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Abstract: Klebsiella pneumoniae is a Gram-negative, cylindrical rod shaped opportunistic 

pathogen that is found in the environment as well as existing as a normal flora in 
mammalian mucosal surfaces such as the mouth, skin, and intestines. Clinically it is the most 

important member of the family of Enterobacteriaceae that causes neonatal sepsis and 

nosocomial infections. In this work, a combination of protein sequence analysis, structural 
modeling and molecular docking simulation approaches were employed to provide an 

understanding of the possible functions and characteristics of a hypothetical protein 

(KPN_02809) from K. pneumoniae MGH 78578. The computational analyses showed that 
this protein was a metalloprotease with zinc binding motif, HEXXH. To verify this result, a 

ypfJ gene which encodes for this hypothetical protein was cloned from K. pneumoniae 

MGH 78578 and the protein was overexpressed in Escherichia coli BL21 (DE3). The 
purified protein was about 32 kDa and showed maximum protease activity at 30 °C and  
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pH 8.0. The enzyme activity was inhibited by metalloprotease inhibitors such as EDTA, 

1,10-phenanthroline and reducing agent, 1,4-dithiothreitol (DTT). Each molecule of 
KPN_02809 protein was also shown to bind one zinc ion. Hence, for the first time,  

we experimentally confirmed that KPN_02809 is an active enzyme with zinc 

metalloprotease activity. 

Keywords: Klebsiella pneumoniae MGH 78578; hypothetical protein; homology modeling; 

molecular docking simulation; metalloprotease; metalloprotease inhibitors; ypfJ gene 

 

1. Introduction 

Klebsiella was first identified as a cause of pneumonia in 1882 by a pathologist Karl Friedlander [1]. 

Klebsiella pneumoniae is a Gram negative; rod shaped and encapsulated bacterium of the family 

Enterobacteriaceae, which normally inhabits the animal and human intestinal tract [2]. It is an 
opportunistic pathogen which causes many nosocomial infections such as pneumonia, urinary tract 

infection and septicemia, primarily on immunocompromised persons [3]. In Malaysia, it was reported 

to be present in 32% out of 78 street food samples from different states [3]. The incidence of 
community acquired pneumonia attributed to K. pneumoniae decreased over the year [3], however the 

mortality rate remains significant. This is due to the evolving multi-drug resistant K. pneumoniae 

strains [4] and other underlying diseases that tend to be aggressively present in the affected patient.  
K. pneumoniae was always treated by antibiotics, but the emergences of antibiotic resistant  

K. pneumoniae further increase the need to understand the bacteria-host interaction, host defense 

mechanism and also the cellular mechanism of the bacterium itself.  
K. pneumoniae strain MGH 78578 is one of the strains that show high level of resistance to multiple 

antimicrobial agents including ampicillin, oxacillin, kanamycin, and chloramphenicol [5]. This strain 

was originally isolated from the sputum of a male patient in 1994 [5] and its genome has been 
sequenced by the Genome Sequencing Center of Washington University in Saint Louis in 2007. It was 

estimated that 20% of the total predicted open reading frames (ORFs) in the genome encode for 

hypothetical proteins, whose expressions and functions have not been proven experimentally. One of 
the hypothetical proteins is KPN_02809 which is encoded by the ypfJ gene. 

The result of sequence similarities annotation by Uniprot [6] revealed that it belongs to a Zn 

metalloprotease family. Zinc metalloproteases catalyze peptide bond hydrolysis in a protein or peptide 
substrate. They contain divalent metal ions on their active sites; activate the water molecule as the 

direct attacking species on the peptide bond. Analysis of their sequences showed that zinc metalloproteases 

have the metal ion binding site, HEXXH, where X is any amino acid. The two histidine residues 
together with another residue (different among metalloprotease groups) at the active site are involved 

in the zinc binding [5]. Metalloprotease, the most diverse of the six main types of proteases, has drawn 

much of our interest as it plays an important role in host-pathogen interactions by promoting 
enteropathogenicity, vascular permeability, host tissue damage and cytotoxicity [7]. Metalloproteases 

expressed by pathogens such as Legionella pneumophila, Vibrio cholerae and Plasmodium vivax 

involve in pathogenesis of the disease by degrading a wide range of host molecules [8–10].  



