3 okra, common bean,
cowpea, cotton, sunflower,
tomato, sweet potato,
brinjal

India

AAM1244 Asia 1 77 1.2 13.5 brinjal, cotton, cowpea,
tomato, sunflower

India, Pakistan

AAM1245 Asia II 5 22 1.4 8.1 tomato, mulberry, cassava,
groundnut, wild colocasia,
cucurbita, blackgram,
tobacco, cotton, Indian
nettle, ipomea

India, Pakistan

AAM1246 – 2 0.8 2.9 Cotton India, Pakistan

AAM1247 Asia II 1 551 2.3 2.9 cotton, brinjal, blackgram,
tomato, mulberry, okra,
cucurbit, pumpkin,
zucchini, bottle gourd,
chillies, sesame, cluster
bean, unidentified weed

India, Pakistan

AAM1248 – 3 0.6 1.6 tobacco, sunflower, spider
flower

India

AAT8875 MEAM1 47 1.0 8.8 cotton, cabbage,
cauliflower, unidentified
weed

Australia, Canada, India,
Pakistan

AAA4495 – 2 0.0 14.4 unknown GenBank, N/A

AAG4846 20 1.9 8.8 unknown Canada, Australia, Japan

ACD4214 – 2 0.0 16.7 unknown Japan

ACD5051 – 3 0.0 9.4 cotton India

ACE6289 Asia II 7 6 0.4 1.3 brinjal, Malaise collection India, Pakistan

ACF2778 Asia II 7 3 0.5 1.0 cotton, white tamarind India, Pakistan

ACF7855 Asia II 7 8 0.3 1.0 Malaise collection Pakistan

ABX2616 ‘‘Pakistan’’ 1 – 14.3 Malaise collection Pakistan

NN = nearest neighbour; BIN = Barcode Index Number.
doi:10.1371/journal.pone.0104485.t001
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Figure 1. Histogram (A) and ranked (B) pairwise (K2P) distances among 762 barcode sequences of B. tabaci complex.
doi:10.1371/journal.pone.0104485.g001
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Materials and Methods

Ethics Statement
No specific permissions were required for this study. The study

did not involve endangered or protected species.

Collection of whiteflies
Adult whiteflies were collected by sampling 255 sites within

Punjab and Sindh from 2010 to 2013. Sampling followed

protocols outlined by Ahmed et al. [11]. GPS coordinates were

recorded [Table S1] and collection localities and species distribu-

tions were mapped using an online tool (www.simplemappr.net).

Samples were collected using an aspirator, then transferred to 95%

ethanol and stored at 220uC until analysis. Two to three whiteflies

were chosen from each collection site, producing a total of 649

specimens for barcode analysis. Individual whiteflies were labeled,

assigned specimen numbers and photographed. Specimen data

along with the collection information were added to the project

MAWFL (Whitefly Species Complex of Pakistan) in BOLD (www.

boldsystems.org), the Barcode of Life Data System [44]. All

barcode compliant sequences from B. tabaci available in GenBank

(173) were also analyzed to gain a better understanding of the

global patterns of barcode diversity in B. tabaci.

DNA isolation
Genomic DNA was extracted from most specimens at the

Canadian Centre for DNA Barcoding using the protocol described

by Porco et al. [45], but a few specimens processed early in the

study were analyzed using methods outlined by Erlandson et al.

[46]. In brief, these specimens were homogenized individually in

250 ml of Lifton buffer, proteins were precipitated by potassium

acetate, and DNA was then purified by phenol-chloroform

extraction. Precipitated DNA pellets were resuspended in 50 mL

of sterile ddH2O with 0.5 mL of 10 mg RNase A/mL.