Int. J. Mol. Sci. 2012, 13 903 

 

 

Despite its predicted function as a metalloprotease, the protease activity of KPN_02809 has never 

been experimentally confirmed and thus, it is still being designated as a hypothetical metalloprotease. 
This ypfJ gene product has never been investigated experimentally. Most of the proteases contain 

HEXXH site, however there are certain proteins with the HEXXH site that do not possess the protease 

activity [11]. Hence, in this work, besides presenting results from computational approaches to model 
the structure of this hypothetical protein in order to elucidate its function, we also report the cloning and 

expression of the open reading frame of ypfJ gene that encodes for this hypothetical protein. 

Characterization of the purified recombinant protein supported the results of the bioinformatics approaches. 

2. Results and Discussion  

2.1. Structural Modeling and Analysis of KPN_02809 

Preliminary sequence analysis with a simple BLAST search against non-redundant (NR) database 
showed that ypfJ gene product, KPN_02809 belongs to a Zn metalloprotease family. It shared more 

than 90% sequence identity with other metalloprotease sequences in the NR database. However, when 

the BLAST search was performed against PDB, no particular structure was found with a good E-value. 
11 structures were identified with the hits below E-value threshold. All of them shared low sequence 

identity, ~32% within a small coverage in the sequence and they were not from the Zn metalloprotease 

family. With such low sequence identity, we therefore decided to adopt the fold recognition  
approach for identifying the potential template from the Phyre [12] and InterproScan [13] servers for 

structural modeling.  

Phyre [12] analysis identified 3C37 as the best template with a 98% estimated precision. 3C37 is an 
X-ray structure of a 253 amino acid putative M48 family Zn-dependent peptidase from Geobacter 

sulfurreducens. All the hits by InterproScan are known as M48 peptidase with almost 100% identity, 

however there was no known solved structure among them. Results from both Phyre and InterproScan 
indicated that KPN_02809 shared structural features with M48 zinc peptidase domain and 3C37 was 

selected as the template for model building. Figure 1 shows the multiple sequence alignment of 

KPN_02809 with top five hits from BLAST search and 3C37. 
The best DOPE scoring model shown in Figure 2A was selected and subjected to Ramachandran 

plot analysis for the validation of the structure quality. The root-mean square deviation of the built 

model is 1.5 Å with the sequence identity of 11%. The core region is well overlapped with each other. 
The loops were built for sequences with no sequence similarity with the template. The core region 

where the unique metalloprotease HEXXH motif was located folded firmly in the center of the 

structure. Ramachandran plot validation of the quality of the structure (Figure 2B) showed that 92.9% 
of the total residues fell within the most favorable regions. None of the residue fell within the 

disallowed region. Alternatively, I-TASSER was also used to predict the structure of KPN_02809. Out 

of eight potential templates identified by I-TASSER, 3C37 was the only Zn-dependent peptidase with 
one of the highest sequence identity score. Ramachandran plot of the model predicted by I-TASSER 

showed that 84.9% of the total residues fell in the most favorable region while 4.6% of total residues 

fell in generously allowed and disallowed regions. Superimposition of structures modeled by 
MODELLER and I-TASSER is shown in Figure 2C. Majority of the secondary structures in the 
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conserved region are preserved in both models although the RMSD is high (16.81 Å). Variations at the 

extended loops on both modeled structures are the major contributors to the high RMSD value. Model 
built with MODELLER was used in our subsequent simulations due to its higher quality, as shown by 

PROCHECK results. 

Figure 1. Multiple sequence alignment of KPN_02809 with related sequences from 
bacteria in Enterobactericea family. Conserved motif HEXXH and two important residues 

(Val-204 and Arg-268 according to KPN_02809 sequence) are highlighted in red. 
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Figure 2. Structural model of KPN_02809. (A) Superposition of the built model of 

KPN_02809 (red) with template from protein data bank with PDB Code 3C37 (yellow); (B) 
Ramachandran plot analysis of KPN_02809 model. No residue was found in the 

disallowed region; (C) Superimposition of models by MODELLER (blue) and I-TASSER 

(purple) with RMSD of 16.81 Å. Structure built with MODELLER is more extended 
compared to I-TASSER model. However, the secondary structures in the conserved region 

for both models are very similar. 

 

Although the sequence identity between KPN_02809 and 3C37 was only 11%, however, the 11% 
identical sequence fell in the highly conserved domain of Zn-peptidases. Furthermore, our built 

structure also showed that the conserved sequences possessed the same secondary structure topology 

which made up the core region of this family of enzymes. The core region consists of eight strands of 
beta sheet sandwiched by six alpha helices. This unique topology is the trademark of Zn metalloprotease 

and it is also highly conserved as indicated by the ProBiS result (Figure 2C, left panel). In the 

KPN_02809 model structure, HEXXH is located very close to the Zn2+. In addition, two conserved 
residues indicated in the sequence alignment (Figure 1), namely Val204 and Arg268 are also located 

within 6 Å of the Zn2+ ion. Arg268 contributes to polar environment which stabilizes the substrate that 



Int. J. Mol. Sci. 2012, 13 906 

 

 

is interacting with zinc ion [14]. The role of Val204 is not clear, it might be important for the structure 

of active site as it is highly conserved and located in close proximity to the zinc ion. The HEXXH 
sequence motif found in KPN_02809 is believed to be responsible for the Zn chelation [14]. In our 

built model, Zn2+ ion is located around the conserved core region and surrounded by two histidine 

residues from the HEXXH sequence motif. These histidine residues are responsible for the Zn2+ valent 
chelation which is important for the catalytic activity of KPN_02809 as a metalloprotease. The 

importance of the His in this motif had been studied in the Ste24p from yeast [9], another highly 

conserved metalloprotease. Result from the study showed that mutation of the conserved residue in this 
motif resulted in the lost of protein function [9]. Our subsequent experimental results proved that 

KPN_02809 is a Zn-dependent protease. 

2.2. Molecular Docking Simulation  

Prior to the inhibitors docking simulation, identification of Zn binding site at KPN_02809 is 

necessary in order to define the grid centre for docking simulation. A total of 40 similar structures 

were selected in ProBis and all of them were aligned structurally using a local surface structural 
alignment approach. Unsurprisingly, 3C37 was one of the top similar structures that were selected by 

ProBis search. This correlates with the fold recognition result earlier by Phyre. It was found that the 

predicted Zn binding site, HEXXH, is conserved in the core center of the entire structure (Figure 3B). 
Hence, the grid center for inhibitors docking simulation is located at this core center. For the docking 

result, the most populated and the lowest binding free energy conformation was selected.  

Figure 3. Structural conservation analysis by ProBis. (A) Conservation scoring of the 
KPN_02809 model by ProBiS. The highly conserved core region is represented in blue and 

white; (B) KPN_02809 predicted Zn binding site with the grid box (green) is centered on 

the Zn binding site. 
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Common protease inhibitors such as EDTA, 1,10-phenanthroline (PNT) and PMSF were selected to 

probe the functionality of KPN_02809 as metal-dependent protease using molecular dynamic 
simulation. EDTA was found to bind stably in the binding pocket with a low free binding energy of 

−11.08 kcal/mol. Based on the docking result, the chelating of EDTA to Zn2+ exhibited a significant 

binding energy. EDTA was located close to the Zn2+ and within the hydrogen bonding cut-off (<3.5 Å) 
(Figure 4A). Thus, there is a possibility that the hydrogen bonds might form and suggests that the 

interaction of EDTA will inhibit the catalytic activity of KPN_02809. Docking simulation of PNT, 

another metal chelator, showed a distance of 3.34 Å and 4.52 Å from Zn2+ with a free binding energy 
of −7.29 kcal/mol (Figure 4B). The results supported the possibility of PNT forming a complex with 

the divalent zinc ion on KPN_02809. On the contrary, the docking simulation with PMSF, a serine 

protease inhibitor, showed that the distance between PMSF and the nearest serine residue was about 
7.71 Å (free binding energy of 6.50 kcal/mol), which would not allow any hydrogen bond interaction 

(Figure 4C). The predicted inhibitory effects of EDTA and PNT towards the KPN_02809 protease 

activity were later proven experimentally in this work. 