Figure 2. BIN-based phylogenetic analysis of B. tabaci complex. The tree was estimated using Bayesian inference. Posterior probabilities are
indicated at nodes. Dinsdale species [3] identified from Pakistan are shown (in square brackets) next to their associated BINs (in red).
doi:10.1371/journal.pone.0104485.g002
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mtCOI PCR amplification and sequencing
Amplification of the barcode region (COI-59) was performed

with primer pair LepF2_t1 (TGTAAAACGACGGCCAGTAAT-

CATAARGATATYGG)/LepR1 (TAAACTTCTGGATGTC-

CAAAAAATCA) following the PCR conditions; 94uC (1 min), 5

cycles of 94uC (40 s), 45uC (40 s), 72uC (1 min); 35 cycles of 94uC
(40 s), 51uC (40 s), 72uC (1 min) and final extension of 72uC
(5 min). Amplification of COI-39 was performed with primer pair

C1-J-2183 (CAACATTTATTTTGATTTTTTGG)/TL2-N-

3014 (TCCAATGCACTAATCTGCCATATTA) [47] following

the PCR conditions; 94uC (1 min), 40 cycles of 94uC (40 s), 48uC
(40 s), 72uC (1 min) and final extension of 72uC (5 min). PCRs

were carried out in 12.5 mL reactions containing standard PCR

ingredients and 2 mL of DNA template. PCR products were

analyzed on 2% agarose E-gel 96 system (Invitrogen Inc.).

Amplicons were sequenced bidirectionally using the BigDye

Terminator Cycle Sequencing Kit (v3.1) (Applied Biosystems) on

an Applied Biosystems 3730XL DNA Analyzer. The forward and

reverse sequences were assembled, aligned and edited using

CodonCode Aligner (CodonCode Corporation, USA) and sub-

mitted to BOLD. Sequences were also inspected and translated in

MEGA V5 [48] to verify that they were free of stop codons and

gaps. All sequences generated in this study and their GenBank

accession numbers (Table S1) are accessible on BOLD in the

dataset DS-MAWFL.

Figure 3. Phylogenetic relationship of the new B. tabaci lineage ‘‘Pakistan’’ (indicated by an arrow) with those reported by Dinsdale
et al. [3] and De Barro and Boykin [6]. The tree was estimated using Bayesian inference. Posterior probabilities are shown next to the branches.
Species also detected in Pakistan are in red.
doi:10.1371/journal.pone.0104485.g003
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Cryptic species discrimination using Barcode Index
Numbers (BINs)

Past researchers have often assigned specimens to operational

taxonomic units (OTUs) in cases where morphological identifica-

tions are difficult [49,50]. Although this approach has sometimes

been criticized [51], its general value has been accepted [52,53].

Ratnasingham and Hebert [54] recently developed the Barcode

Index Number (BIN) system which adds important new function-

alities. Since its inception, the BIN system has been used as a

species-level taxonomic registry for various animal groups [55–57]

and has aided the discovery of new species [58]. As a result, all B.
tabaci sequences in this study were assigned to a BIN.

Analysis of barcode data from BOLD/GenBank
All barcode data for B. tabaci available on BOLD and GenBank

were assembled to assess the growth in coverage since the most

recent report [43]. There are now 766 barcode records for B.
tabaci on BOLD (inclusive of this study and 173 accessions on

GenBank, all of which were imported to BOLD (accessed

December 17, 2013)). These barcode records were used in a

combined analysis with the Pakistan data to determine the number

of COI-59 lineages in the B. tabaci complex and to ascertain

genetic distances among these lineages.