Figure 4. Molecular docking with selected protease inhibitors. (A) Docking of EDTA on 

the predicted Zn binding site. The docked EDTA was located close to the Zn2+ and the 

possibility of hydrogen bond formation is high; (B) Docking of PNT showing distances 
from Zn2+ that allows complex formation; (C) Docking of PMSF showing distances from 

serine residues surrounding the catalytic core. The distances are too far apart for hydrogen 

bond interactions. All distances are in angstrom (Å). 
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2.3. Detection of ypfJ mRNA Expression in K. pneumoniae MGH 78578 

The ypfJ mRNA was detected by RT-PCR as shown in Figure 5 (lane 1). A PCR product 
corresponding to the size of ypfJ ORF (876 bp) was successfully amplified from K. pneumoniae cDNA. 

The result confirms that ypfJ is not a pseudogene. This gene is readily transcribed into mRNA from the 

genome of K. pneumoniae in its normal growth condition which also indicated that the hypothetical protein 
KPN_02809 might be expressed in the K. pneumoniae in the same growth condition. 

Figure 5. Cloning and purification of KPN_02809. Lane 1: Confirmation of KPN_02809 

RNA expression by RT-PCR; Lane 2: PCR amplification of KPN_02809 ORF from 
Klebsiella pneumoniae MGH 78578 genomic DNA; Lane 3: Purified recombinant 

KPN_02809 protein. M: GeneRuler DNA ladder mix, M1: GeneRuler 100bp DNA ladder 

and M2: Unstained protein ladder from Fermentas. 

 

2.4. Cloning and Heterologous Expression of ypfJ Open Reading Frame in E. coli 

ypfJ ORF with a size of 876 bp was amplified from K. pneumoniae MGH 78578 genomic DNA 

(Figure 5, lane 2) by PCR and it was cloned into pGEX-RB vector for the expression of KPN_02809 
as a GST-tagged protein in E. coli. The optimal induction time and temperature were 2 hr and 25 °C. 

More than 80% of the GST-tagged KPN_02809 was present as soluble fraction under the purification 

procedure used in this study. The GST tag was removed in the final step and the typical yield of 
purified KPN_02809 (Figure 5, lane 3) per liter culture was around five milligrams. The size of the 

protein was about 32 kDa. 
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2.5. Proteolytic Activity of Purified Wild-type and Mutants K. pneumoniae KPN_02809 

Proteolytic activities of purified wild-type KPN_02809 and its HEXXH motif mutants (His171 to 
Ser and Glu172 to Asp) were determined by casein hydrolysis assay. TPCK-Trypsin provided in the 

QuantiCleave Protease Assay kit and KPN_03358, another zinc-dependent protease isolated from  

K. pneumoniae [15] were also included in the assay for comparison. As shown in Figure 6, the 
proteolytic activity of KPN_02809 was about 40% of KPN_03358 and 20% of trypsin. Mutations in 

the HEXXH motif resulted in significant loss of proteolytic activity, especially for H171S mutant, the 

activity was almost undetectable. The results also rule out the possibility that KPN_02809 activity was 
contributed by E. coli protease contamination. Wild-type KPN_02809 showed optimum proteolysis at 

30 °C and pH 8 (Figure 7A and B). The results confirmed for the first time, that KPN_02809 is an  

active protease. 

Figure 6. Proteolytic activities of wild-type and mutant KPN_02809. Activity was 

measured at 30 °C, pH 8 for 60 minutes. The reaction was initiated by adding 20 µg of 

enzyme protein into a microplate well containing 100 µg of succinylated casein. After 
incubation, 50 µL of TNBSA solution were added and incubated for an additional 30 minutes. 

The absorbance at 450 nm was determined and the proteolytic activity was represented by 

the change in absorbance (∆A450nm), which was calculated by subtracting the absorbance of 
the blank. TPCK-Trypsin provided in the QuantiCleave Protease Assay kit and KPN_03358 

were included as positive controls and for comparison. 
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Figure 7. Effect of pH and temperature on the protease activity of KPN_02809. (A) The 

experiments were performed at 30 °C with succinylated casein as the substrate for 60 min; 
(B) The experiments were carried out at different temperatures with succinylated casein as 

the substrate for 60 minutes at pH 8. All values were reported as the means and standard 

deviations of three independent experiments. 

 

A series of inhibitors were tested on the enzyme activity with succinylated casein as the substrate to 

determine the classification of this protease. Generally, proteases can be grouped as serine protease, 

threonine protease, cysteine protease or metalloprotease [16]. Our result showed that KPN_02809 was 
highly sensitive to EDTA (Figure 8A) which is a metal chelator as predicted by the molecular docking 

simulation. Besides EDTA, KPN_02809 protease activity was also inhibited by 1,10-phenanthroline 

and DTT (Figure 8A), which are known metalloprotease inhibitors [16]. Metallopeptidase form a very 
heterogenous family, with each of them widely different in sensitivities and specificities to inhibitors [5]. A 

diagnostic feature of metallopeptidase is the chelating agents such as 1,10-phenanthroline and EDTA, 

which could inhibit its enzymatic activity [10]. DTT is a strong reducing agent. Since there are four 
cysteine residues in KPN_02808, the inhibition of the enzymatic activity by DTT might be due to the 

disruption of disulfide bonds that stabilize the protein [8]. The enzyme was not inhibited or sensitized 

by PMSF, suggesting that the KPN_02809 protein was not a serine protease. The results confirm the 
finding from our earlier computational analyses that suggest the hypothetical protein KPN_02809 

belongs to the group of metalloprotease. 
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Figure 8. Effect of inhibitors and divalent cations on the activity of KPN_02809 protein. 

(A) The protein was preincubated with 1 mM of the potential inhibitors for 1 hour at room 
temperature before the enzyme activity assay at standard conditions was carried out;  

(B) 1 mM of different cations was added into the assay mixture and activity was 

determined at 30 °C. The activities of the protein with inhibitors were compared with the 
control. All the values reported represent the means and standard deviations of three 

independent measurements. * indicates significant difference at p ≤ 0.05.  

 

 

Effects of cation activators on the enzyme activity were also determined (Figure 8B). Calcium ion 

was shown to slightly activate the enzyme, while magnesium ion did not cause a significant change of 
the enzyme activity. The enzyme activity was inhibited by more than 60% in the presence of zinc, 

manganese, cuprum and cadmium ions. Interestingly, the recombinant enzyme showed catalytic 

activity without the need of additional cation such as zinc ion. It is possibly due to the conservation of 
bound divalent cation such as zinc ion in the purified recombinant KPN_02809 as previously reported 

for a mitochondrial peptidase [10]. To confirm that the zinc ion was preserved in the protein after 

purification, quantification of zinc ion on the purified protein was carried out according to the method 
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of Bell et al. [17]. Results in Table 1 show that there were 1.2 molar of zinc ion in one molar of 

KPN_02809 protein and this confirms that the recombinant KPN_02809 contained one zinc ion in 
each of the protein molecule. The zinc binding of E172DKPN_02809 was not much affected. However, 

the molar ratio of zinc to H171SKPN_02809 mutant protein was only about 0.4, indicating the 

importance of the His171 in zinc binding of this protein. Previously, mutagenesis of the corresponding 
histidine and glutamate in HEXXH motif of Clostridium histolyticum ColH collagenase also showed 

that the histidine but not the glutamate was important as zinc ligand [18]. 