Cryptic species identification using mtCOI-39
This study does not evaluate evolutionary relations in the B.

tabaci complex as this topic has seen extensive work [3,21,59],

although reassessment of the number of its constituent species

continues [7]. Instead, we construct a barcode reference library

and determine the number and distributional patterns of whitefly

lineages in Pakistan. Dinsdale et al. [3] used a 3.5% (K2P)

sequence threshold for COI-39 to delimit different members of the

B. tabaci complex. Boykin et al. [60] subsequently compared the

results from this approach with those obtained with four other

delimitation methods (Rosenberg’s reciprocal monophyly, Rodri-

go’s (P(randomly distinct)), the genealogical sorting index, and

general mixed Yule-coalescent) and found that all recognized the

same number of genetic lineages. Since the existing nomenclature

for members of the B. tabaci complex is based on sequence

diversity in COI-39, we also sequenced this gene region for

representative specimens from each COI-59 BIN detected in our

study. This enabled their assignment to one of the species

recognized on the basis of COI-39 sequence variation by

comparing each COI-39 sequence to the reference sequences for

the species in the B. tabaci complex [3,6,61]. Reference COI-39

sequences were obtained from the global Bemisia dataset [6].

Distance and phylogenetic analysis
ClustalW nucleotide sequence alignments [62] and pairwise

(K2P) distance analysis were performed using MEGA5. The

online version of ABGD [63] was used to generate distance

histograms and distance ranks. Because the BINs [54] and the

putative species [3] of B. tabaci were represented by variable

number of sequences, a consensus sequence for each BIN or

species was obtained using the ‘Consensus Barcode Generator’

Figure 4. Single MPT inferred from the barcode sequences from B. tabaci Complex. Bootstrap values are shown above the branches (values
,50% not shown). Dinsdale species [3] identified from Pakistan are shown (in square brackets) next to their associated BINs (in red).
doi:10.1371/journal.pone.0104485.g004
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Figure 5. Single MPT showing position of the new B. tabaci lineage ‘‘Pakistan’’ (indicated by an arrow). Analysis included all the B. tabaci
COI-39 sequences from the global Bemisia dataset [6] and from Dinsdale et al. [3]. Bootstrap values are shown above the branches (values ,50% not
shown). Species also detected in Pakistan are in red.
doi:10.1371/journal.pone.0104485.g005
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function of TaxonDNA [64]. Consensus sequences were used in

Bayesian inference (BI) and BI trees were obtained using MrBayes

v3.2.0 [65] and the Markov Chain Monte Carlo (MCMC)

technique. The data was partitioned in two ways; i) a single

partition with parameters estimated across all codon positions, ii) a

codon-partition in which each codon position was allowed

different parameter estimates. The analyses were run for 10

million generations with sampling every 1,000 generations. We

modeled the evolution of sequences according to the GTR+C
model independently for the two partitions using the ‘‘unlink’’

command in MrBayes. The model selection was made using

FindModel (www.hiv.lanl.gov/cgi-bin/findmodel/findmodel.cgi).

Bayesian posterior probabilities were calculated from the

sample points once the MCMC algorithm began to converge.

Convergence was determined when the standard deviation of split

frequencies went below 0.02 and the PSRF (potential scale

reduction factor) approached 1, and both runs had properly

converged to a stationary distribution after the burn-in stage

(discarded the first 25% of samples). The trees generated through

this process were visualized using FigTree v1.4.0. Two whitefly

species, Trialeurodes vaporariorum (AY521265) and Bemisia afer
(EU825777) were included in the analysis as outgroups. The

parsimony analysis was performed using the same datasets with

the TNT (Tree analyses using New Technologies) v1.1 ( Willi

Hennig Society Edition) [66]. The analysis utilized New Tech-

nology heuristic searches [67] implemented in the program which

consisted of Tree Fusion, Ratchet, Tree Drifting and Sectorial

searches performed, with default parameters applied, until the

most parsimonious tree was found 1000 times. Gaps in the

molecular data were treated as missing characters. All characters

were treated as unordered and equally weighted and the

robustness of the reconstructed phylogenies was evaluated by

bootstrap analysis (500 replicates).

Genetic diversity, haplotype and distribution analysis
Genetic diversity indices and neutrality tests (Fu’s Fs [68] and

Tajima’s D [69]) were performed in DnaSP v5.10.01 [70].

ClustalW aligned sequences from MEGA5 were exported as

MEGA files and barcode haplotypes for each B. tabaci species

from Pakistan (Asia II 1, Asia II5, Asia II 7, Asia 1, MEAM 1) were

calculated using Arlequin v.3.5 [71]. For each species, a minimum

spanning tree (MST) based on the number of nucleotide

differences between haplotypes was constructed using a distance

matrix from Arlequin in Hapstar v. 0.6 [72] to visualize the

network of interrelationships between the haplotypes. Distribu-

tions of the identified species in the B. tabaci complex were

mapped using GPS coordinates and an online tool (www.

simplemappr.net).

Results

DNA barcode analysis of B. tabaci
Barcode compliant sequences (.500 bp of COI-59) were

recovered from 589 of the 649 specimens (90%) from Pakistan

(an additional four sequences recovered were ,500 bp). Another

173 sequences for B. tabaci were added to the analysis including

146 from India, and 27 from Australia, Canada and Japan.

Pairwise distances (K2P) among the sequences from Pakistan

ranged from 0.0%–19.9% with a mean of 4%. The BIN system

assigned these sequences to nine BINs. The pairwise distances in

the combined (Pakistan + GenBank) B. tabaci sequences ranged

from 0%–20% (mean = 8%). Maximum intraspecific (within BIN)

distances ranged from 0.0%–2.3%, while the nearest-neighbor

(NN) distances ranged from 1% to 16.7% (Table 1). Except for an
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intraspecific distance of 2.3% in AAM1247, the maximum

intraspecific distances were less than 2% for each BIN (Table 1).

The combined B. tabaci barcodes were assigned to 15 unique

BINs (Table 1). Ten BINs derived from India, and seven of these

were also detected from Pakistan (Table 1). Two other BINs

(ACF7855, ABX2616) were only detected in Pakistan, while three

(AAM1243, AAM1248, ACD5051) were exclusively from India.

Two BINs (AAG4846, ACD4212) have not previously been

reported from the Indo-Pakistan region (Table 1), while the origin

of one BIN (AAA4495) is unknown. Histograms of sequence

divergence values and ranked distances among barcode sequences

in B. tabaci complex are shown in Fig. 1. There was a clear gap

between the intraspecific and interspecific K2P distances with a

majority of the intraspecific distances falling well below 2%.

Barcode and COI-39 connection of B. tabaci
Analysis of the COI-39 sequences from seven of the B. tabaci

BINs from Pakistan showed their correspondence with five of the

34 putative species [6] of B. tabaci: Asia 1, Asia II 1, Asia II 5, Asia

II 7 and MEAM 1 (Table 1, Fig. 2). Maximum distance among

COI-39 sequences of three BINs (ACE6289, ACF2778, ACF78)

was less than 1.3%, and following the distance limit (3.5%) for B.
tabaci species differentiation set by Dinsdale et al. [3], these BINs

were assigned to the same species, Asia II 7 (Table 1, Fig. 2). The

COI-39 sequence of the BIN: ABX2616 is extremely divergent

from any known clade, showing 13.7% divergence from the

nearest neighbour (Table S2) in the existing whitefly databases

[3,6]. Because this genotype substantially exceeds the 3.5%

sequence threshold employed for taxon recognition, this lineage

represents a new addition to the B. tabaci complex which is named

as ‘‘Pakistan’’. The K2P distances among COI-39 consensus

sequences of 34 putative species in the Bemisia database [6]

ranged between 1.3–22.7% and the new putative species

‘‘Pakistan’’ showed a NN distance of 13.7% (Table S2). Barcode

sequences for the other eight BINs, including AAM1246 from

Pakistan were obtained from GenBank and their corresponding

COI-39 sequences were unavailable, preventing their connection

with Dinsdale nomenclature [3].