Table 1. Quantification of Zinc ion in the KPN_02809 protein molecule. 

Protein 
Absorbance  

(500 nm) 

Zinc concentration 

(µM) 

Protein 

concentration 

(µM) 

Ratio of zinc  

to protein 

concentration 

BSA (negative control) 0.001 0 15.15 0.1 
KPN_02809 0.456 149 124.60 1.2 

E172DKPN_02809 0.167 61.85 62.50 1.0 
H171SKPN_02809 0.073 27.04 62.50 0.4 

As shown in Figure 8B, the activity of KPN_02809 was inhibited by the addition of zinc ion, this is 
similar to other zinc metalloproteases, such as thermolysin [19] and carboxypeptidase A [20], which 

were also inhibited by an excess of zinc ion. Metalloproteases require a transition metal cations or 

alkaline earth cations for activity [16]. Zinc ion is an essential cofactor for the biological function of 
most metalloproteases. It directly participates in the catalytic activity or involves in maintaining the 

protein structure and stability [21]. The excess of zinc competitively inhibits the correct positioning of 

substrate into the pocket of active site [10]. In the presence of excess zinc, a second zinc ion can bind 
to the active site of the enzyme and causes distortion towards the tetrahedral coordination of the 

protein complex. This additional zinc ion assumed the position normally held by active water 

molecules and probably perturbed the substrate positioning and structural arrangement during catalysis 
reaction [19,20]. Thus, a decrease in enzyme activity by excess zinc was suggested to be due to the 

steric exclusion of the substrate from the active site. 

3. Experimental Section  

3.1. Homology Modeling of KPN_02809 Protein and Model Assessment 

Preliminary analysis of the sequence of KPN_02809 was performed by using Uniprot [6]. Multiple 

sequence alignment was done by using MAFFT [22]. The template for structure prediction was chosen 
based on the result from the Phyre [12], Interproscan [13] and I-TASSER [23] analyses. MODELLER 

9v8 [24] was used for model building. The zinc atom in our model was positioned based on the 

coordinate of zinc in the template structure using the “SET HETATM_IO = ON” command in 
MODELLER. 20 models were generated randomly and model with the best Discrete Optimized Potential 

Energy (DOPE) scoring was selected. Verification of the built model was done using PROCHECK [25]. 
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3.2. Molecular Docking Simulation 

ProBis [26] was used to detect the potential ligand’s- binding site on KPN_02809 model. Docking 
of selected protease inhibitors to the model structure was performed using Autodock 3.0.5 [27]. With 

the aid of Autodock Tool, Kollman-Amber united atom partial charges and solvation parameter were 

added to the built model of KPN_02809. Rotatable bonds were assigned for inhibitors while theirs 
partial charges were assigned with Gasteiger charges. All of the non-polar hydrogen from both the 

built protein model and inhibitors were merged. Grid map of 60 × 60 × 60 grid points and 0.375 Å 

spacing were generated using Autogrid3 and centered on the potential binding site. A total of 300 runs 
with 250 population size and root-mean square tolerance of 1.0 Å were set as the docking input 

parameter. The lowest docked energy of each conformation in the most populated cluster was selected. 

3.3. Bacterial Strains, Growth and Culture Conditions 

Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (ATCC number 700721) was used for this 

study. The bacterial strain was routinely cultured in Luria-Bertani medium at 37 °C. E. coli XL1-Blue 

and BL21 (DE3) were used as the host strains for cloning and expression purposes. pGEX-RB vector [28], 
was used for the overexpression of the GST-tagged target protein in E. coli cell. 

3.4. Total Genomic DNA and RNA Extractions from K. pneumoniae MGH 78578 

Genomic DNA and total RNA were isolated from a 5 mL overnight culture of K. pneumoniae MGH 
78578 using QIAmp DNA Mini Kit (Qiagen) and RNeasy Mini Kit (Qiagen), respectively. The 

integrity and size distribution of total purified RNA was visualized by ethidium bromide staining after 

electrophoresis on a 1% agarose gel. 