The phylogenetic tree of B. tabaci BINs showed a close

relationship among three species of Asia II group (Asia II 1, Asia II

5, Asia II 7) (Fig. 2) which clustered together with a 98% posterior

probability (PP). Barcodes of Asia II 7 were assigned to three BINs

(Fig. 2, Table 1) indicating the presence of considerable sequence

variation in this taxon. Both the barcode and COI-39 sequences of

the BIN: ABX2616 did not match any sequence in the available

databases (14.3% divergence from NN barcode and 13.7% from

NN COI-39 (Table S2)) and thus it was proposed as a new lineage

‘‘Pakistan’’. Barcode-based BI showed that this lineage was

phylogenetically closer to MEAM 1 than to the species in the

Asia group (Asia I, Asia II) (Fig. 2). DNA barcode analysis of the

B. tabaci complex from sites around the world is not complete, so

we used CO1-39 sequences to determine the position and

phylogenetic relationship of the new B. tabaci lineage ‘‘Pakistan’’

(ABX2616). Taken as a whole, the COI-39 based phylogenetic tree

of B. tabaci (Fig. 3) was similar in topology to those generated by

other researchers [3,6,7]. The ‘‘Pakistan’’ lineage was sister to the

putative species ‘‘Uganda’’ (PP = 0.75) and formed a separate

clade between the New World and the Subsaharan Africa species

(Fig. 3). The relationship of the new lineage ‘‘Pakistan’’ with other

members of the B. tabaci complex was further ascertained by the

parsimony analysis. The most parsimonious trees (MPT) for the

barcode (Fig. 4) and the COI-39 (Fig. 5) sequences showed that the

topology retrieved under parsimony analysis was not in conflict

with that obtained using Bayesian Inference. Thus both methods

of phylogenetic reconstruction placed the putative species ‘‘Paki-

stan’’ as a distinct clade sister to ‘‘Uganda’’.

Genetic diversity and species distributions
The genetic diversity indices are presented in Table 2. The

average number of pairwise nucleotide differences, k, and

nucleotide diversity, p, were relatively higher in Asia 1 (n = 77)

and Asia II 7 (n = 14) than in Asia II 1 (n = 551), the most common

species in the region. Haplotype network analysis revealed 29

haplotypes among the 551 sequences of Asia II 1 from Pakistan

and India (Fig. 6). One haplotype was dominant (63%), occuring

in all populations from both countries and in all cotton-growing

areas of Pakistan. Three other haplotypes with a relatively high

frequency (.7%) and two with a low frequency (,1%) were also

found in both the countries. There were seven Asia II 1 haplotypes

unique to India and 16 unique to Pakistan. Eight haplotypes of

Asia II 5 were present, but only two were from Pakistan. There

were seven haplotypes of Asia II 7, six from Pakistan and one from

India. Eleven haplotypes were present among the 77 specimens of

Asia 1 with the commonest haplotype detected in both the

countries. There were nine Asia 1 haplotypes unique to India and

one unique to Pakistan. Seven haplotypes were present among the

46 specimens of MEAM 1 with the most common comprising 59%

of the total and present only in Pakistan.

The five species of the B. tabaci complex identified through

COI-39 analysis showed marked variation in abundance in

Pakistan with Asia II 1 comprising 88%, MEAM 1–7%, Asia II

7–2%, Asia 1–2% and Asia II 5–0.3% of the individuals.

Fig. 7 shows that Asia II 1 was present in all of the cotton-

growing areas in Punjab and Sindh. The specimens of Asia II 5

and Asia II 7 derived from central and northern Punjab, while

Asia 1 was only present in central and southern Sindh. Finally,

MEAM 1 was detected from all three regions (northern, central

and southern) of Sindh and from southern Punjab. Chi-square

analysis showed a significant heterogeniety for species abundance

between the two provinces (x2 = 203; p = 0.0) and for species

composition (x2 = 856.9; p = 0.0) which was clearly skewed

towards Asia II 1. The host information on whitefly specimens

from India and Pakistan showed that the species of B. tabaci
complex in Pakistan were recorded on multiple plants (Table 1).