3.5. Cloning and mutagenesis of K. pneumoniae ypfJ Open Reading Frame 

The ypfJ ORF was PCR amplified from K. pneumoniae genomic DNA in a 50 µL reaction  

consisted of 10 × Thermopol buffer (New England Biolabs), 1 µM each of ypfJ-specific  
forward (5'-GAATTCCATATGCGCTGGCAAGGGCGTCGCG-3') and reverse (5'-CGCGGATCC 

TTACAGCGCACTGCCGAAGGTATTG-3') primers (underlined are the NdeI and BamHI recognition 

sequences for cloning), 5 mM dNTPs, 1 unit of Taq polymerase and 100 ng genomic DNA. The PCR 
was performed for 30 cycles at 95 °C for 30 s, 66 °C for 30 s and 72 °C for 60 s. 

The PCR product was gel purified by Qiaquick gel extraction kit (Qiagen), digested with NdeI and 

BamHI (New England Biolabs) and ligated into a pGEX-RB precut with the same restriction enzymes. 
The resulting pGEX-RB-ypfJ was confirmed by sequencing. 

H171SKPN_02809 and E172DKPN_02809 mutant constructs were created by site directed 

mutagenesis of pGEX-RB-ypfJ according to method described previously [29]. Briefly, the first step 
involved PCR amplification of two separate products with overlapping ends by using mutagenesis primers 

and the ypfJ-specific primers (given above). In the second PCR step, the two overlapping fragments were 

fused by the gene-specific primers. The resulting PCR product was cut with NdeI/BamHI and cloned into 
pGEX-RB vector to generate pGEX-RB-H171S-ypfJ and pGEX-RB-E172D-ypfJ. Primer sequences for 

H171S mutation are; forward: 5'-GTACGTCATTGCTAGTGAAGTGGGTCATC-3' and reverse:  
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5'-GATGACCCACTTCACTAGCAATGACGTAC-3'. Primer sequences for E172D mutation are; 

forward: 5'-GTCATTGCTCATGATGTGGGTCATCAC-3' and reverse: 5'-GTGATGACCCACATC 
ATGAGCAATGAC-3'. The mutations were confirmed by sequencing. 

3.6. Expression and Purification of Wild-Type and Mutant KPN_02809 Protein 

For protein expression, the pGEX-RB-ypfJ, pGEX-RB-H171S-ypfJ and pGEX-RB-E172D-ypfJ 
plasmids were transformed into the E. coli BL21 (DE3) strain. The culture was grown in LB medium 

(with 100 µg/mL ampicillin) at 37 °C, 200 rpm to an OD600 nm of 1.8. Subsequently, the expression of 

GST-tagged KPN_02809 was induced with 0.5 mM isopropyl thiogalactoside (IPTG). After the 
induction period, the cells were pelleted and re-suspended in 5 mL pre-cooled buffer (50 mM  

Tris-HCI, pH 7.5, 300 mM sodium chloride, 1% Trition X and 5 mM β-mercaptoethanol). The cells 

were then sonicated and centrifuged at 2000 × g for 20 min. The supernatant was mixed with the  
GST-binding resin 3 hours at 4 °C to allow binding. The resin was washed for several times with 

washing buffer (50 mM Tris (pH 7.5), 300 mM NaCl, 0.5% Triton X and 10% glycerol). After 

washing, the protein of interest was eluted from the GST-binding resin by thrombin cleavage and 
quantified by using Bradford reagent (Bio-Rad). 

3.7. Reverse Transcription PCR of ypfJ Gene 

RevertAid H Minus first strand cDNA synthesis kit (Fermentas) was used to synthesize the cDNA 
from the extracted total RNA. One microgram of total RNA was mixed with 0.2 µg random hexamer 

primer and DEPC-treated water. Subsequently, the mixture was preheated at 70 °C for 5 min, chilled 

on ice and followed by the addition of 4 µL of 5 × RT buffer, 1 mM of dNTP mix and 20 units of 
Ribolock Ribonuclease inhibitor. The mixture was incubated at 25 °C for 5 min followed by incubation 

at 37 °C for another 5 min. 200 units of Revertaid H Minus M-MuLVRT were added to a total volume 

of 20 µL. The mixture was then incubated at 42 °C for 1 h and heated at 70 °C for 10 min for the 
termination of the reverse transcription process. PCR was performed as described above except that the 

template was replaced with one µL of cDNA. 

3.8. Casein Hydrolysis Assay 

Enzymatic assays were performed with the QuantiCleave Protease Assay Kit (Pierce). Under the 

standard test condition, the enzymatic activity was measured at 25 °C, pH 8 at different reaction times, 

ranged from 15 until 90 min. The reaction was initiated by adding 20 µg of KPN_02809 hypothetical 
protein into the microplate well that contained 100 µg succinylated casein. After incubation, 50 µL of 

TNBSA solution were added to the well and incubated for additional 30 minutes. The absorbance at 

450 nm was determined for every well and the proteolytic activity was represented by the change in 
absorbance (∆A450), which was calculated by subtracting the absorbance of the blank from that of the 

corresponding casein well. Data from a triplicate experiment were analyzed with one way ANOVA 

using SPSS version 15.0. The level of significance was set at p ≤ 0.05. 
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3.9. Determination of pH and Temperature Optima for the Activity of Purified KPN_02809 

20 µg of purified protein and 100 µg of succinylated casein were used per assay for the 
determination of optimum pH and temperature for KPN_02809 casein hydrolysis activity. The buffers 

used were 300 mM acetate buffer for pH 5.0 and 6.0, and 120 mM disodium hydrogen orthophosphate 

buffer for pH 7.4, 8.0 and 9.0. The effect of temperature on the protease activity of KPN_02809 was 
studied by incubating the standard reaction mixture at temperatures ranging from 20 °C to 40 °C for  

60 min. 

3.10. Effect of Various Inhibitors and Ions on the KPN_02809 Enzymatic Activity 

The inhibitors used in this study are ethylenediaminetetraacetic acid disodium salt, EDTA (Univar 

Analytical Reagent), 1,4-dithiothreitol, DTT (Roche), phenylmethanesulfonyl fluoride, PMSF (Fluka 

Analytical) and 1,10-phenanthroline (Sigma Aldrich). One millimolar of the inhibitors was 
preincubated at room temperature for an hour with the hypothetical protein. The reaction was 

performed under the standard assay conditions. The relative activity was determined as a percentage of 

the activity in control samples (reaction without inhibitors). For study on the effect of ions on the 
enzymatic activity, 1 mM of each ion (Mg2+, Ca2+, Zn2+, Mn2+, Cu2+ and Cd2+) was added into the 

reaction mixture, incubated at 30 °C for 60 min. before adding the TNBSA and later incubated for 

another 30 minutes. The activity was then compared with the activity in control sample. 

3.11. Quantification of Zinc Ion Content in the KPN_02809 Protein Molecule 

The zinc ion quantification was carried out according to Bell et al. [17] by using a standard curve of 

absorbance at 500 nm versus zinc (II) ion concentration from 0 to 300 µM in 50 mM HEPES/KOH  
pH 7.5 containing 3% (v/v) perchloric acid. Each measurement was repeated for at least 3 times. The 

ratio of zinc to protein concentrations was then calculated. 

4. Conclusions  

In this work, a combination of protein sequence analysis, structural modeling and molecular 

docking simulation approaches were employed to probe the possible functions and characteristics of a 

hypothetical protein with unknown structure and biochemical properties. The catalytic behavior of this 
protein was subsequently investigated by first cloning the ORF of ypfJ gene that encodes this protein, 

followed by successful expression in E. coli and purification of the gene product. Characterization of 

the highly purified recombinant KPN_02809 confirmed the predictions made by computational 
analysis that this enzyme is a zinc metalloprotease. The recombinant KPN_02809 protein and its 

enzymatic properties obtained in this work could serve as the foundation for more structure function 

studies of this protein and investigation into its possible role in the pathogenesis of K. pneumoniae. 
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