Asia II 1, the most frequent whitefly species in Pakistan, was

recorded from at least 14 host plants (Table 1).

Discussion

The varied incidence of cotton leaf curl disease in different areas

of Pakistan [73] raises the possibility that disease transmission may

be influenced by regional variation in species composition of the B.
tabaci complex whose member taxa vector the virus responsible

for this disease. Although examination of reproductive compati-

bility among the putative species has also been successful [74],

sequence analysis has been frequently used to discriminate

Figure 6. Barcode haplotype networks of B. tabaci species identified from Pakistan by corresponding COI-39 sequences and named
following Dinsdale nomenclature [3]. Barcode sequences of B. tabaci species shared between India and Pakistan were also included. Numbers in
circles show the haplotype frequencies. Blue and yellow circles indicate the detection of a haplotype solely in Pakistan or India, respectively, while red
circles indicate haplotypes present in both countries.
doi:10.1371/journal.pone.0104485.g006
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members of this complex [1,21] and COI-39 has been the standard

marker employed for their separation [3,8,59]. However, COI-59

has been adopted as the DNA barcode standard for the entire

animal kingdom [34,35] and its use is gaining adoption for

biosecurity [42] and regulation [75]. The superiority of DNA

barcoding over traditional methods for the detection and

distribution analysis of invasive species is now well established

[76,77]. Despite this fact, the present study represents the first

effort to obtain both COI-59 and COI-39 sequences for members

of the B. tabaci complex to develop a correspondence map

between haplotypes recognized by these two markers.

Analysis of sequence diversity in COI-59 revealed that six

species of the B. tabaci complex were present in Pakistan.

Determination of their COI-39 sequences established that they

included Asia II 1, Asia II 5, Asia II 7, Asia 1, MEAM 1, and a

new species ‘‘Pakistan’’. Four of these species (Asia II 1, Asia II 5,

Asia 1, MEAM 1) were found on cotton in Pakistan. Asia II 7 was

only collected in a Malaise trap in Pakistan, but has been recorded

on cotton in India. The levels of sequence divergence at COI-39

and COI-59 were generally congruent (data not shown), indicating

the interchangeability of the markers. An earlier study of whiteflies

from Pakistan [11] revealed three species (Asia II 1, Asia 1,

MEAM 1), while our results indicated the presence of three more -

one on cotton (Asia II 5) and two from uncertain hosts (Asia II 7

and ‘‘Pakistan’’, both collected in Malaise traps). The previous two

studies on whiteflies in Pakistan examined fewer specimens and

fewer geographic localities. Ahmed et al. [17] sequenced 16

specimens from 16 locations, while Ahmed et al., [11] sequenced

141 specimens from 48 locations while this study examined 593

specimens from 255 locations. The most recent study on whitefly

diversity [78] reported the presence of three genetic groups in

cotton areas of Pakistan, but the sample size was small (80) and the

technique used (RAPD) prevents species identification.

The analysis of all currently available COI-59 data for B. tabaci
indicated the presence of 15 deeply divergent lineages, including

12 from the Indo-Pakistan region. Multiple genotypes of B. tabaci
have previously been reported from the Indo-Pakistan subconti-

nent [11,17,79]. Lisha et al. [15] detected two distinct biotypes of

B. tabaci in India, while Rekha et al. [79] noted three groups -

Asia II 5, Asia II 7 and Asia II 8 [3]. More recently, Chowda-

Reddy et al. [24] found five species in India (Asia 1, Asia II 5, Asia

II 7, Asia II 8, MEAM 1) based on their survey of multiple host

plants. In our study, except for Asia II 8, we detected all the species

previously identified from India [3,24] and connected their COI-

59/COI-39.

The COI-39 sequence of one whitefly (BIN: ABX2616) from

northern Punjab showed 13.7% K2P divergence from any known

lineage, indicating that it represents a new species in the B. tabaci
complex. The NN barcode distances in the B. tabaci complex

ranged between 1.0%–16.7% with the new putative species,

‘‘Pakistan’’, showing a NN distance of 14.3%. Further, both the BI

and parsimony analysis showed that the ‘‘Pakistan’’ lineage formed

a separate branch on the tree and was phylogenetically closer to

species in the African group. Previous researchers have used

genetic distances and phylogenetic analysis to determine the

relationships and taxonomic status of species of the B. tabaci
complex [3,5,7], and the number of species in this complex has

generally been assessed by BI [3,7].

It has been established that begomovirus spread and diversifi-

cation is linked to the genetic and phenotypic variability of

whiteflies [16]. We analysed the genetic diversity in whiteflies at

sites across Punjab and Sindh to see if there was any

correspondence with the varying incidence of CLCuD in these

regions as found in an earlier study in Africa [80]. Two previous

studies which examined genetic diversity in B. tabaci across

Punjab and Sindh from 2007 to 2009 [11,17] found that MEAM 1

was widespread across Sindh, but absent from Punjab. However,

our study detected this species in southern Punjab. Ahmed et al.

[11] found Asia 1 at sites from central Punjab to northern Sindh,

but our studies indicated that it is now restricted to central and

southern Sindh. Ahmed et al. [11,17] found that Asia II 1 was

prevalent througout Punjab, but absent from Sindh. Our study

revealed that it remains the commonest species in Punjab, but that

it is now also the dominant species on cotton in Sindh, revealing

that it has expanded its range to the south. Asia II 5 was only

detected in two districts in central and northern Punjab, and Asia

II 7 only in northern Punjab, but these are the first records for

these species in Pakistan. Other studies have reported the rapid

displacement of one whitefly species by another [29,30,81,82]. For

example, Guo et al. [19] reported that MEAM 1 was dominant in

most provinces of China prior to 2007, but that the Mediterranean

(MED) species was now dominant species in at least 11 provinces.

The prevalence of Asia II 1 in Sindh is important because

Ahmed et al. [11] observed that a higher incidence of CLCuD was

associated with this species. If its greater vector competence

compared with other members of the complex is confirmed, then

the Sindh detections likely signal an increased threat and there are

reports [12,83] of increased CLCuD in the cotton areas of Sindh.

The prevalence and epidemiology of CLCuD in cotton-growing

areas of Punjab is well studied [84] and the role of Asia II 1 in the

spread of CLCuD has been documented [11,17]. However,

further work is needed to assess temporal shifts in the abundance

and distribution of species in the B. tabaci complex to validate

these impacts. Experimental assessment of vector competence for

each member of the complex as well as evaluation of their host

preference would also improve understanding of the epidemiology

of CLCuD in Pakistan.

Species in the B. tabaci complex within Pakistan seem to show

the same dynamic distributional shifts detected in other regions

[23,26,29], a factor which might influence the incidence of

begomoviruses. However, knowledge of CLCuD in Pakistan lacks

sufficient quantitative data to understand the epidemiology of this

disease with vector composition.

Supporting Information

Table S1 BOLD process IDs, GenBank accessions, collection

locations and host plants of Bemisia tabaci included in the study.

(XLS)

Table S2 COI-39 and COI-59 (barcode) K2P distances among

respective taxonomic units of Bemisia tabaci complex as

determined by Dinsdale et al. [3] and Ratnasingham and Hebert

[54].

(XLS)

Figure 7. Map of Punjab and Sindh, Pakistan showing the distribution of three species in the B. tabaci complex. The range of each
species is indicated by a blue broken line (before 2010 [11]) and a black solid line (after 2010 [this study]). (A) Asia II 1; (B) Middle East-Asia Minor 1; (C)
Asia 1.
doi:10.1371/journal.pone.0104485.g007
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